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Theory of a magnetic microscope with nanometer resolution
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We propose a theory for a type of apertureless scanning near-field microscopy that is intended to allow the
measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling
microscope~STM! tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field
between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect,
which is normally of order 0.1%, is increased by up to two orders of magnitude for the case of a Ag or W tip
and an Fe sample. Apart from this there is a large background of circular polarization which is nonmagnetic in
origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed
retarded calculation for this light-in-light-out experiment is presented.
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I. BACKGROUND

A microscope that can measure magnetic structure w
high resolution would be very desirable for practical reas
such as investigating read heads and media for magneti
cording, and because magnetic nanostructures are curr
of great interest. We propose a scanning magnetic mi
scope with a resolution of approximately 1 to 10 nm,1 de-
pending on the tip shape. This device is a form of apertu
less near-field scanning magneto-optical microscope
which light from a laser is focused at the tip of a scann
tunneling microscope~STM! or atomic force microscope
~AFM! or at an isolated sphere on the sample surface,
the circular polarization of the light scattered from the
and sample is measured. This is analogous to attempts to
the circular polarization of the light emitted by a scanni
tunneling microscope to construct a magnetic microscope2–5

It was found that the light-emission scheme is not suita
for use as a magnetic microscope, due to the small degre
circular polarization produced by a magnetic sample as w
as the relatively low intensity of the emitted light.4 The light
intensity is low despite the fact that the electric field at t
tip of a STM can be strongly enhanced by interface plasm
localized between the sharp tip apex and the substrate. W
out the enhancement the light intensity would be smaller
several orders of magnitude. Other techniques to deve
magnetic microscopes based on apertureless near-field
ning have resolutions on the order of at least 100 nm6–8

Attempts to measure a magnetic surface structure by m
of the STM tunneling current9 have also been made, an
recently the magnetic structure of an antiferromagnetic ov
layer was mapped using this technique.10

In the scheme we propose, the scattered laser light in
sity is large compared to that produced in STM light em
0163-1829/2001/64~5!/054411~13!/$20.00 64 0544
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sion experiments, making detection far easier. The circu
polarization of the scattered light has both a component
is independent of the state of magnetization of the sam
and a component that depends on the magnetization.
latter effect is rather small both when light is scattered fro
a magnetic surface as in the surface magneto-optic Kerr
fect, and when light is emitted from a STM. However, wh
a tip is present and a laser provides incident light that
linearly polarized parallel to the surface (s polarized! and
propagating in the direction of the magnetization, we find
to two orders of magnitude increase in the degree of circu
polarization compared with the basic Kerr effect which
generally of order 0.1%. This enhancement occurs beca
the s-polarized light that scatters from the tip and substr
develops a component in the direction perpendicular to
surface that is out of phase with thes-polarized light. This is
due to ~1! the ordinary Kerr effect, in which some of th
incomings-polarized light is converted top polarization; and
~2! the Kerr effect that acts on the light that is scatter
between the tip and the substrate in the near field. The c
ponents of these fields that are perpendicular to the sur
and lie between the tip and sample are enhanced by
orders of magnitude, with a corresponding increase in
circular polarization.

The part of the circular polarization that does not depe
on the magnetism of the surface is due to light that is
flected from both the tip and the sample surface. The surf
reflection coefficients fors and p-polarized light result in
phase differences that produce circularly polarized light. T
circular polarization is large, and has a characteristic dep
dence on the observation angle which is different from
one displayed by the circular polarization due to magne
effects. This difference in angular dependence may help
separating the two contributions.
©2001 The American Physical Society11-1
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The resolution of the microscope is roughly set by t
radius of the tip~probe!. A smaller probe gives a better res
lution; however, one must also take into account that a v
small probe gives a very small scattering cross section
the same time, we find that a small probe is essentia
obtaining a high degree of magnetism-dependent polar
tion of the scattered light. Our results indicate that a pro
size of about 20 nm is optimal in striking a balance betwe
these conflicting requirements.

The paper is organized in the following way. In Sec. II w
present a general theory, with which we can solve
multiple-scattering problem defined by the model tip-sam
geometry, and calculate the scattered radiation and its po
ization state. This theory uses a spherical model tip. T
electromagnetic field is calculated taking retardation effe
fully into account, while the magnetooptic corrections to t
reflection coefficients of the sample are treated to first or
in the off-diagonal elements of the dielectric tensor. In S
III, we discuss the limit of a point dipole tip, in order t
demonstrate the central physics more clearly, and als
make a comparison with the case of light emission from
STM probing a magnetic surface.5 In Sec. IV we present and
discuss the numerical results obtained using the gen
theory of Sec. II.

II. THEORY

A. Basic considerations

In this section we present a theoretical formalism t
allows us to calculate the polarization of light scattered fr
a tip-sample geometry in which the model tip is a sphere
finite size ~the radius of the sphere corresponds roughly
the radius of curvature of the real tip!. The calculation takes
into account higher multipoles on the sphere as well as
tardation effects.

We consider a situation illustrated in Fig. 1, where t
magnetic sample fills the half-spacez.0, and the model tip
is a sphere with radiusR that has its center on thez axis at
z52(d1R); thus the tip-sample separation~smallest dis-
tance! is d. A plane wave incident on this system with wav
vectorq can be written as~all fields, etc., vary with time as
e2 ivt, but we omit this factor here and in the following!

E~r !5$E(s)@ ẑ3q̂i#2E(p)@ q̂3~ ẑ3q̂i!#%e
iq•r. ~2.1!

For any given wave vectorq, the polarization vectors fors
andp polarizations are

ŝ5 ẑ3q̂i

and

p̂52q̂3~ ẑ3q̂i!,

respectively, whereqi is the projection ofq in the surface
plane. Bothŝ and p̂ are orthogonal to the unit vectorq̂. We
will calculate the radiation sent out in an arbitrary directi
q8 after reflection off the tip-sample system. The radia
electric field propagating alongq8 can be written as
05441
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Erad5$Erad
(s)@ ẑ3q̂i8#2Erad

(p)@ q̂83~ ẑ3q̂i8!#%eiq8•r. ~2.2!

The polarization state of this radiation is different from th
of the incoming light. First, there is a rather large,~and in
this context less interesting! contribution to the circular po-
larization that comes about because the reflection probab
from the surface is different fors- and p-polarized light. In
addition, the scattered light acquires a certain degree of
cular polarization due to the Kerr effect; of course, for o
purposes this is the interesting contribution. An incide
s-polarized wave will electrically polarize the tip in a direc
tion parallel to the sample surface, but reflections off t
magnetic sample surface also give rise to a field compon
perpendicular to the surface. There is a strong enhancem
of the component of the field perpendicular to the surfa
due to the cavity formed between the tip and sample; the
fore, this second contribution to the circular polarizati
should also be detectable.

The degree of circular polarization of the outgoing rad
tion is given in terms of the Stokes parameters as

rCP5
S3

S0
. ~2.3!

