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Theory of a magnetic microscope with nanometer resolution
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We propose a theory for a type of apertureless scanning near-field microscopy that is intended to allow the
measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling
microscope(STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field
between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect,
which is normally of order 0.1%, is increased by up to two orders of magnitude for the case of a Ag or W tip
and an Fe sample. Apart from this there is a large background of circular polarization which is nonmagnetic in
origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed
retarded calculation for this light-in-light-out experiment is presented.

DOI: 10.1103/PhysRevB.64.054411 PACS nuniber78.20.Ls

I. BACKGROUND sion experiments, making detection far easier. The circular
polarization of the scattered light has both a component that
A microscope that can measure magnetic structure witlis independent of the state of magnetization of the sample
high resolution would be very desirable for practical reasonand a component that depends on the magnetization. The
such as investigating read heads and media for magnetic réatter effect is rather small both when light is scattered from
cording, and because magnetic nanostructures are currentymagnetic surface as in the surface magneto-optic Kerr ef-
of great interest. We propose a scanning magnetic micrafect, and when light is emitted from a STM. However, when
scope with a resolution of approximately 1 to 10 hmde-  a tip is present and a laser provides incident light that is
pending on the tip shape. This device is a form of aperturelinearly polarized parallel to the surface polarized and
less near-field scanning magneto-optical microscope ipropagating in the direction of the magnetization, we find up
which light from a laser is focused at the tip of a scanningto two orders of magnitude increase in the degree of circular
tunneling microscopgSTM) or atomic force microscope polarization compared with the basic Kerr effect which is
(AFM) or at an isolated sphere on the sample surface, angenerally of order 0.1%. This enhancement occurs because
the circular polarization of the light scattered from the tip the s-polarized light that scatters from the tip and substrate
and sample is measured. This is analogous to attempts to udevelops a component in the direction perpendicular to the
the circular polarization of the light emitted by a scanningsurface that is out of phase with tegolarized light. This is
tunneling microscope to construct a magnetic microséope. due to (1) the ordinary Kerr effect, in which some of the
It was found that the light-emission scheme is not suitabléncomings-polarized light is converted tp polarization; and
for use as a magnetic microscope, due to the small degree 62) the Kerr effect that acts on the light that is scattered
circular polarization produced by a magnetic sample as welbetween the tip and the substrate in the near field. The com-
as the relatively low intensity of the emitted lighThe light ~ ponents of these fields that are perpendicular to the surface
intensity is low despite the fact that the electric field at theand lie between the tip and sample are enhanced by 1-2
tip of a STM can be strongly enhanced by interface plasmonsrders of magnitude, with a corresponding increase in the
localized between the sharp tip apex and the substrate. Wittsircular polarization.
out the enhancement the light intensity would be smaller by The part of the circular polarization that does not depend
several orders of magnitude. Other techniques to developn the magnetism of the surface is due to light that is re-
magnetic microscopes based on apertureless near-field scdlected from both the tip and the sample surface. The surface
ning have resolutions on the order of at least 100°afn. reflection coefficients fos and p-polarized light result in
Attempts to measure a magnetic surface structure by meaghase differences that produce circularly polarized light. This
of the STM tunneling currefthave also been made, and circular polarization is large, and has a characteristic depen-
recently the magnetic structure of an antiferromagnetic overdence on the observation angle which is different from the
layer was mapped using this technidde. one displayed by the circular polarization due to magnetic
In the scheme we propose, the scattered laser light intereffects. This difference in angular dependence may help in
sity is large compared to that produced in STM light emis-separating the two contributions.
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The resolution of the microscope is roughly set by the
radius of the tip(probe. A smaller probe gives a better reso- R
lution; however, one must also take into account that a very — g°

small probe gives a very small scattering cross section. At « - : Light in
the same time, we find that a small probe is essential in 4R

Model tip

o>

”n>

obtaining a high degree of magnetism-dependent polariza- ® 9
tion of the scattered light. Our results indicate that a probe

size of about 20 nm is optimal in striking a balance between ; ¥
these conflicting requirements. Sample

The paper is organized in the following way. In Sec. Il we
present a general theory, with which we can solve the
multiple-scattering problem defined by the model tip-sample
geometry, and calculate the scattered radiation and its polar-
ization state. This theory uses a spherical model tip. The
electromagnetic field is calculated taking retardation effects
fully into account, while the magnetooptic corrections to the  Top view
reflection coefficients of the sample are treated to first order
in the off-diagonal elements of the dielectric tensor. In Sec.
lll, we discuss the limit of a point dipole tip, in order to
demonstrate the central physics more clearly, and also to ) )
make a comparison with the case of light emission from a, FJG. 1.AThe model geometry used in the calculation. The vectors
STM probing a magnetic surfaddn Sec. IV we present and q’, p, ands indicate propagation and polarization directions in the

discuss the numerical results obtained using the generigdiation zoned and¢ and6’ and¢’ are the angles of incidence
theory of Sec. II. and observation, respectively, in a spherical coordinate system.

(in our
calculations)

Il. THEORY Era={ESf 2} 0[] -ERq' X (zxq)) 14", (2.2

A. Basic considerations The polarization state of this radiation is different from that
. . . . of the incoming light. First, there is a rather largand in
lows s 1 s s s o o emvere fouis context ess meresipganrouion [0 the iciar po-
a tip-sample geometry in which the model tip is a sphere 0%arlzatlon that comes about because the reflectlon probability
finite size (the radius of the sphere corresponds roughly to rom_the surface is dlffe_rent fas- and p—polarl_zed light. In :
the radius of curvature of the real Yiprhe calculation takes addition, the s_cattered light acquires a certain degree of cir-
into account higher multipoles on the sphere as well as regular polanzgtpn due to the |_<err effec_t; of course,.for our

) purposes this is the interesting contribution. An incident
tardation effects.

. L - s-polarized wave will electrically polarize the tip in a direc-
We gonS|der a _S|tuat|on lllustrated in Fig. 1, where_ theticf)n parallel to the sample su)r/fffce, but reﬂef:)tions off the
magnetic sam_ple f'”? the half-spa_\zeo, and the mod_el tp magnetic sample surface also give rise to a field component
is a sphere _W'th radluEe.that has its center_ on theaxis fT[ perpendicular to the surface. There is a strong enhancement
= _(q+R)’ thus the t|p_-sa_mple sepa}ratujamalle;t dis- of the component of the field perpendicular to the surface
tance is d. A plane_ wave |nC|d_ent on this system W'_th Wave jue to the cavity formed between the tip and sample; there-
vectorqg can be written asgall fields, etc., vary with time as

St p it this f h d'in the foll fore, this second contribution to the circular polarization
e '“", but we omit this factor here and in the following should also be detectable.

