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Abstract

Classical spin simulations are used to study magnetic reversal in ultra-thin (1-

6 monolayers) films with planar magnetization and surface roughness typical

of epitaxially grown samples. Reduced site symmetry at surface steps leads

to strong, local anisotropies that both nucleate reversal and pin domain wall

motion. The results we obtain from realistic models with periodic roughness

are interpreted using a much simpler model with a single, finite-length step.

These models show how growth induced roughness can lead to oscillations in

the coercive field as the film thickness is increased, as seen in some experi-

ments. They also demonstrate explicitly how local step anisotropies become

less important and magnetostatic interactions become more important as the

film thickness increases.
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I. INTRODUCTION

The potential for novel physics and exciting applications has motivated many studies of

ultra-thin magnetic films [1]. To explore new physics, it is usual to focus on simple model

systems and equilibrium properties such as exchange, anisotropy, and the thermodynamic

phase diagram in the space of temperature and thickness. To exploit new applications, it is

typical to study more complex systems and non-equilibrium properties such as hysteresis,

domain wall motion, and magneto-transport. Common to both is the observation that vari-

ations in surface roughness and film morphology often have a significant effect on magnetic

structure.

Magnetometry [2] and the surface magneto-optic Kerr effect [3] are widely used to probe

magnetization reversal in ultra-thin films. A typical experiment reports representative hys-

teresis loops and the coercive field as a function of total deposited material. It is generally

appreciated that the films in question exhibit surface roughness, but the consequences of this

fact are not often addressed explicitly. One exception is a theoretical argument presented a

few years ago by Bruno [4]. Making simple assumptions regarding thickness fluctuations and

the nature of domain wall pinning in films with perpendicular magnetization, he derived a

coercive field HC ∝ t−5/2 where t is the film thickness. Experimental tests of this prediction

for the Co/Pd(111) [5] agree and Co/Pt(111) [6] systems are not consistent with each other.

Our interest here is hysteresis and coercivity in ultra-thin films with planar magnetiza-

tion. Roughness is very important in such systems because surface steps break translational

invariance and thereby induce local, in-plane anisotropies that differ from the intrinsic in-

plane anisotropy of the flat film [7,8]. This is significant because, as stressed by Arrott [9],

local anisotropies can nucleate and pin domain walls during the magnetization process. The

corresponding hysteresis can be very complex indeed [10].

The phenomenon considered by Bruno–the variation of domain wall energy with local

film thickness–is present for planar magnetized films as well. Indeed, Kolesik et al. have

studied its effect on the magnetic reversal of an Fe/W(110) sesquilayer film using a planar
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Ising simulation [11]. They did not investigate the effect of step-induced anisotropy. In this

work, we take account of both effects.

Our work was motivated by experiments such as those published recently for the ultra-

thin Co/Cu(001) system. The measured coercivity shows sub-monolayer oscillations super-

imposed on a monotonic increase with thickness for 2-15 monolayers of deposited cobalt [12].

Similarly, the coercivity of Cu/Co/Cu(001) is strongly non-monotonic for 0-2 monolayers of

deposited copper [13].

We use a simple but realistic simulation model of magnetic reversal to show how typi-

cal epitaxial growth surface morphologies can lead to oscillatory and other non-monotonic

behaviors for the coercive field of planar magnetized ultra-thin films. This work extends

to the multilayer regime previous theoretical and simulation work by the authors for the

case of monolayer-height islands on a single complete layer [14,15]. It also exploits a new

conceptual framework developed by the authors to understand magnetization reversal in

vicinal samples [16].

We are interested in film morphologies typical of ultra-thin magnets grown epitaxially on

a non-magnetic substrate. In the cartoon version of such a film shown in Fig. 1(a), several

completed magnetic layers lie beneath multilevel roughness in the form of irregular pits and

islands. Needless to say, some simplification is required in order to perform a trend study

as we wish to do.

Figure 1(c) and Figure 1(d) show the morphologies we have chosen to study in detail.

They consist of several completed magnetic layers with one incomplete layer in the form of

a regular array of square islands or pits. These two limiting cases turn out to be sufficient

to capture most of the physics of the more realistic morphology. In fact, the essential roles

of step length and step anisotropy in magnetic reversal are captured already by the even

simpler “isolated step” model shown in Fig. 1(b). The islands and pits add the effects of

step separation and magnetostatics.

The plan of our paper is as follows. Section II focuses on the isolated step model.

We catalog the various hysteresis loop topologies that occur and correlate them with the
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dimensionless control parameters of the model in the form of a phase diagram. Section III is

a discussion of the island model including the effect of magnetostatics. Results are presented

for the hysteresis loops and the coverage dependence of the coercive field. The isolated step

model is used to rationalize the global behavior. Section IV briefly discusses the pit model,

a synthetic island + pit model, and compares our results with experiment. Section V is a

summary.