Following Jackson’s definitions,11 the Stokes parameterS0 is
proportional to the total radiated differential power, where
S3 is proportional to the difference in intensity between le
and right-hand circularly polarized light. With the geomet
illustrated in Fig. 1, one finds that, in the radiation zone,
away from the tip and the sample surface,ŝ5f̂8 and p̂
5 û8, wheref̂8 and û8 denote the angular direction of th
scattered light.

Left-hand circularly polarized light~positive helicity! is
associated with the unit polarization vectorê15(p̂

FIG. 1. The model geometry used in the calculation. The vec

q̂8, p̂, and ŝ indicate propagation and polarization directions in t
radiation zone.u andf andu8 andf8 are the angles of incidenc
and observation, respectively, in a spherical coordinate system
1-2
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THEORY OF A MAGNETIC MICROSCOPE WITH . . . PHYSICAL REVIEW B64 054411
1 i ŝ)/A2, while for right-hand circularly polarized ligh
~negative helicity! ê25(p̂2 i ŝ)/A2. For radiation propagat
ing along theq8 direction,

S0[u ê1* •Eradu21u ê2* •Eradu25uErad
(p)u21uErad

(s)u2 ~2.4!

and

S3[u ê1* •Eradu22u ê2* •Eradu2522 Im@Erad
(s)* Erad

(p)#.
~2.5!

Hence the degree of polarization can be expressed as

rCP522 ImF Erad
(s)* Erad

(p)

uErad
(p)u21uErad

(s)u2G . ~2.6!

B. Sample dielectric tensor

We have expressed the measured magnetic circular
chroism in terms of the field amplitudes at the detect
These in turn have to be calculated with the tip-sample
ometry and tip and sample dielectric functions as inpu12

Because the sample is magnetic, its dielectric function
matrix that takes the form

e i j 5S eS~v! e1 cosw 2e1 sing sinw

2e1 cosw eS~v! e1 cosg sinw

e1 sing sinw 2e1 cosg sinw eS~v!
D ,

~2.7!

whereeS(v) is the substrate dielectric function.@Sometimes
e1, appearing in the off-diagonal elements is writtene1(v)
[ iQ(v)eS(v), Q being the so called magneto-optical co
stant.# The anglesw andg, relative to thex axis, specify the
direction of the magnetization. We will work in a configur
tion wherew5g5p/2, which means that the magnetizatio
is directed along they axis:

M5MM̂5M ŷ,

~see Fig. 1!. Then the dielectric tensor for the sample tak
the form13

e i j 5S eS~v! 0 2e1~v!

0 eS~v! 0

e1~v! 0 eS~v!
D . ~2.8!

In Table I we list values, taken from Ref. 14, fore1(v) used

TABLE I. The off-diagonal elemente1(v) of the dielectric ten-
sor for Fe and Co for a few photon energies. The data are ta
from Ref. 14.

\v ~eV! Fe Co

1.5 2(1.42–0.089)i 2(1.16–0.089)i
2.0 2(0.67–0.26)i 2(0.40–0.15)i
2.5 2(0.26–0.22)i 2(0.20–0.096)i
3.0 2(0.13–0.12)i 2(0.10–0.067)i
05441
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in the present calculations.

C. Surface response

When a plane wave of the form of Eq.~2.1! is reflected
from the sample surface,qi remains unchanged. The re
flected wave can in general be written as

Er5$Er
(s)@ ẑ3q̂i#2Er

(p)@ q̂3~ ẑ3q̂i!#%e
iq2•r, ~2.9!

where

q25~qi ,2p! with p5Ak22qi
2

andk5v/c, the subscript expressing that the reflected wa
propagates in the negativez direction.

The reflected amplitude varies linearly with the amp
tudes of the incident wave. Thus, fors polarization,

Er
s5rsE

(s)1rsp8 E(p). ~2.10!

The response functionrs describes the ‘‘normal’’ reflection
that takes place whether or not the sample is magnetic.
Fresnel formula fors polarization is

rs5
p2pS

p1pS
, ~2.11!

where

pS5AkS
22qi

2.

k5v/c andkS5kAeS(v) are the wave-vector magnitudes
vacuum and the sample material, respectively. The sec
term in Eq.~2.10! applies to magnetic surfaces for which th
off-diagonal elemente1(v) in the dielectric tensor is non
zero, and polarization mixing as a result of ‘‘anomalou
reflection events becomes possible. The conversion fa
can be explicitly written as

rsp8 5
e1~v!qip k

pS~p1pS!~eS~v!p1pS!
@M̂•q̂i#[rL@M̂•q̂i#.

~2.12!

This expression can be derived by the methods develope
Zak et al.13 There is also a contribution from the off-diagon
elements in the dielectric tensor to thes-to-s reflection coef-
ficient. However, this contribution is exceedingly, sma
since it depends on the square ofe1(v), and we neglect it in
the following.

In analogy with Eq.~2.10!, the reflectedp-polarized light
is associated with the electric field

Er
p5rpE(p)1rps8 E(s)1rpp8 E(p). ~2.13!

In this case the Fresnel formula is

rp5
eS~v!p2pS

eS~v!p1pS
, ~2.14!

while the conversion factors originating frome1(v), rps8 and
rpp8 are given by

en
1-3
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rps8 52rsp8 52rL@M̂•q̂i#, ~2.15!

@rL was introduced in Eq.~2.12!# and

rpp8 5
2 e1~v!pqi

~eS~v!p1pS!2
@ ẑ•~ q̂i3M̂ !#[rT@ ẑ•~ q̂i3M̂ !#.

~2.16!

Thus, unlikerps8 andrsp8 , rpp8 vanishes whenqi andM are
parallel. Figure 2 illustrates the three possible anomal
scattering processes.

The expressions for all the surface response functions
be extended to the case of evanescent waves for whicqi
5uqiu.k, andp is imaginary.~When evaluating the squar
roots definingp andpS , the branch cut lies below the pos
tive real axis.! Later, when we deal with the coupling be
tween the sphere and the sample, this becomes impo
since the coupling is mediated both by propagating and e
nescent waves.

D. Scattering from the sphere

We now deal with the scattering off a sphere whose o
cal properties are described by its dielectric functioneT(v).
To this end we expand the electromagnetic field inside
just outside the sphere in terms of electric~E! and magnetic
~M! multipoles. We use the same notation as Jackson,11 so
that inside the sphere the electric field is written~the spheri-
cal coordinate system used here has the origin at the ce
of the sphere!

E5(
lm

kclm
(M ) j l~kTr !X lm1

i

eT
“3@clm

(E) j l~kTr !X lm#,

~2.17!

while just outside the sphere the solution is a linear com
nation of incident and outgoing waves, which can be writ

E5(
lm

k@alm
(M ) j l~kr !1blm

(M )hl~kr !#X lm

1 i“3$@alm
(E) j l~kr !1blm

(E)hl~kr !#X lm%. ~2.18!