(o A O B (S o The degree of circular polarization of the outgoing radia-
E(r)={E®[zxq]-E™[ax(zxqpl}e'"". (2.1 ton is given in terms of the Stokes parameters as

For any given wave vectay, the polarization vectors fos S,

andp polarizations are pcng_ (2.3
s=zXq Following Jackson’s definitions,the Stokes paramets& is
and proportional to the total radiated differential power, whereas
S; is proportional to the difference in intensity between left-
A A aa and right-hand circularly polarized light. With the geometry
p=—ax(zxq), illustrated in Fig. 1, one finds that, in the radiation zone, far
respectively, where is the projection ofg in the surface ~away from 'Ehe tip ?nd the sample surfass ¢’ and p
plane. Boths andp are orthogonal to the unit vector We  =0', where¢’ and 6" denote the angular direction of the

will calculate the radiation sent out in an arbitrary directionScattered light. o N o
q' after reflection off the tip-sample system. The radiated Left-hand circularly polarized lightpositive helicity is
electric field propagating along’ can be written as associated with the unit polarization vectog, =(p
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TABLE I. The off-diagonal elemen¢;(w) of the dielectric ten-  in the present calculations.
sor for Fe and Co for a few photon energies. The data are taken

from Ref. 14. C. Surface response

ho (€VY) Ee Co When a plane wave of the form of ER.1) is reflected
from the sample surfaceg; remains unchanged. The re-

15 —(1.42-0.089) —(1.16-0.089) flected wave can in general be written as

2.0 —(0.67-0.26) —(0.40-0.15)

2.5 —(0.26-0.22) —(0.20-0.096) E,={EO[2xq]- EP[GX (2xqpT}e®", (2.9

3.0 —(0.13-0.12) —(0.10-0.067)

+is)/\/2, while for right-hand circularly polarized light
(negative helicity e_=(p—is)/\/2. For radiation propagat-
ing along theq’ direction,

Sozlg’:_ . Erad|2+ | gt : Erad|2: | E$221|2+ | EE;)d|2 (2-4)
and
Ss=|e% - Eradl®—|€* - Erael =2 lm[Eszé*Eig’&].( !
2.

Hence the degree of polarization can be expressed as

Ela EM

DI+ [ESH

rad

B. Sample dielectric tensor

where

g-=(q;,—p) with p=k*-qf
andk= w/c, the subscript expressing that the reflected wave
propagates in the negatizedirection.
The reflected amplitude varies linearly with the ampli-
tudes of the incident wave. Thus, feipolarization,

E?=psE@ +pl EP. (2.10

The response functiopg describes the “normal” reflection
that takes place whether or not the sample is magnetic. The
Fresnel formula fos polarization is

:p_Ps
p+ps’

Ps (211

where

Ps= Vks—q-

We have expressed the measured magnetic circular di-
chroism in terms of the field amplitudes at the detectork=w/c andks=k\es(w) are the wave-vector magnitudes in
These in turn have to be calculated with the tip-sample gevacuum and the sample material, respectively. The second
ometry and tip and sample dielectric functions as ifput. termin Eq.(2.10 applies to magnetic surfaces for which the
Because the sample is magnetic, its dielectric function is &ff-diagonal element;(w) in the dielectric tensor is non-

matrix that takes the form

es(w) €1 COSp — €y Sinysing
€j=| —€1C0Sp eg(w) €, cosysing |
€, Sinysing —e€; COSySine eg(w)
(2.7

whereeg(w) is the substrate dielectric functiofSometimes
€1, appearing in the off-diagonal elements is writterfw)

=iQ(w)es(w), Q being the so called magneto-optical con-

stant] The anglesp andy, relative to thex axis, specify the

direction of the magnetization. We will work in a configura-

zero, and polarization mixing as a result of “anomalous”
reflection events becomes possible. The conversion factor
can be explicitly written as

;L € (0)qpk
Psp™ py(p+ ps)(es(@)p+Ps)

[M-q]=p.[M-q].
(2.12

This expression can be derived by the methods developed by

Zaket al'® There is also a contribution from the off-diagonal
elements in the dielectric tensor to théo-s reflection coef-

ficient. However, this contribution is exceedingly, small

since it depends on the squareegf{w), and we neglect it in

tion whereg = y=7/2, which means that the magnetization o following.

is directed along thg axis:

M=MM=My,
(see Fig. 1L Then the dielectric tensor for the sample takes
the form*®
eslw) 0 —€(w)
€= 0 es(w) 0 (2.8
€1(w) 0 es(w)

In Table | we list values, taken from Ref. 14, fey(w) used

In analogy with Eq(2.10), the reflecteg-polarized light
is associated with the electric field

EP=poEP +p, E®+p) EP. (2.13
In this case the Fresnel formula is
es(w)p—Ps
= 2.1
PP~ eq(@)p+ps 19

while the conversion factors originating froe(w), pés and
ppp are given by
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FIG. 2. lllustration of the different “anomalous” scattering pro-
cesses involving the Kerr effect that can take place at the samplelere the vector spherical harmonics are defined as

surface. Conversion of to p polarization, and vice versa, is most
effective when the in-plane component of the wave vector is col- Xim(0,@)=[LY|m(6,¢)]/JI(1+1), (2.20

Il;ni:_ar V;"tk:hthe tsamplfel mtggngtnzauotm. flf—iovt\{ever,hthe Ke(rjr,\;:ontn- L=—irxV is the angular momentum operator, a\g, are
ution to thep to pretiection 1S most efiective whegy andif are a0 g g spherical harmonics. The vector spherical harmon-
perpendicular(NB. In the figure to the right the viewpoint, but not . .
N , ! ics form an orthonormal set of functions on the surface of a
the magnetization differs from the other figupes. . o -
unit sphere. The functiong denote spherical Bessel func-
tions, whileh,=h{") are spherical Hankel functions describ-

— VLAl (kD) + BN (kD) X} (219

Pps=~Psp=—PLIM-q], (219 ing outgoing waves. As befork=w/c, ky=/erk, andr
. . denotes the distance from the center of the sphere. The co-
[pL was introduced in Eq2.12] and efficientsc,,,, am, andb, for the different multipoles are

as yet unknown; they will be calculated in the following.
2¢1(w)pg ~ ~ SN Since the angular momentum operatordoes not have
r_ I —
ppp_(e (w)p+ )2[2' (qxXM)]=plz-(qxXM)]. any vector component in the radial direction, the same holds
st@)PTPs (219 ue for X,,. Consequently, for an electric multipole field,
' the magnetic field does not have a radial component. On the
other hand the electric field, as one should expect by visual-

parallel. Figure 2 illustrates the three possible anomalouind the field from an electric dipole, has a radial compo-
scattering processes. nent. For a magnetic multipole field, the roles are inter-