The corresponding magnetic field outside the sphere is

FIG. 2. Illustration of the different ‘‘anomalous’’ scattering pro
cesses involving the Kerr effect that can take place at the sam
surface. Conversion ofs to p polarization, and vice versa, is mo
effective when the in-plane component of the wave vector is c
linear with the sample magnetizationM . However, the Kerr contri-
bution to thep to p reflection is most effective whenqi andM are
perpendicular.~NB. In the figure to the right the viewpoint, but no
the magnetization differs from the other figures.!
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(E) j l~kr !1blm
(E)hl~kr !#X lm

2
i

c
“3$@alm

(M ) j l~kr !1blm
(M )hl~kr !#X lm%. ~2.19!

Here the vector spherical harmonics are defined as

X lm~u,f![@LYlm~u,f!#/Al ~ l 11!, ~2.20!

L[2 i r3“ is the angular momentum operator, andYlm are
the usual spherical harmonics. The vector spherical harm
ics form an orthonormal set of functions on the surface o
unit sphere. The functionsj l denote spherical Bessel func
tions, whilehl[hl

(1) are spherical Hankel functions descri
ing outgoing waves. As beforek5v/c, kT5AeTk, and r
denotes the distance from the center of the sphere. The
efficientsclm , alm , andblm for the different multipoles are
as yet unknown; they will be calculated in the following.

Since the angular momentum operatorL does not have
any vector component in the radial direction, the same ho
true for X lm . Consequently, for an electric multipole field
the magnetic field does not have a radial component. On
other hand the electric field, as one should expect by vis
izing the field from an electric dipole, has a radial comp
nent. For a magnetic multipole field, the roles are int
changed: the magnetic field but not the electric field ha
radial component.

In the present context, we are primarily interested
knowing how the sphere acts as a scatterer. It therefore
fices to know what outgoing waves are obtained for giv
incident waves. The ratio between theb anda coefficient for
each multipole provides this information. By demanding th
the tangentialE andH fields and the normalB andD fields
be continuous, we arrive at the following expressions for
sphere ‘‘response’’ functions:

sl
(E)[

blm
(E)

alm
(E)

52
eTkR jl8~kR!1 j l~kR!~eT212Jl !

eTkRhl8~kR!1hl~kR!~eT212Jl !

~2.21!

and

sl
(M )[

blm
(M )

alm
(M )

52
kR jl8~kR!2 j l~kR!Jl

kRhl8~kR!2hl~kR!Jl
, ~2.22!

whereJl is shorthand for

Jl5kTR jl8~kTR!/ j l~kTR!.

Thanks to the symmetry of the sphere, these response f
tions are independent ofm.

One additional ingredient is needed before we can ca
late the field around the sphere when it is interacting with
sample. We have to be able to calculate ‘‘overlap integra
between plane waves and multipole fields, and vice ve
~Note that for lack of a better terminology, we will us
‘‘plane wave’’ as a common name both for propagati
plane waves and waves that propagate in the directions
allel to the sample surface but are evanescent in the thirz,
direction.! A plane wave, like the one in Eq.~2.1!, impinging

le

l-
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on the sphere can be expanded in terms of regular multi
contributions@the j l terms in Eqs.~2.18! and ~2.19!#. The
resultinga coefficients depend linearly on the amplitudes
the incoming wave

alm
(E)5 f lm

Ep~q!E(p)1 f lm
Es~q!E(s),

alm
(M )5 f lm

Mp~q!E(p)1 f lm
Ms~q!E(s). ~2.23!

Explicit expressions for the proportionality factorsf are de-
rived in the Appendix.

We also have to go in the opposite direction, from a c
tain multipole to a plane wave. In general the field radia
from the sphere can be written as

E~r !5 (
lm,s

blm
s E d2Qi

~2p!2
eiQ•r$glm

ss~Q!~ ẑ3Q̂i!2glm
ps~Q!

3@Q̂3~ ẑ3Q̂i!#%. ~2.24!

HereQ5Qi6 ẑAk22Qi
2 ~the sign is chosen according to th

direction of propagation or exponential decay relative to
z axis! ands denotes a polarization@(E) or (M )#. The fac-
tors glm

ss(Q) and glm
ps(Q) are the contributions of a give

multipole on the sphere, (l ,m,s), to the amplitude of a plane
wave with wave vectorQ. The explicit calculation of these
factors is deferred to the Appendix.

E. Solution of the multiple-scattering problem

We are now in a position to solve the multiple-scatteri
problem by using the same method as in a previous pap15

We solve for the fields at the surface of the sphere, and t
calculate the electromagnetic fields elsewhere, in partic
the radiated fields found far from the tip and sample.

In order to carry out the calculations, it is convenient
collect thea andb coefficients of Eqs.~2.18! and~2.19! into
vectorsaW andbW ~in ‘‘multipole space’’! with the structure

aW 5~a121
(E) ;a10

(E) ; . . . ;al maxl max

(E) ;a121
(M ) ; . . . ;al maxl max

(M ) !,

~2.25!

and similarly forbW . At the same time a diagonal tensorsJ,
can be formed from the sphere response functions in E
~2.21! and ~2.22!, so that one can write

bW 5 sJaW . ~2.26!

The magnetooptic surface response functionsrps8 , rsp8 , and
rpp8 are small, and one can therefore treat the magneto-o
effects by means of a series expansion ine1. We begin by
calculating the fields tozeroth order in the magnetoopti
response. The field impinging on the sphere is a sum of thr
contributions~Fig. 3!, which in our vector notation can b
written

aW 5aW dir1aW ref1NJaW . ~2.27!

HereaW dir represents the amplitude of the field from the ori
nal incident wave,aW ref gives the amplitude from the inciden
05441
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wave reflectedonce from the sample, andNJaW represents
waves sent out from the sphere itself that return to it a
being reflected from the sample. Note that since the last t
contains the exact field (aW ), it accounts for all multiple-
scattering events in which light is scattered between
sphere and sample an arbitrary number of times.

With an incident wave given by Eq.~2.1!, the elements
enteringaW dir are found by using Eq.~2.23! together with Eqs.
~A6! and~A7!. In an analogous way, the elements ofaW ref are

alm
(E),ref5 f lm

Ep~q2!rpE(p)1 f lm
Es~q2!rsE

(s),
~2.28!

alm
(M ),ref5 f lm

Mp~q2!rpE(p)1 f lm
Ms~q2!rsE

(s).

Here rpE(p) and rsE
(s) are the amplitudes of the reflecte

wave. Thef functions now haveq2 as an argument, since th
direction of propagation relative to thez axis changes upon
reflection. In the last term of Eq.~2.27!, NJ is a tensor in
multipole space. Its elements describe how a wave with
gular momental 8 andm8 and polarizations8 hits the sphere,
is reflected, and returns to the sphere again after reflec
from the plane, now with angular momental and m and
polarizations. As a consequence, a tensor element is writ

Nlm,l 8m8
ss8 5sl 8

s8E d2Qi

~2p!2 (
s9

f lm
ss9~Q2!rs9~Qi!gl 8m8

s9s8~Q1!.

~2.29!

In this equation,s9 stands for eithers or p polarization, and

Q65Qi6 ẑAk22uQiu2.

FIG. 3. Illustration of the general scheme employed in the c
culation. An incident plane wave can be expressed as a multi

expansion of waves impinging on the sphere, either directly (aW dir)

or after an initial reflection off the sample (aW ref). Subsequently,
multiple scattering takes place between the sphere and the sam
The sphere response functionss determines the strength of the ou

going spherical wavesbW l 8m8 , which can be expanded into plan
waves according to the functionsgl 8m8 and after reflection of the
sample~governed byr), the functionsf lm determine the strength

aW lm of the different multipole contributions to the reflected wa
that again impinges on the sphere. Anomalous~Kerr effect! reflec-
tions which are governed by the functionsr8 generate waves inci-

dent on the sphere with strengthaW lm8 .
1-5
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Equation~2.29! can be derived formally along the lines o
the calculation presented in Ref. 15, but it can also be un
stood in a more intuitive way as follows~see Fig. 3 for a

schematic illustration!. The first factorsl 8
s8 connects thea

coefficient of the initially incident multipole to the corre
spondingb coefficient; then the functiong(Q1) describes
the overlap between the multipole (l 8,m8,s8) and a plane
wave, r describes the reflection of that plane wave off t
sample;f (Q2) gives the overlap between the reflected wa
and the multipole (l ,m,s). Because the propagation to th
sample surface and back involves all wave vectors, a t
dimensional wave-vector integration is required. To evalu
Eq. ~2.29! it is best to use cylindrical coordinates in whic
the angular integration is trivial. Thanks to the cylindric
symmetry of the model geometry, only tensor elements w
m5m8 are nonzero. The remaininguQiu integration runs
from 0 to `, so that the sphere-sample coupling is media
by both propagating and evanescent waves.

Equation~2.27! is solved by a matrix inversion~of course
then only a finite number of multipoles can be retained!

aW 5@1J2NJ #21~aW dir1aW ref!. ~2.30!

Knowing the coefficientsalm , we can calculate the electro
magnetic field everywhere to zeroth order in the magne
optic response. The various ingredients entering the calc
tion of the scattering processes are shown schematical
Fig. 3.

We next proceed to calculate the corrections to the fie
to first order in the magneto-optic response. To this end we
introduce another set of coefficientsalm8

(E) and alm8
(M ) that

vary linearly with e1, the off-diagonal elements of th
sample dielectric tensor. Together,alm8

(E) and alm8
(M ) form

the vectoraW 8 in multipole space. One can solve foraW 8 from
the equation

aW 85aW 8ext1NJaW 8, ~2.31!

in which all terms are first order ine1. The first term on the
right-hand side acts as a source term for the first-order-ine1
fields, while the last term accounts for multiple, normal~i.e.,
not involving the Kerr effect! reflections between the tip an
sample; the fields appearing there, described byaW 8, have
already undergone an anomalous reflection.

There are two contributions toaW 8ext, one due to an anoma
lous reflection of the incident wave the very first time it h
the sample, and one due to waves incident from the sp
that are anomalously reflected; thus

aW 8ext5aW 8ref1KJaW . ~2.32!

Both terms on the right-hand side are first order ine1, the
first one being the ordinary Kerr term and the second
tip-induced Kerr term. In analogy with Eq.~2.28!,

alm8
~E!,ref5 f lm

Ep~q2!~rpp8 E(p)1rps8 E(s)!1 f lm
Es~q2!rsp8 E(p)

~2.33!

and
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(M ),ref5 f lm

Mp~q2!~rpp8 E(p)1rps8 E(s)!1 f lm
Ms~q2!rsp8 E(p).

~2.34!

In these expressions we have suppressed theqi dependence
of rpp8 , rps8 , andrsp8 . This dependence becomes importa

when evaluating the tensor elements inKJ :

Klm,l 8m8
ss8 5sl 8

s8 (
s9,s-

E d2Qi

~2p!2
f lm

ss9~Q2!rs9,s-
8 ~Qi!

3gl 8m8
s-s8~Q1!. ~2.35!

Here s9 and s- stand for eithers or p polarization ~and
rss8 50 to first order ine1). The various factors play the sam
roles here as in Eq.~2.29! except, of course, for the fact tha
we now collect the effects of anomalous reflection events
the sample described byrs9s-

8 . As in the previous case th
angular integrations can be done analytically, and here,
to the angular dependence ofrs,s8

8 , an element inKJ is non-

zero if, and only if,m5m861. OnceKJ has been calculated
we evaluateaW 8ext, and then solve foraW 8:

aW 85@1J2NJ #21aW 8ext5@1J2NJ #21@aW 8ref1KJaW #. ~2.36!

F. Radiated field

Finally, we calculate the radiated fields, and the degree
polarization. To this end, we add together all contributions
the radiated field that have scattered from the sphere at
time or another.

To zeroth order ine1, the field is found by considering th
outgoing waves coming from the sphere as well as the c
responding waves reflected~normal reflection! off the
sample surface. A specularly reflected wave that has no
teracted with the sphere is ignored, since an experime
measurement that is sensitive to polarization changes
duced by the Kerr effect must avoid this otherwise domin
ing, direct contribution.

The radiated field is calculated to first order ine1 along
the same lines using thealm8 terms instead of thealm terms in
the multipole expansion as a source for the radiation. Th
is also an additional, in practice rather small, contribution
the first-order fields that results from anomalous reflection
zeroth-order waves coming from the sphere and scatte
off the sample surface a last time before going out to infin

The field radiated directly from the sphere into a directi
defined by the anglesu8 andf8 @(u8,f8)[V8# can be cal-
culated by means of a stationary phase approximation, yi
ing

Edir52
eikr

r

ik cosu8

2p (
lms

sl
salm

S,s

3@ û8glm
ps~q28 !1f̂8glm

ss~q28 !#. ~2.37!

Here

q28 5kq̂25k sinu8~ x̂ cosf81 ŷ sinf8!2kucosu8uẑ
1-6
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THEORY OF A MAGNETIC MICROSCOPE WITH . . . PHYSICAL REVIEW B64 054411
~with an analogous definition, having a positivez compo-
nent, forq18 used below!, and

alm
S,(M )5alm

(M )1alm8
~M !, and alm

S,(E)5alm
(E)1alm8

(E),

so that the expression contains contributions to both ze
and first order ine1. The radiation resulting from normal o
anomalous reflections from the sample surface can be ca
lated in a way analogous to Eq.~2.37!. The only modifica-
tions are that one must~i! multiply by the appropriate reflec
tion factor, and~ii ! useq18 instead ofq28 as an argument ing
since the light in this case first propagates towards
sample after having left the sphere.