The expressions for all the surface response functions cafanged: the magnetic field but not the electric field has a

be extended to the case of evanescent waves for V\dn‘ich radial %omponent. . v i di
:|qH|>kv andp is imaginary.(When evaluating the square In _t e present context, we are primarily interested in
roots definingp and ps, the branch cut lies below the posi- knowing how the sphere acts as a scatterer. It therefore suf-

tive real axis) Later, when we deal with the coupling be- flces to know what outgoing waves are obtained for given

tween the sphere and the sample, this becomes importamCldent Waves. The_ ratio pet_ween th_andacoefﬂmem for
each multipole provides this information. By demanding that

since the coupling is mediated both by propagating and eva . . X
nescent wavez g y propagafing the tangentiakE andH fields and the normaB andD fields
' be continuous, we arrive at the following expressions for the

sphere “response” functions:

Thus, unlikepys andpg,, py, vanishes whem andM are

D. Scattering from the sphere

We now deal with the scattering off a sphere whose opti- (E)_ ﬁ _ ekRjj (kR +ji(kR)(er—1— 7))
cal properties are described by its dielectric functigw). b al® etkRK (kR)+h|(kR)(er—1— 7))
To this end we expand the electromagnetic field inside and (2.21)
just outside the sphere in terms of eleciiy and magnetic
(M) multipoles. We use the same notation as Jacksaw,
that inside the sphere the electric field is writigime spheri- bl(m) KR/ (kR) —,(kKR)J]

cal coordinate system used here has the origin at the center sM= =— : . (222
of the spherg aM KRR (kR)—h(kRJ

) where 7, is shorthand for
_ (M); : (E); . .
E—% KCim JI(kTr)XIm+6_TVX[CImJI(kTr)XIm]y J=kiRj| (ktR)/j(kR).

(2.17  Thanks to the symmetry of the sphere, these response func-
tions are independent .
while just outside the sphere the solution is a linear combi-  One additional ingredient is needed before we can calcu-
nation of incident and outgoing waves, which can be writtenate the field around the sphere when it is interacting with the
sample. We have to be able to calculate “overlap integrals”
i between plane waves and multipole fields, and vice versa.
E:% kLafmji(kr)+ bfp hi (k) 1X (Note that for lack of a better terminology, we will use
“plane wave” as a common name both for propagating
+ivx{[aBj (kn)+bEh(kr)]X;m}. (2.18  plane waves and waves that propagate in the directions par-
allel to the sample surface but are evanescent in the third,
The corresponding magnetic field outside the sphere is  direction) A plane wave, like the one in EqR.1), impinging
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on the sphere can be expanded in terms of regular multipole

contributions[the j, terms in Eqs.(2.18 and (2.19]. The
resultinga coefficients depend linearly on the amplitudes of
the incoming wave

afiy) = () EP + FE @) E,
alM=fMP(q)EP +f1S(q)E®. (2.23

Explicit expressions for the proportionality factdrare de-
rived in the Appendix.

We also have to go in the opposite direction, from a cer-
tain multipole to a plane wave. In general the field radiated

from the sphere can be written as

d2
E(n=> IR oryger ) (2x O~ gl(Q)
Im,o (277')
X[Qx(zxQT}- (2.24

HereQ= Q”+z\/k Q2 (the sign is chosen according to the

PHYSICAL REVIEW B4 054411
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Incident
wave
Scattered -
wave - a m e
o L \””/
o

FIG. 3. lllustration of the general scheme employed in the cal-
culation. An incident plane wave can be expressed as a multipole

expansion of waves impinging on the sphere, either direéﬂf)(

or after an initial reflection off the samplea't). Subsequently,
multiple scattering takes place between the sphere and the sample.
The sphere response functiosidetermines the strength of the out-

going spherical Waveme,, which can be expanded into plane

direction of propagaﬂon or exponential decay relative to thevaves according to the functiorg.,, and after reflection of the

zaxis) ando denotes a polarizatio(E) or (M)]. The fac-
tors gim(Q) and gf7(Q) are the contributions of a given
multipole on the sphere] (m, ), to the amplitude of a plane
wave with wave vecto). The explicit calculation of these
factors is deferred to the Appendix.

E. Solution of the multiple-scattering problem

We are now in a position to solve the multiple-scattering
problem by using the same method as in a previous paper

We solve for the fields at the surface of the sphere, and the

calculate the electromagnetic fields elsewhere, in particula
the radiated fields found far from the tip and sample.

In order to carry out the calculations, it is convenient to
collect thea andb coefficients of Eqs(2.18 and(2.19 into

vectorsa andb (in “multipole space”) with the structure

vy
(2.29

and similarly forb. At the same time a diagonal tenssy
can be formed from the sphere response functions in Eqgs
(2.21) and(2.22), so that one can write

(E)
1-1»

M) .

M
aMy e

maxl ma

af®

z_ (E).
a=(aj;’y;ai0 ;- - )

>

b= &a.

(2.26

hs pep, and
p,’Jp are small, and one can therefore treat the magneto-opt

effects by means of a series expansiorejn We begin by
calculating the fields taeroth order in the magnetooptic
responseThe field impinging on the sphere is a sum of three
contributions(Fig. 3), which in our vector notation can be
written

The magnetooptic surface response functip

a=a"+a"+Na.

(2.27

Herea" represents the amplitude of the field from the origi-
nal incident wavea™' gives the amplitude from the incident

~dir

sample(governed byp), the functionsf,,, determine the strengths
5|m of the different multipole contributions to the reflected wave
that again impinges on the sphere. Anomal@gerr effec) reflec-
tions which are governed by the functiops generate waves inci-
dent on the sphere with strengl}, .

wave reflectedonce from the sample, andNa represents
waves sent out from the sphere itself that return to it after
being reflected from the sample Note that since the last term

ﬁontalns the exact fieldaj, it accounts for all multiple-
§catter|ng events in which light is scattered between the
sphere and sample an arbitrary number of times.

With an incident wave given by Ed2.1), the elements

enteringa®" are found by using Eq2.23 together with Egs.
(A6) and(A7). In an analogous way, the elementsadt are

afy) "= fiR(a) p EP+ i3(q-) pEY,

M),ref_ £M M (.29
alm "= fiaP(0-) ppE® + (0 ) psE®.