These contributions can now be added together so tha
polarizationrCP, of the outgoing light that has been sca
tered off the sphere at least once, can be calculated.
obtain16

Erad
(s)52

eikr

r

ik cosu8

2p (
lms

sl
salm

S,s

3@glm
ss~q28 !1rs~k sinu8!glm

ss~q18 !

1sinf8rsp8 ~qi8!glm
ps~q18 !# ~2.38!

and

Erad
(p)52

eikr

r

ik cosu8

2p (
lms

sl
salm

S,s

3@glm
ps~q28 !1rp~k sinu8!glm

ps~q18 !

1cosf8rpp8 ~qi8!glm
ps~q18 !1sinf8rps8 ~qi8!glm

ss~q18 !#,

~2.39!

where the terms are organized according to where the
scattering event takes place. The first terms describe w
that come directly from the sphere, the second terms give
contributions from waves that come from a final, norm
scattering event from the sample, while the remaining te
originate from a final anomalous scattering event from
sample. The degree of circular polarization is then found
inserting these expressions into Eq.~2.6!.

III. DIPOLE LIMIT

For illustrative purposes it is useful to study the theo
developed in Sec. II in a limit where both the sphere rad
and the sphere-sample distance are much smaller than
wavelength of light, and, moreover,d*R. When these con-
ditions are fulfilled the sphere can be treated as a point dip
and retardation effects are negligible.

Returning to Eqs.~2.21! and~2.22! we find the following
limiting behavior for the sphere response functions wh
both kR!1 andukTRu!1,

sl
(E)5

i ~kR!2l 11~ l 11!

~2l 21!!! ~2l 11!!!

eT21

l eT1~ l 11!
~3.1!

and
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(M )52

i ~kR!2l 13

~2l 11!!! ~2l 13!!!
. ~3.2!

Thus the behavior of a small sphere is dominated by
electric-dipole responses1

(E);k3R3. Therefore, in the rest o
this section we will only discuss the electric-dipole excit
tions of the sphere and the vectorsaW andbW can effectively be
reduced to just three components.

We also need limiting expressions for the coupling mat
elementsN10,10

EE , N11,11
EE , andN121,121

EE ~the other remaining

elements ofNJ vanish!. An explicit evaluation ofN11,11
EE in

which the largeqi limits of rp5(eS21)/(eS11), rs→0, as
well as f andg are used yields

Ni[N11,11
EE 5N121,121

EE 5
eT21

eT12

eS21

eS11

R3

8~d1R!3
.

~3.3!

This expression can be obtained from more intuitive reas
ing. If an electric fieldE5Ex̂ polarizes the sphere, a dipol
moment

p54pe0R3
eT21

eT12
Ex̂ ~3.4!

is induced on the sphere, and there is an accompanying
age dipole in the sample:

pim52p
eS21

eS11
. ~3.5!

The electric field created by the image dipole at the cente
the sphere is

Eind5
eT21

eT12

eS21

eS11

R3

8~d1R!3
E[NiE. ~3.6!

This is just the way the matrix elements ofN should work;
given an incoming field at the sphere,N generates the fields
reflected from the sphere and scattered back to it by
sample.

If the incidentE field points in thez direction, the field
from the image dipole, which now is proportional toN10,10

EE ,
is twice as strong as in the previous, parallel case. Con
quently we have

N'[N10,10
EE 5

eT21

eT12

eS21

eS11

R3

4~d1R!3
. ~3.7!

One can also evaluate theK integrals describing the couplin
due to magneto-optic effects. The results can be written

K[K10,11
EE 52K11,10

EE 52K10,121
EE 5K121,10

EE

5A2
eT21

eT12

e1

~eS11!2

R3

8~d1R!3
. ~3.8!

The other elements ofKJ vanish in this case.
1-7
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If an s-polarized wave with a wave vectorq impinges on
the system, the wave incident on the dipole can be writte

aW dir1aW ref522p iA 3

4p
@11rs~qi!#

E(s)

k F eif

0

e2 if
G ,

~3.9!

wheref denotes the azimuthal angle ofq, the wave vector
of the incident light. BecauseNJ is diagonal, it is simple to
solve for the full vectoraW using Eq.~2.30!:

aW 52
2p i

12Ni
A 3

4p
@11rs~qi!#

E(s)

k F eif

0

e2 if
G . ~3.10!

The sphere is only polarized parallel to the surface at
stage (a10

(E)50).
Before proceeding further, let us insert the above re

for aW into Eqs.~2.38! and ~2.39! and calculate the polariza
tion of the light sent out. SinceErad

(s) and Erad
(p) have many

factors in common, the final result can be written

rCP522 ImF S* P

uSu21uPu2G , ~3.11!

where

S5cos~f82f!@11rs~qi8!#,
~3.12!

P5sin~f82f!@12rp~qi8!#cosu8.

With appropriate parameter values Eq.~3.11! predicts a
rather large circular polarization even if the sample is n
magnetic. If rCP given by this expression is plotted as
function off8 one typically obtains an oscillating curve. W
also note that in this limit,f8 andf81p yield exactly the
samerCP. Thus, if we introduce the quantity

DrCP~f8!5rCP~f8!2rCP~f81p!, ~3.13!

we find that in the dipole limit, without a Kerr effect,DrCP
50. This is an important observation since we will see t
when the sample is magnetic this symmetry is lost.

Due to e1, there are two contributions toaW 8ext; the ordi-
nary Kerr effect upon reflection of the incident field yield
aW 8ref,

aW 8ref52e1

qip2pA3/4p sinf

pS~p1pS!~eSp1pS! F 2eif cosu8

A2 sinu8

e2 if cosu8
GE(s),

~3.14!

and the tip Kerr effect yields
05441
is

lt

-

t

KJaW 52
4p K sinf

12Ni
A 3

4p
@11rs~qi!#

E(s)

k F 0

1

0
G .

~3.15!

Both contributions are first order ine1, both have a sinf
dependence on the direction of propagation of the incid
light, and the Kerr effect induces a dipole moment perp
dicular to the sample surface. We also see that resonanc
the tip-sample interaction described by the factor 1/(12Ni)
can enhance the tip Kerr effect~though for a point dipole
model for the tip these effects are usually small!.

We can now solve foraW 8 by making use of

aW 85~1J2NJ !21~aW 8ref1KJaW !, ~3.16!

where further tip-sample interactions are included. Next,
serting the sumaW S 5aW 1aW 8 into Eqs.~2.38! and ~2.39!, the
polarization is found.

Before analyzing this it is illustrative to see what res
we obtain for the magnetic contribution to the circular pola
ization, to lowest order in the ratio ofErad

(p) to Erad
(s) , and com-

paring this to our earlier result in the reverse situation w
light being emitted by tunneling electrons instead.5 Inserting
the dipolar results above for the ordinary and the tip K
effect into Eqs.~2.38! and~2.39!, to lowest order we obtain
retaining only magnetic contributions to the circular pola
ization,

rCP
M 'ImF11G'

11Gi
S 2rL~v!

11rs~qi!
2

D~v!Gi

sinu8
D 11rp~qi8!

11rs~qi8!
G

32
sinf sin2u8

cos~f2f8!
, ~3.17!

whererL(v) is defined in Eq.~2.12! and17

D~v!5
2e1~v!

eS
2~v!21

. ~3.18!

Furthermore, the image factorsG are defined through

Gi ,'5Ni ,' /~12Ni ,'! ~3.19!

for the parallel and perpendicular cases, respectively.
result for the circular polarization of light in the correspon
ing spontaneous emission STM configuration is

rCP
STM'2 ImF S 2rL~v!

11rs
1

D~v!Gi

sinu8
D 11rs

11rp
G . ~3.20!

The structure is very similar to that of Eq.~3.17!, but there
are a couple of important differences. For the light-in situ
tion the whole expression is basically larger by the fac
G' . This is one reason whyrCP

M can be several orders o
magnitude larger thanrCP

STM; the perpendicular field enhance
ment G' can be very large in the junction between tip a
sample, whileGi is of order unity. Moreover, in the las
factor (11rs) and (11rp) have changed places. This is als
1-8
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THEORY OF A MAGNETIC MICROSCOPE WITH . . . PHYSICAL REVIEW B64 054411
an important reason for the large values reached byrCP
M .

At a metal surface (11rs) is usually considerably smalle
than 1.

Continuing the analysis of the full results we find th
they can be summarized as

aW 5F ~2 iax1ay!/A2

az

~ iax1ay!/A2
G , ~3.21!

for aW , whereax , ay , andaz are proportional to the induce
dipole moments in thex, y, andz directions, respectively. Le
us assume from now on that the incident wave propagate
the negativey direction, so thatf52p/2. This means tha
ax will be large, whereasay andaz are much smaller, since
they originate from the Kerr effect. Therefore, looking at t
radiation sent out in two opposite directions (f8 and f8
1p) we see that the contributions toErad

(p) andErad
(s) caused by

the x and y components of the dipole moment both chan
sign upon changing the angle of observation, leaving
polarization state unchanged, as we have already discu
However, another feature, a dipole moment in thez direc-
tion, adds the same contribution toErad

(p) in both directions,
thereby leading to an asymmetry in the angular depende
of the polarization. Anomalous reflection of the radiati
sent out as a result of the dipole moment oscillating in thx
direction also yields contributions toErad

(s) and Erad
(p) that do

not change sign when changingf8 to f81p. From this it
follows that the magnetism-related contribution to the circ
lar polarization has a characteristic angular depende
which, as we will see, also persists when going beyond
dipole model.

IV. RESULTS AND DISCUSSION

A. Numerical results

In this section we will present results of our numeric
calculations. We have solved the multiple-scattering prob
at hand using the theory developed in Sec. II. In these
culations we retained multipoles for whichl<30 and umu
<3. This means that we obtain results that are essent
numerically exact; the relative accuracy obtained forDrCP is
better than 1025 whenR520 nm andd50.5 nm. If l max is
reduced to 10, the relative errors are about 1%, and w
l max55 they amount to 5–10 %.

Figure 4 shows results for the polarizationrCP as a func-
tion of the observation anglef8. These results were obtaine
from a calculation using a silver tip and an Fe sample.
comparison, we have also performed a calculation using
tip @panel~c!#. The photon energy was 1.6 eV, and both t
incident and the scattered light propagates in directi
forming an angle of 1 rad with the surface normal. Th
means thatu51, while u85p21.

Let us begin the discussion by looking at the results
Fig. 4~a!, where the Ag tip radius was set to 10 nm. Resu
are shown both with~thick curve! and without~thin curve!
the magneto-optic effects; the two curves are very simi
indicating that ‘‘geometric effects’’ cause the dominatin
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contribution to the polarizationrCP. However, a closer com
parison reveals that the results including magneto-optic
fects show a less symmetric angular dependence than t
obtained without taking magneto-optic effects into accou
Therefore magneto-optic effects can be isolated more ef
tively if the quantityDrCP defined in Eq.~3.13! is plotted.
We see thatDrCP has peak values exceeding 10%, and at
same time the polarization shows a simple, characteri
variation with the observation anglef8. It appears that these
effects are large enough to be detectable. We have also
ted the quantitydr, i.e., the change inrCP due to magneto-
optic effects. The two curves are very similar in shape.

In Fig. 4~b! the tip radius was increased to 20 nm. The
is now large enough that phase differences between l
scattered off different parts of the tip influence the polariz
tion. This givesDrCP a more complicated angular behavio
and it would be somewhat more difficult to pick out the pa
of the signal originating from the Kerr effect. For an eve
larger tip radius this effect becomes more pronounced.

There are two different magnetism-related processes
contribute to the circular polarization of the scattered lig
We already mentioned this in connection with Eqs.~2.32!
and ~3.17!, and the same distinction was also made in o
previous work on light emission.5 To begin with, there is an
ordinary Kerr effect in which the polarization conversio
governed by the coefficientrps8 , takes place primarily when
the incident wave first hits the sample surface. This indu
p-polarized wave is subsequently enhanced in the cavity
tween the tip and sample; both the tip and sample screen
electric field; surface charges are induced on both of th
and this generates secondary fields, etc. In the other proc
which we have called the tip Kerr effect, the incident wave
reflected back and forth between the tip and sample a n
ber of times, and an electric field along thez axis is built up
because one of the scattering events off the sample is ano
lous. In this case the anomalously reflected wave is typic
evanescent, since it describes the near field around the
The conversion factorrpp8 dominates these processes, b
cause, as can be seen from Eqs.~2.12!, ~2.15!, and ~2.16!,
unlike rps8 andrsp8 it has a nonzero limit whenqi@k.