Here p, E( and p,E® are the amplitudes of the reflected
wave. The‘ functions now have_ as an argument, since the
direction of propagation relative to thleaxis changes upon

reflection. In the last term of Eq2.27), N is a tensor in
multipole space. Its elements describe how a wave with an-
gular momentd” andm’ and polarizatiorr’ hits the sphere,

is reflected, and returns to the sphere again after reflection
from the plane, now with angular momentaand m and
polarizationo. As a consequence, a tensor element is written

Q O’O’” O_NO_I
N =St | 5z 2 T (Q Qe ().
(2.29
In this equationg” stands for eithes or p polarization, and
Q.=Q=zVk?—[Q2
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Equation(2._29) can be derived formally along the lines of afrﬁM)’ref:fmp(Q—)(P,SpE(p)JrPésE(s))+fmqs(q—)PépE(p)-
the calculation presented in Ref. 15, but it can also be under- (2.34)
stood in a more intuitive way as followmsee Fig. 3 for a

schematic illustration The first factorsl",’ connects thea
coefficient of the initially incident multipole to the corre-
spondingb coefficient; then the functiog(Q,) describes
the overlap between the multipolé’(m’,o’) and a plane 9
wave, p describes the reflection of that plane wave off the Krm’, ,=s",/ E d"Qy fmr”(Q_)pfﬁ Q)
sample;f(Q_) gives the overlap between the reflected wave ImtrmeA = ) (2m)2 T oo ]

and the multipole I;m, o). Because the propagation to the e

sample surface and back involves all wave vectors, a two- ng’,m'f (Q4). (2.35
dimensional wave-vector integration is required. To evaluate ) o

Eq. (2.29 it is best to use cylindrical coordinates in which Here ¢” and ¢” stand for eithers or p polarization (and

the angular integration is trivial. Thanks to the cylindrical pss=0 to first order ine;). The various factors play the same
symmetry of the model geometry, only tensor elements wittfoles here as in Eq2.29 except, of course, for the fact that
m=m’ are nonzero. The remaininmm integration runs W€ now collect the effects of anomalous reflection events in
from 0 to, so that the sphere-sample coupling is mediatedhe sample described by, ... As in the previous case the
by both propagating and evanescent waves. angular integrations can be done analytically, and here, due

Equation(2.27) iS SOIVed by a matriX inVerSiO(Df course to the angu|ar dependencemg ot an e|ement |n‘(_) is non-
then only a finite number of multipoles can be retained !

In these expressions we have suppressedjtteependence
of ppps Ppss @Ndpg,. This dependence becomes important

when evaluating the tensor elementskin

zero if, and only ifm=m’+1. OnceK has been calculated,

A= [T— N]- L0+ areh). (230 e evaluatea’® and then solve foa':
Knowing the coefficients,,,, we can calculate the electro- a'=[I-N] ta’®=[1-N] Ya'"™+Ka]. (2.3
magnetic field everywhere to zeroth order in the magneto-
optic response. The various ingredients entering the calcula- F. Radiated field
tion of the scattering processes are shown schematically in
Fig. 3. Finally, we calculate the radiated fields, and the degree of

We next proceed to calculate the corrections to the fie|d§)0|a.rizati0n. To this end, we add together all contributions to
to first order in the magneto-optic respons‘ﬁ) this end we the radiated field that have scattered from the Sphel’e at one
introduce another set of coefficients,® andaf,™ that ~ time or another. o o
vary linearly with €;, the off-diagonal elements of the To _zeroth order irey, the field is found by considering the
sample dielectric tensor. Togethesr{m(E) and al/m(M) form outgoing waves coming from the sphere as well as the cor-

th tora’ | itiool o ve ff f responding waves reflecte¢hormal reflection off the
thg ZZEgtrian muftipole space. ne can solve rom sample surface. A specularly reflected wave that has not in-

teracted with the sphere is ignored, since an experimental

= ext measurement that is sensitive to polarization changes in-
a’'=a"""+Na’, (23D duced by the Kerr effect must avoid this otherwise dominat-
ing, direct contribution.

The radiated field is calculated to first orderédn along
the same lines using tt&,, terms instead of the,,, terms in
the multipole expansion as a source for the radiation. There
is also an additional, in practice rather small, contribution to
the first-order fields that results from anomalous reflection of
o N zeroth-order waves coming from the sphere and scattering

There are two contributions @ one due o an anoma- ff the sample surface a last time before going out to infinity.
lous reflection of the incident wave the very first time it hitS  The field radiated directly from the sphere into a direction
the sample, and one due to waves incident from the sphergsfined by the angleg’ and ¢’ [(6',4')=Q'] can be cal-

in which all terms are first order ig;. The first term on the
right-hand side acts as a source term for the first-ordes-in-
fields, while the last term accounts for multiple, norria.,
not involving the Kerr effegtreflections between the tip and

sample; the fields appearing there, describedéby have
already undergone an anomalous reflection.

that are anomalously reflected; thus culated by means of a stationary phase approximation, yield-
- - -- ing
a'™=a'"*+Ka. (2.32 '
_ _ _ _ e’ ik cose’
Both terms on the right-hand side are first orderein the Egr=—— ——=— >, s’ai;’
first one being the ordinary Kerr term and the second the 21 fmo
tip-induced Kerr term. In analogy with Eq2.29), P N
P oy with E6@.28 x[Bosa) + daigal)). (239
a|'n(1E)'ref:an?(Q—)(PépE(p)+PésE(S))+an?(Q—)PépE(p) Here
2.
and q"=kq_=ksin@’(x cos¢’' +y sing’)—k|coss’|z
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(with an analogous definition, having a positizecompo- i(kR)2+3

nent, forq’ d bel nd sf=— ' 3.2

ent, forg’, used beloy a ! I+ 1) (20+3)1!
aM=aM g M  and a’.B=a)+a/E) Thus the behavior of a small sphere is dominated by its

, , o electric-dipole responss™ ~ k3R>, Therefore, in the rest of
so that the expression contains contributions to both zerotfis section we will only discuss the electric-dipole excita-

and first order ine;. The radiation resulting from normal or tions of the sphere and the vectarandB can effectively be
anomalous reflections from the sample surface can be calcu- P y

lated in a way analogous to E¢2.37). The only modifica- reduced to just three components. . _
tions are that one must) multiply by the appropriate reflec- We also need limiting expressions for the coupling matrix
- . ’ ' : elementsNEE,,, NEF;,, andNEE, | | (the other remaining
tion factor, andii) useq’, instead ofg’ as an argument ig 1 L, L i EE
since the light in this case first propagates towards th&lements ofN vanish). An explicit evaluation ofNy; in
sample after having left the sphere. which the largeg limits of pp=(es—1)/(est1), ps—0, as
These contributions can now be added together so that théell asf andg are used yields
polarizationpcp, Of the outgoing light that has been scat-

tered off the sphere at least once, can be calculated. We er—les—1l R

—NEE _ NEE _
obtainw NII_Nll,ll Nl—l,l—l ET+2 €S+1 8(d+R)3.
) 3.3
© e'" ik cos’ oS o 33
Efad= — T 2a lZ Si @im This expression can be obtained from more intuitive reason-
mo ~
ing. If an electric fieldE=Ex polarizes the sphere, a dipole
X[gim(a")+ps(ksind")gi(q’) moment
+sing’ pe(a))gfm(a’)] (2.38 er—1 .
sl S p=47e,R3— 5 EX (3.4)
and €T
- , is induced on the sphere, and there is an accompanying im-
m__ & 1keost & 5, age dipole in the sample:
Erad_ E S @im
r 2 mo
. €g— 1
X[gin(a’) +pp(ksing)gfi(a’) Pim=—P_7 (3.9
+€0S¢" pyp(a] )9 (9%) +Sin e’ ppg(a)gim(a) ], The electric field created by the image dipole at the center of
(2.39  the sphereis
where the terms are organized according to where the last er—les—1 RS
scattering event takes place. The first terms describe waves Eing E=NJE. (3.9

\ . T ert2 est 3
that come directly from the sphere, the second terms give the e1t2 estlg(d+R)

contributions from waves that come from a final, normalthis is just the way the matrix elements Nfshould work:
scattering event from the sample, while the remaining term@iven an incoming field at the spheid,generates the fields
originate from a final anomalous scattering event from th&efiected from the sphere and scattered back to it by the
sample. The degree of circular polarization is then found bysample.
inserting these expressions into KR.6). If the incidentE field points in thez direction, the field
from the image dipole, which now is proportional Ntfcflo,
ll. DIPOLE LIMIT is twice as strong as in the previous, parallel case. Conse-

For illustrative purposes it is useful to study the theoryquently we have

developed in Sec. Il in a limit where both the sphere radius 3
and the sphere-sample distance are much smaller than the NLENEOElO: er—les—1 R .
wavelength of light, and, moreoved=R. When these con- W oert2 estl 4(d+R)®
ditions are fulfilled the sphere can be treated as a point dipole ) . )
and retardation effects are neg||g|b|e One can aISO eVaIUa-te tm”]tegrals deSCI’IbIng the CO[IJp“ng

Returning to Egs(2.21) and(2.22) we find the following due to magneto-optic effects. The results can be written
limiting behavior for the sphere response functions when

(3.7

bothkR<1 and|k{R|<1, K=Kio1= —Kiti= Ko 1=Kit110
- 20+1 _ er—1 € RS
B i(kR) (1+1) er—1 3. :\/— T+2 1 g - 3.9
=D+ ler+(1+1) €174 (egt1)° 8(d+R)
and The other elements df vanish in this case.
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If an s-polarized wave with a wave vectgrimpinges on

the system, the wave incident on the dipole can be written o-  4mK sm¢>
Ka= [ ps(q“)]
C1-N; N k
e'?
S 3 EC (3.19
atr+a®=—2mi \/ 7 [1+pga)1—| O |, - . _ _
am k P Both contributions are first order ia;, both have a sigp

dependence on the direction of propagation of the incident
light, and the Kerr effect induces a dipole moment perpen-

where ¢ denotes the azimuthal angle gf the wave vector dlcul_ar to the s:_;lmple s_urface. We also see that resonances in
the tip-sample interaction described by the factor +({)

of the incident light. B(icausg is diagonal, it is simple to can enhance the tip Kerr effethough for a point dipole
solve for the full vectora using Eq.(2.30: model for the tip these effects are usually stall

We can now solve foa’ by making use of

(3.9

el¢
0 |. (310 a'=(I-N) Ya'"™"+Ka), (3.16

e ¢ where further tip- sample interactions are included. Next, in-

serting the suma> =a+a’ into Egs.(2.39 and (2.39, the
The sphere is only polarized parallel to the surface at thigolarization is found.

stage 6{5'=0). _ _ Before analyzing this it is illustrative to see what result
Before proceeding further, let us insert the above resulive obtain for the magnetic contribution to the circular polar-
for a into Eqgs.(2.38 and(2.39 and calculate the polariza- ization, to lowest order in the ratio &) to E®),, and com-

rad rad’

tion of the light sent out. Sinc&'S, and E{?) have many paring this to our earlier result in the reverse situation with
factors in common, the final result can be written light being emitted by tunneling electrons inst@ddserting

the dipolar results above for the ordinary and the tip Kerr

- 2mi 3 1+ EG
a= 1-N, Var EC

S p effect into Eqs(2.38 and(2.39, to lowest order we obtain,
pep=—2 Im —————|, (3.11) retaining only magnetic contributions to the circular polar-
S)2+P|? ization,
where ol 1+G, [ —p(w) D(w)Gy|1+pp(af)
1+Gy | 1+ ps(ay) ing" | 1+ p4(q|
S=cog ¢’ ~ $)[ 1+ ps(a))], TP sing” [ 1% odqp)
(3.12 o sm¢> Sirt e’ (3.17
P=sin(¢'—¢)[1—py(q|)]cose". cosd—o')’ ‘
With appropriate parameter values E(@.11) predicts a Wwherep () is defined in Eq(2.12 and"’
rather large circular polarization even if the sample is non-
magnetic. If pcp given by this expression is plotted as a D(w) = 2€1(w) 31
function of ¢’ one typically obtains an oscillating curve. We (w)= w)—1 (3.18
also note that in this limitgp" and ¢’ + 7 yield exactly the s
samepcp. Thus, if we introduce the quantity Furthermore, the image facto@& are defined through
Apc &) =pesl¢)—ped'+ ), (313 N (319

for the parallel and perpendicular cases, respectively. The
we find that in the dipole limit, without a Kerr effechpcp  result for the circular polarization of light in the correspond-
=0. This is an important observation since we will see thaiing spontaneous emission STM configuration is
when the sample is magnetic this symmetry is lost.