In the full ~multipole! calculations the relative importanc
of the two processes can be estimated, for example, by t
porarily eliminating one contribution or the other. We fin
that the ordinary Kerr effect in the present case is respons
for some two-thirds of the magnetic contributions to the c
cular polarization of the scattered light. In the calculati
addressing emission of circularly polarized light,5 we found
the opposite situation; the tip Kerr effect dominated then
is relatively straightforward to understand this differen
qualitatively: Near-field effects are considerably more imp
tant in the case of light emission, because in this experim
one measures how much radiation is produced by a sou
the tunnel current, that is basically localized to a nanome
sized region in space. In the present calculation we inst
probe the degree to which light is scattered off the tip-sam
system; the near-field effects play a role also here but it is
as pronounced.
1-9
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FIG. 4. Calculated degree of polarization for an Ag tip probi
a Fe sample. The curves in panel~a! were calculated with a tip
radiusR510 nm, the ones in panel~b! with R520 nm. For com-
parison, results calculated with a W tip with R510 nm are dis-
played in panel~c!. In all cases the tip-sample separation isd
50.5 nm. The photon energy was set to 1.6 eV andf5290°, and
the polar angles of incidence and observationu and u8, respec-
tively, both lie 1 rad off the surface normal~i.e., u51 rad, while
p2u851 rad). The two curves with the highest amplitude sh
the results forrCP. The thinner of these curves was calculat
without accounting for the magneto-optic properties of the sam
whereas they have been included in the calculation yielding
thicker curve. The remaining curves display~i! the quantityDrCP

defined in Eq.~3.13!, and~ii !, the differencedr between the results
with and without magneto-optic effects@panel~a!#.
05441
We have concentrated on studying the polarization pr
erties of the scattered light at relatively low photon energ
(,2 eV), becausee1 for the magnetic materials takes th
largest values there. In that case the results obtained w
W tip @shown in panel Fig. 4~c!# and with a Ag tip@Fig. 4~a!#
are not too different from each other. This result may at fi
seem surprising, given that Ag is a much better conduc
than W and has well-defined surface-plasmon excitatio
However, for the photon energies dealt with here the fi
enhancement does not occur as a result of trulyresonant
interactions with interface plasmons. Instead the electric fi
in the tip-sample cavity is enhanced by a less dram
mechanism. Both Ag and W screen the electric field, a
therefore surface charges that interact with each other
built up on the tip and sample. At higher photon energie
Ag tip certainly gives a stronger field enhancement than a
tip, but then again, sincee1 for the magnetic materials is
much lower there, this frequency range is of limited inter
in the present context.

Figure 5 illustrates in more detail how the polarizatio
properties of the scattered light varies with photon ener
The highest degree of polarization is reached at 1.5 eV.
photon energies beyond 2 eV the Kerr effect has a ra
small influence on the polarization, the main reason for t
is that the magnitude ofe1 for Fe decreases with increasin
\v.

In Fig. 6 we plot the differential scattering cross secti
for a Ag tip with a radius of either 10 or 20 nm. As a refe
ence we have also plotted the result obtained for a Ag sph
with radius 10 nm in free space. The sphere in front of an
sample has a much smaller cross section than the one in
space because of destructive interference between the w
sent out directly from the sphere and those reflected from
sample, which in this case can be thought of as originat
primarily from an image sphere. The radiation patterns a
differ between the two cases. An isolated sphere display
dipole pattern, but, with the sample present, the angular
tribution of radiation mainly follows a quadrupole patter
To see what the cross sections mean in terms of pho

e,
e

FIG. 5. The polarization asymmetryDrCP, defined in Eq.
~3.13!, plotted as a function of observation anglef8, for a number
of photon energies for an Fe sample scanned by an Ag tip wi
radius of 10 nm, and withd set to 0.5 nm.
1-10
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THEORY OF A MAGNETIC MICROSCOPE WITH . . . PHYSICAL REVIEW B64 054411
counts, let us assume that a laser with an intensity
103 W/cm2 is illuminating the tip. This is equivalent to
photon flow of;108 photons/(sec nm2). In the case of the
10-nm sphere in front of the Fe sample, a detector coverin
solid angle of 0.1 sr would collect;103 photons per second
This intensity should be enough to perform a polarizat
analysis.

B. Experimental implications

The measurement of the magnetic contribution to the
cular polarization should be feasible in the sense that
scattered light intensity is sufficient and the degree of cir
lar polarization of the scattered light is large enough to
detectable with existing optical techniques. Furthermore
should at least be possible to reach a resolution of 10
However, the removal of the background circular polariz
tion, which is not magnetic in origin, is a nontrivial exper
mental problem. The Kerr contribution varies with scatteri
angle in a way which is different from other nonmagne
contribution to the polarization, provided the tip is not to
large. This should help in separating the two contributions
the circular polarization. It may also be possible to use
fact that the Kerr contribution to the circular polarization
more sensitive to the tip-sample distance than is the ba
ground circular polarization, for example by letting the t
vibrate back and forth. To be specific, increasing the
sample distance from 0.5 to 5 nm in Fig. 4~a! decreases the
Kerr contribution (DrCP) by about a factor of 2, whereas th
background contribution is essentially unchanged. Vary
the photon energy could be yet another way of differentiat
between Kerr and background contributions.

In view of the large background, the size of the tip wou
be a major concern in designing an experiment in practice

FIG. 6. Calculated differential scattering cross section for an
sphere in front of an Fe sample~full curves!, and in free space
~dotted curve!, as a function of azimuthal observation angle. T
photon energy is 1.6 eV,d50.5 nm, and the sphere radius is 1
nm ~lower full curve and dotted curve!, and 20 nm~upper full
curve!, respectively. The polar angles of incidence and observa
u and u8, respectively, both lie 1 rad off the surface normal~i.e.,
u51 rad, whilep2u851 rad).
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If

a traditional STM tip made from a metallic wire is use
regardless of how sharp the tip is, scattering will take pla
everywhere in the tip shaft. This scattering will typical
increase the geometric-background contribution to the cir
lar polarization, and make it more difficult to detect the ma
netic properties of the surface. Of course, the incident ra
tion would be focused to a relatively small part of the tip, b
this may not be enough to obtain a high contrast between
contributions to the polarization induced by the Kerr effe
and geometric effects, respectively.

As we have indicated in Sec. I, one possible way of b
passing this difficulty could be to follow a scheme close
related to that introduced by Silva and Schultz,6 using a
small, isolated metallic particle on the surface of the ma
netic sample as the probe. In order to scan different part
the surface, the metallic particle would have to be mov
around using an AFM. This kind of nanoparticle manipu
tion was already achieved in other contexts.18

Pufall, Berger, and Schultz19 measured the Kerr rotation
of light scattered from Ag particles placed on a magne
substrate. They found a Kerr rotation that had qualitat
features~in terms of observation-angle dependence! in com-
mon with the results presented here. The measured Ker
tation, however, was less than 1 mrad~corresponding to a
magnetism-related degree of polarization of 0.1% or less!. It
appears from Ref. 19 that particles of a radius of at least
nm were used in the experiment and at the same time
incident laser light was tuned to the scattering resonanc
the particles at a wavelength of 460 nm ('2.7 eV). While
both of these choices ensure that the scattering cross se
is much larger than with the parameter values used in
calculations above, this is achieved at the cost of a v
small degree of magnetism-related polarization of the s
tered light. First of alle1(v) in common magnetic metal
such as Fe and Co decreases with increasing photon en
in the range of visible light~cf. Fig. 5!. Second, with a larger
particle the in-plane dipole becomes more effective in se
ing out radiation because the image sphere is further a
from the real sphere. As a result the scattering cross sec
but also the nonmagnetic contributions torCP increase dra-
matically. Indeed, using a silver particle of radiusR
550 nm on an Fe substrate and a photon energy of 3 eV
our calculations, we find that the magnetism-related con
bution to the light polarization~i.e., dr) is only '0.1%.
With R550 nm and a photon energy of 1.6 eV,dr'2% at
most, to be compared with 6–7 % forR510 nm @see Fig.
4~a!#. Thus, based on the results found here, we recomm
that experiments of this kind should use smaller photon
ergies~1.5 eV or so! and smaller particles (;20 nm) than
before.
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APPENDIX