Due to e;, there are two contributions @' the ordi- STM —pL(w) D(0)Gj|1+ps
- . , : peti~2 | +— . (3.20
nary Kerr effect upon reflection of the incident field yields 1+pe sing’ | 1+pp
é’rref

The structure is very similar to that of E(3.17), but there
are a couple of important differences. For the light-in situa-

| !
) C”“JZ’W\/% siné e (_:039 tion the whole expression is basically larger by the factor
a'"™'=—¢, V2 sing’ E®), G, . This is one reason Wh);a'\c"P can be several orders of
Ps(p+ ps)(esp+Ps) e 1% cos’ magnitude larger thapgp"; the perpendicular field enhance-
(3.14 mentG, can be very large in the junction between tip and
sample, whileG is of order unity. Moreover, in the last
and the tip Kerr effect yields factor (1+ ps) and (1+ p,) have changed places. This is also
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an important reason for the large values reachedpﬁy. contribution to the polarizatiopcp. However, a closer com-
At a metal surface (% pg) is usually considerably smaller parison reveals that the results including magneto-optic ef-

than 1. fects show a less symmetric angular dependence than those
Continuing the analysis of the full results we find that obtained without taking magneto-optic effects into account.
they can be summarized as Therefore magneto-optic effects can be isolated more effec-
] tively if the quantity Apcp defined in Eq.(3.13 is plotted.
(—iactay)/2 We see that\ pcp has peak values exceeding 10%, and at the
a= a, , (3.21) same time the polarization shows a simple, characteristic
(iax+ay)/\/§ variation with the observation angl®'. It appears that these

effects are large enough to be detectable. We have also plot-
for a, wherea,, a,, anda, are proportional to the induced ted the quantitysp, i.e., the change ipcp due to magneto-
dipole moments in thg, y, andz directions, respectively. Let optic effects. The two curves are very similar in shape.
us assume from now on that the incident wave propagates in In Fig. 4(b) the tip radius was increased to 20 nm. The tip
the negativey direction, so thatp= — m/2. This means that is now large enough that phase differences between light
a, will be large, whereas, anda, are much smaller, since scattered off different parts of the tip influence the polariza-
they originate from the Kerr effect. Therefore, looking at thetion. This givesA pcp @ more complicated angular behavior,
radiation sent out in two opposite directiong’(and ¢’  and it would be somewhat more difficult to pick out the part
+ ) we see that the contributions B} andE{, caused by  of the signal originating from the Kerr effect. For an even
the x andy components of the dipole moment both changelarger tip radius this effect becomes more pronounced.
sign upon changing the angle of observation, leaving the There are two different magnetism-related processes that
polarization state unchanged, as we have already discussegntribute to the circular polarization of the scattered light.
However, another feature, a dipole moment in thdirec- e already mentioned this in connection with E¢@.32
tion, adds the same contribution Efg) in both directions, and (3.17), and the same distinction was also made in our
thereby leading to an asymmetry in the angular dependenggevious work on light emissiohTo begin with, there is an
of the polarization. Anomalous reflection of the radiation orginary Kerr effect in which the polarization conversion,
sgnt qut as a re§ult of the .d|p(')le moment oscillating inXhe governed by the coefficier)irgs, takes place primarily when
direction also. yields contr|but_|ons thizy and EfRy that_ dp the incident wave first hits the sample surface. This induced
not change sign when _changqug to d’,“L. 7. From this I p-polarized wave is subsequently enhanced in the cavity be-
lfgllog‘/;;:g;;gi n;%%nG:'Sgp];?;ii?isi%ntgggﬂfg t%égzrfggﬁétween the tip and sample; both the tip and sample screen the

. . ; ; Slectric field; surface charges are induced on both of them,

which, as we will see, also persists when going beyond the . X
dipole model. an(_j this generates second_ary fields, etc. In fthe_ other process,

which we have called the tip Kerr effect, the incident wave is
reflected back and forth between the tip and sample a num-
ber of times, and an electric field along thexis is built up

A. Numerical results because one of the scattering events off the sample is anoma-
In this section we will present results of our numerical lous. In this case the anomalously reflected wave is typically

calculations. We have solved the multiple-scattering problenfvanescent, since it describes the near field around the tip.
at hand using the theory developed in Sec. II. In these callhe conversion factop;, dominates these processes, be-
culations we retained multipoles for whidks30 and|m|  cause, as can be seen from E(&12), (2.19, and(2.16),
<3. This means that we obtain results that are essentiallynlike p,s andpg, it has a nonzero limit wheg > k.
numerically exact; the relative accuracy obtainedfei-p is In the full (multipole) calculations the relative importance
better than 10° whenR=20 nm andd=0.5 nm. Ifl,,,is  of the two processes can be estimated, for example, by tem-
reduced to 10, the relative errors are about 1%, and witlporarily eliminating one contribution or the other. We find
[ max="5 they amount to 5-10 %. that the ordinary Kerr effect in the present case is responsible
Figure 4 shows results for the polarizatipge as a func-  for some two-thirds of the magnetic contributions to the cir-
tion of the observation anglé’. These results were obtained cular polarization of the scattered light. In the calculation
from a calculation using a silver tip and an Fe sample. Fomddressing emission of circularly polarized lighe found
comparison, we have also performed a calculation using a \lthe opposite situation; the tip Kerr effect dominated then. It
tip [panel(c)]. The photon energy was 1.6 eV, and both theis relatively straightforward to understand this difference
incident and the scattered light propagates in directiongualitatively: Near-field effects are considerably more impor-
forming an angle of 1 rad with the surface normal. Thistant in the case of light emission, because in this experiment
means thav=1, while ' =7—1. one measures how much radiation is produced by a source,
Let us begin the discussion by looking at the results inthe tunnel current, that is basically localized to a nanometer-
Fig. 4(a), where the Ag tip radius was set to 10 nm. Resultssized region in space. In the present calculation we instead
are shown both withthick curve and without(thin curve  probe the degree to which light is scattered off the tip-sample
the magneto-optic effects; the two curves are very similarsystem; the near-field effects play a role also here but it is not
indicating that “geometric effects” cause the dominating as pronounced.

IV. RESULTS AND DISCUSSION

054411-9



PETER JOHANSSON, S. PETER APELL, AND D. R. PENN

Polarization (%)
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FIG. 4. Calculated degree of polarization for an Ag tip probing
a Fe sample. The curves in parl@ were calculated with a tip
radiusR=10 nm, the ones in panéb) with R=20 nm. For com-
parison, results calculated Wwita W tip with R=10 nm are dis-
played in panel(c). In all cases the tip-sample separationdis
=0.5 nm. The photon energy was set to 1.6 eV gnmd—90°, and
the polar angles of incidence and observattbrand 6’, respec-
tively, both lie 1 rad off the surface norméle., 6=1 rad, while
7—0'=1 rad). The two curves with the highest amplitude show
the results forpcp. The thinner of these curves was calculated

PHYSICAL REVIEWGB 054411

Apce () Fe sample-Ag tip (R=10 nm)
20 T T T T T T T
15
10

-180 -135 90 -45 0 45 90 135 180

FIG. 5. The polarization asymmetrpcp, defined in Eq.
(3.13, plotted as a function of observation anghé, for a number
of photon energies for an Fe sample scanned by an Ag tip with a
radius of 10 nm, and witld set to 0.5 nm.