In this appendix, we derive expressions for the functionf
andg that were introduced in Sec. II D. With a plane wa
impinging on the sphere, the full electric field outside t
sphere can be expanded as in Eq.~2.18!, and the regular (j l)
terms describe the incoming wave. We will calculate t
proportionality factorsf appearing in Eq.~2.23!, and there-
fore we first need to evaluate thea coefficients in Eq.~2.18!.
It is clear from Eq.~2.18!, in view of the orthogonality rela-
tions

E dVX l 8m8
* ~V!•X lm~V!5d l l 8dmm8 ~A1!

and

E dVX l 8m8
* ~V!•“3$@a j l~kr !1bhl~kr !#X lm~V!%50,

~A2!

for the vector spherical harmonics, that

kalm
(M ) j l~kr !5E dV~X lm!* •E. ~A3!

To calculatealm
(E) , it is easier to use the overlap between t

B field and a vector spherical harmonic:

k

c
alm

(E) j l~kr !5E dV~X lm!* •B. ~A4!

To evaluate these surface integrals, we use the expansio
a scalar plane wave~i.e., the factoreiq•r) in terms of spheri-
cal harmonics, and insert this into Eq.~2.1!, yielding

E~r !5$E(s)@ ẑ3q̂i#2E(p)@ q̂3~ ẑ3q̂i!#%e
iq•Rsph

34p(
l 50

`

i l j l~kR!(
m

~21!mYl ,2m~V!Yl ,m~Vq!.

~A5!

The incidentB field can be expanded in a similar way. Th
factor eiq•Rsph compensates for the fact that we here us
coordinate system with the origin at the center of the sph

@Rsph52 ẑ(R1d)#. The composite variablesV andVq de-
note the directions ofr̂ ~i.e., the anglesu andf) and q̂ (uq
and fq). Equation~A5! is also valid for evanescent wave
that decay exponentially in the positive or negativez direc-
tion, in which case cosuq is purely imaginary. From the defi
nition in Eq. ~2.20! and the fact thatL can be written in
terms of ladder operators as

L5 1
2 ~ x̂2 i ŷ!L11 1

2 ~ x̂1 i ŷ!L21 ẑLz ,

it is clear thatX lm can be expressed in terms of the spheri
harmonicsYl ,m11 , Yl ,m , and Yl ,m21. Combining this with
the expansion in Eq.~A5! yields the overlap integrals

f lm
Ep~q!5 f lm

Ms~q!5k21Ulm~q!eiq•Rsph ~A6!

and
05441
e

of

a
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l

f lm
Es~q!52 f lm

Mp~q!5k21Vlm~q!eiq•Rsph. ~A7!

Here we have introduced

Ulm~q!52
2p i l~21!m

Al ~ l 11!
@j1F1~ l ,m!Yl ,2m21~Vq!

1j2F2~ l ,m!Yl ,2m11~Vq!#, ~A8!

where the polarization vector

ĵ5 ẑ3q̂i5 ŷ cosfq2 x̂ sin fq , with

j6[jx6 i jy56 ie6 ifq. ~A9!

In a similar way,

Vlm~q!52
2p i l~21!m

Al ~ l 11!
@h1F1~ l ,m!Yl ,2m21~Vq!

1h2F2~ l ,m!Yl ,2m11~Vq!2hz2mYl ,2m~Vq!#,

~A10!

where the polarization vector

ĥ5k21q3~ ẑ3q̂i!

5 x̂~2cosuq cosfq!1 ŷ~2cosuq sinfq!1 ẑ sinuq ,

with

h6[hx6 ihy52cosuqe6 ifq. ~A11!

In both Eqs.~A8! and~A10!, F1 andF2 are shorthand sym
bols for the numerical factors produced by the ladder ope
tors L1 andL2 ; thus

F1~ l ,m!5A~ l 2m!~ l 1m11!,

F2~ l ,m!5A~ l 1m!~ l 2m11!. ~A12!

Finally, we note that thefq dependences of bothUlm and
Vlm follow

Ulm~q!}e2 imfq, Vlm~q!}e2 imfq. ~A13!

The same is true forf lm ~providedRsph lies on thez axis!.
Next we must deal with the overlap going in the oth

direction, from a given multipole to a plane wave. The vec
equivalents of the Kirchoff integrals provides one way
doing this. They read

E~r !5Eext~r !1E dS8$ ikc@ n̂83B~r 8!#G~r ,r 8!

1@ n̂83E~r 8!#3“8G1@ n̂8•E~r 8!#“8G%

~A14!

and
1-12
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B~r !5Bext~r !1E dS8H 2
ik

c
@ n̂83E~r 8!#G~r ,r 8!

1@ n̂83B~r 8!#3“8G1@ n̂8•B~r 8!#“8GJ .

~A15!

HereG denotes the Green’s function of the scalar Helmho
equation in free space; thusG solves

@“21k2#G~r ,r 8!52d (3)~r2r 8!, ~A16!

wherek5v/c, and can be written

G~r ,r 8!5
eikur2r8u

4pur2r 8u
. ~A17!

To obtain the total field at a point in free space, the integr
in Eqs. ~A14! and ~A15! should be over the surfaces of a
the scatterers that are present, and the fields entering
integrals should be the exact fields at those interfaces. H
we restrict attention to the fields scattered from the sphere
this case, only the Hankel function terms in Eqs.~2.18! and
~2.19! contribute. Evaluating the surface integrals using
expansion of the Green’s function in terms of plane wav
~propagating and evanescent!,

G~r ,r 8!5 i E d2qi

~2p!2

eiAk22qi
2uz2z8u

2Ak22qi
2

eiqi•(r i2r i8),

~A18!
l
e

t

v

p
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one finds that the field outside the sphere can be written

E5 (
lm,s

blm
s E d2qi

~2p!2
3$glm

ss~q!~ ẑ3q̂i!2glm
ps~q!

3@ q̂3~ ẑ3q̂i!#%e
iq•r. ~A19!

Here s denotes a polarization@(E) or (M )#. The coupling
factors are found to be

glm
pE~q!5glm

sM~q!5
~21! l 1m11e2 iq•Rsph

2Ak22uqiu2
Ul ,2m~q!

~A20!

and

glm
sE~q!52glm

pM~q!5
~21! l 1m11e2 iq•Rsph

2Ak22uqiu2
Vl ,2m~q!,

~A21!

whereRsph is a vector pointing to the center of the sphere. A
for the fq dependence ofglm , it is clear in view of Eq.
~A13! that

glm
ss8}eimfq.
nd
er-
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