We have concentrated on studying the polarization prop-
erties of the scattered light at relatively low photon energies
(<2 eV), because; for the magnetic materials takes the
largest values there. In that case the results obtained with a
W tip [shown in panel Fig. @&)] and with a Ag tip[Fig. 4(a)]
are not too different from each other. This result may at first
seem surprising, given that Ag is a much better conductor
than W and has well-defined surface-plasmon excitations.
However, for the photon energies dealt with here the field
enhancement does not occur as a result of trelyonant
interactions with interface plasmons. Instead the electric field
in the tip-sample cavity is enhanced by a less dramatic
mechanism. Both Ag and W screen the electric field, and
therefore surface charges that interact with each other are
built up on the tip and sample. At higher photon energies a
Ag tip certainly gives a stronger field enhancement than a W
tip, but then again, since, for the magnetic materials is
much lower there, this frequency range is of limited interest
in the present context.

Figure 5 illustrates in more detail how the polarization
properties of the scattered light varies with photon energy.
The highest degree of polarization is reached at 1.5 eV. For
photon energies beyond 2 eV the Kerr effect has a rather
small influence on the polarization, the main reason for this
is that the magnitude of; for Fe decreases with increasing
ho.

In Fig. 6 we plot the differential scattering cross section
for a Ag tip with a radius of either 10 or 20 nm. As a refer-
ence we have also plotted the result obtained for a Ag sphere
with radius 10 nm in free space. The sphere in front of an Fe
sample has a much smaller cross section than the one in free
space because of destructive interference between the waves
sent out directly from the sphere and those reflected from the
sample, which in this case can be thought of as originating

without accounting for the magneto-optic properties of the samp|eprimarily from an image sphere. The radiation patterns also

whereas they have been included in the calculation yielding théd!

thicker curve. The remaining curves display the quantityApcp
defined in Eq(3.13, and(ii), the differencesp between the results
with and without magneto-optic effectpanel(a)].

iffer between the two cases. An isolated sphere displays a
dipole pattern, but, with the sample present, the angular dis-
tribution of radiation mainly follows a quadrupole pattern.

To see what the cross sections mean in terms of photon
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Differential cross section (nm2) a traditional STM tip made from a metallic wire is used,
| : | | | | regardless of how sharp the tip is, scattering will take place

R=20 nm everywhere in the tip shaft. This scattering will typically
02k~ increase the geometric-background contribution to the circu-

LT IPEREER lar polarization, and make it more difficult to detect the mag-
T - ) netic properties of the surface. Of course, the incident radia-
tion would be focused to a relatively small part of the tip, but
this may not be enough to obtain a high contrast between the
contributions to the polarization induced by the Kerr effect
and geometric effects, respectively.
104 E = As we have indicated in Sec. |, one possible way of by-
W passing this difficulty could be to follow a scheme closely
related to that introduced by Silva and Schéltasing a
small, isolated metallic particle on the surface of the mag-

10—3 FR=10 nm (free spacé) -

10_5 | | | | | | 1

180 <135 90 -45 0 45 90 135 180 netic sample as the probe. In order to scan different parts of
' the surface, the metallic particle would have to be moved
¢ around using an AFM. This kind of nanoparticle manipula-
FIG. 6. Calculated differential scattering cross section for an Aglion was already achieved in other conteXts. ,
sphere in front of an Fe sampléull curves, and in free space Pufall, Berger, and Schult? measured the Kerr rotation

(dotted curvg as a function of azimuthal observation angle. The Of light scattered from Ag particles placed on a magnetic
photon energy is 1.6 ew:o's nm, and the Sphere radius is 10 SubStrate. They found a Kerr I’Otation that had qualitative
nm (lower full curve and dotted curyeand 20 nm(upper full ~ features(in terms of observation-angle dependgnicecom-
curve), respectively. The polar angles of incidence and observatiormon with the results presented here. The measured Kerr ro-
6 and @', respectively, both lie 1 rad off the surface norntiaé.,  tation, however, was less than 1 mrémbrresponding to a
#=1 rad, whiler—6’'=1 rad). magnetism-related degree of polarization of 0.1% or)ldss
appears from Ref. 19 that particles of a radius of at least 50
counts, let us assume that a laser with an intensity ofm were used in the experiment and at the same time the
10° Wien is illuminating the tip. This is equivalent to a incident laser light was tuned to the scattering resonance of
photon flow of ~10° photons/(sec nfi). In the case of the the particles at a wavelength of 460 nrv2.7 eV). While
10-nm sphere in front of the Fe sample, a detector covering Both of these choices ensure that the scattering cross section
solid angle of 0.1 sr would collect 10° photons per second. is much larger than with the parameter values used in the
This intensity should be enough to perform a polarizationcalculations above, this is achieved at the cost of a very
analysis. small degree of magnetism-related polarization of the scat-
tered light. First of alle;(w) in common magnetic metals
B. Experimental implications such as Fe and Co decreases with increasing photon energy

The measurement of the magnetic contribution to the ciri" the range of visible lightcf. Fig. 5. Second, with a larger
cular polarization should be feasible in the sense that thaticle the in-plane dipole becomes more effective in send-
scattered light intensity is sufficient and the degree of circulNd Out radiation because the image sphere is further away
lar polarization of the scattered light is large enough to bd™@m the real sphere. As a result the scattering cross section
detectable with existing optical techniques. Furthermore, iPUt @lSo the nonmagnetic contributionsge increase dra-
should at least be possible to reach a resolution of 10 nninatically. Indeed, using a silver particle of radii®
However, the removal of the background circular polariza-=50 nm on an Fe substrate and a photon energy of 3 eV in
tion, which is not magnetic in origin, is a nontrivial experi- 0Ur calculations, we find that the magnetism-related contri-
mental problem. The Kerr contribution varies with scatteringbution to the light polarizatiorti.e., 5p) is only ~0.1%.
angle in a way which is different from other nonmagnetic With R=50 nm and a photon energy of 1.6 el~2% at
contribution to the polarization, provided the tip is not too MOst, to be compared with 67 % f&=10 nm[see Fig.
large. This should help in separating the two contributions tg*@]. Thus, based on the results found here, we recommend
the circular polarization. It may also be possible to use thdhat experiments of this kind should use smaller photon en-
fact that the Kerr contribution to the circular polarization is €rgies(1.5 eV or so and smaller particles{20 nm) than
more sensitive to the tip-sample distance than is the backeefore.
ground circular polarization, for example by letting the tip
vibrate back and forth. To be specific, increasing the tip-
sample distance from 0.5 to 5 nm in Figatdecreases the
Kerr contribution A pcp) by about a factor of 2, whereas the ~ We would like to thank M. L. Cohen, R. J. Celotta, L.
background contribution is essentially unchanged. VaryingMontelius, and L. Samuelsson for useful discussions.
the photon energy could be yet another way of differentiatings.P.A. acknowledges financial support from Iberdrola S.A.
between Kerr and background contributions. The work of P.J. and S.P.A. was supported by the Swedish

In view of the large background, the size of the tip would Natural Science Research Council, and by the European
be a major concern in designing an experiment in practice. [Jnion through TMR Contract No. ERB-FMRX-0198.
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APPENDIX Es(q)=—fMP(q) =k 1V ;(q)e'd Rspn (A7)

In this appendix, we derive expressions for the functibns
andg that were introduced in Sec. Il D. With a plane wave
impinging on the sphere, the full electric field outside the

Here we have introduced

sphere can be expanded as in Efjl18), and the regularj() U ()= — 2! (~ 1)m[§ (I,m)Y Q)
terms describe the incoming wave. We will calculate the m Ja+ +F hom-1a
proportionality factord appearing in Eq(2.23, and there-

fore we first need to evaluate thecoefficients in Eq(2.18). +EF (LMY _n41(Qg) ], (A8)
;[clﬁsclear from Eq.(2.18), in view of the orthogonality rela- where the polarization vector

£=2X Q=Y COS pq—X SiN ¢q,  With

Jdﬂxw (Q)- le(Q) O Smny (A1) L
£.=E>ig,=xie*l%, (A9)

and o
In a similar way,

f dOX, () Vx{aji (kr) + by (KN X m(2)} =0, 277,(_ )m

Vim(a) =~ —====[7.F

tn-F_(l ym)YI,—m-f—l(Qq)_ 722MY) - m(Qg)],

l m)YI -m— 1(Qq)

for the vector spherical harmonics, that

ka}n“f’1|(kr)=f dQ(X;m)* -E. (A3) (A10)

(E) _ where the polarization vector

To calculateay,,’, it is easier to use the overlap between the

B field and t herical h ic: S - A
ield and a vector spherical harmonic =k~ 1gx (2xd)

k . - . .
(E)Jl(kr)_J dQ(X,m)* B (A4) =X(—C€0S0y COS¢hg) +Y(—C0Sly Singg) +Z sinby,

To evaluate these surface integrals, we use the expansion \6v]1th
a scalar plane waveg.e., the factor'?") in terms of spheri- i “ig
cal harmonics, and insert this into E®.1), yielding N+ =17y cosfye'%a. (A11)
(5o B B (o ioR In both Eqs(A8) and(A10), F. andF_ are shorthand sym-
E(r)={E®[zXq]-E"™[qXx(zXxq))]}e'd "sh bols for the numerical factors produced by the ladder opera-

torsL, andL _; thus

X472, KR X (=)™ n(Q)Y) m(Qq).
(=0 m Fo(l,m=+(I-m)(l+m+1),

(A5)

The incidentB field can be expanded in a similar way. The

factor e'9"Rsph compensates for the fact that we here use %lnally we note that thep, dependences of bott,,, and
coordinate system with the origin at the center of the spher ?/ foliow a m

[Repri= — z(R+ d)]. The composite variableQ and{}, de-

note the directions of (i.e., the angle) and ¢) andq (6, Uin(Q)ce™ Ma,  V, (q)xe M, (A13)
and ¢4). Equation(A5) is also valid for evanescent waves ' _ _ '
that decay exponentially in the positive or negativéirec-  The same is true fof,, (providedRgy, lies on thez axis).

F_(I,m)=J(I+m)(I-m+1). (A12)

tion, in which case cog, is purely imaginary. From the defi- ~ Next we must deal with the overlap going in the other
nition in Eq. (2.20 and the fact that. can be written in direction, from a given multipole to a plane wave. The vector
terms of ladder operators as equivalents of the Kirchoff integrals provides one way of

doing this. They read
=3(x—iy)L, +3(x+iy)L_+2zL,,

it is clear thatX,,, can be expressed in terms of the spherical E(r)=E®(r)+ f dS/{ikc[n' XB(r')1G(r,r")
harmonicsY| i1, Y)m, and¥, ;. Combining this with
the expansion in EqA5) yields the overlap integrals +[N' XE(r')]XV'G+[n’- E(r')]V'G}

fEP(q)=FMS(q) =k~ 1U pn(q) e Reph (A6) (A14)

and and
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one finds that the field outside the sphere can be written

ik .
B(r)=Be"‘(r)+de’ —?[n’XE(r’)]G(r,r’)

T quH o v AN o
+[N'XB(r')]XV'G+[n"-B(r')]V'G{. E:|m2(, bity (2m)? X{gim(@)(zxq) —gfm(a)
(A15) X[gx (zxq))]}e'e". (A19)
Here G denotes the Green’s function of the scalar Helmholtz
equation in free space; th@ solves Here o denotes a polarization(E) or (M)]. The coupling
factors are found to be

[V2+K2]G(r,r")= =8B (r—r"), (A16)

wherek=w/c, and can be written e N (—1)!+m+1lgid-Rep
ikl Oim () =0im ()= 2@ Tal? Uj —m(Q)
G(rr')=———m:. (AL17) (A20)
4alr—r’|

To obtain the total field at a point in free space, the integralgng

in Egs. (Al14) and (A15) should be over the surfaces of all

the scatterers that are present, and the fields entering the ,
integrals should be the exact fields at those interfaces. Here . = _(—1)”"”1@7”"Rsph
We restrict attention to the fields scattered from the sphere. In~ 9im(4) =~ 0im (4)= 2= |a Vi-m(@),
this case, only the Hankel function terms in E¢&18 and G

A21
(2.19 contribute. Evaluating the surface integrals using an (A2D)
expansion of the Green’s function in terms of plane waves . -
P . P whereRg,,is a vector pointing to the center of the sphere. As
(propagating and evanescgnt p L o
for the ¢, dependence of,, it is clear in view of Eq.
d2q e \/kz—qﬁz—z’\ _ , (A13) that
G(r,r’)=if ”2 — ela(r=rp,
(2m? 2\k*~qf 0o’ oo oimih
(A18) Oim *€74.
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