II. THE ISOLATED STEP MODEL

The model film of Fig. 1(b) is one monolayer thick and lies on a flat non-magnetic

substrate. Every atomic site in the film carries a spin that is constrained to lie in the plane

of the surface. Ferromagnetic exchange J couples nearest neighbor spins and a four-fold

planar anisotropy K4 acts on every spin. The effect of an isolated step is modeled by adding

an additional two-fold planar anisotropy K2 along a line segment of width W . Thicker films

can be modeled by varying the exchange and anisotropy constants because we assume that

the magnetization does not vary in the direction perpendicular to the film surface. The

direction of the two-fold axis is perpendicular to the step and parallel to one of the four-fold

axes. An external magnetic field H is applied parallel to the step. Magnetostatics is ignored.

The hysteresis curves for this model were found from numerical simulations of a classical

spin Hamiltonian (see below) that incorporates all the features outlined above. We find only

“one-jump” and “two-jump” hysteresis loops over the entire range of parameters. Subtle

differences divide each of these into three sub-classes. The six typical loops that occur

(Fig. 2) are characterized by the fields HN , HS, and HT where characteristic changes in the

magnetization occur [17]. In the discussion to follow, we consider external fields increasing

from large negative values to large positive values. The characteristic fields HS, and HT are

always positive, but HN can have either sign. The rationale for the Roman numeral loop

labels will be explained below.

We focus first on loop III(a) because every feature of the reversal mechanism is reflected
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separately in its structure. The first deviation of the magnetization from saturation occurs at

the “nucleation field” HN . Spins within a few exchange lengths of the step rotate coherently

away from the saturation direction (180◦) because of the torque exerted by K2. At the end

of this interval of smoothly changing magnetization, a lens-shaped domain has formed with

approximately-90◦ domain walls interposed between the step spins and the terrace spins

[14]. At the “step instability field” HS, the domain walls depin from the step and sweep

across the film. This leaves the system in a “90◦ state” with nearly zero magnetization

along the direction of H. Another regime of coherent rotation follows until HT when a

Stoner-Wohlfarth [18] type instability occurs on the terrace far from the step. When this

happens, the terrace spins coherently jump from the 90◦ state to the 0◦ reversed state. The

step spins lag slightly behind because they feel the pinning effect of K2. Smooth coherent

rotation completes the reversal process.

The IV loops generically have one jump because the terrace instability formally occurs

before the step instability (domain wall depinning) in these cases. Of course, the spins cannot

jump coherently from 90◦ to 0◦ until they get to 90◦ in the first place. As a result, the spins

rotate all the way to near reversal as soon the domain walls depin from the step.

The difference between loops III(a) and III(b) and between loops IV(a) and IV(b) de-

pends on whether or not K2 is large enough to prevent the terrace jump from “dragging”

the step spins all the way to saturation at HT . The loops III(c) and IV(c) differ from their

(b) counterparts because the step instability formally occurs before nucleation. When this

is the case, the domain walls depin from the step as soon as nucleation occurs.

Figure 3 is a phase diagram derived from our simulations that connects the loop topolo-

gies (“the phases”) to the model parameters. As the diagram axes show, the latter are best

organized into the dimensionless parameters K = K2/2σ and W = W/δ. The first of these

is the step anisotropy scaled by the domain wall energy σ =
√
2JK4. The second is the

step width scaled by the exchange length δ =
√
J/2K4. The particular numerical range of

K and W used in Fig. 3 arises when realistic values are chosen for the physical parameters

(see below).
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The phases have been labeled for consistency with our previous vicinal surface results [16]

where the characteristic fields HN , HS, and HT occur also [19]. Indeed, the phase diagram

here and the one derived in Ref. [16] are simply two-dimensional slices of a three-dimensional

phase diagram with axes: scaled step anisotropy K, scaled step width W and scaled terrace

length L. The phase diagram for the vicinal film is the two-dimensional slice at W → ∞.

The phase diagram for the single step limit is the perpendicular slice at L → ∞. There is

a phase boundary between these two slices at L → ∞ and W → ∞ (where HS = 0) that

separates phases IIa and IIb in the vicinal film from phases IIIa and IIIb in the finite step

film.

The general placement of the various phases in Fig. 3 can be understood from the vari-

ation of the characteristic fields with W and K. These are shown in Fig. 4 and Fig. 5,

respectively, scaled by the Stoner-Wohlfarth field HSW = 8a2K4/µ. The latter is the exter-

nal field value at which easy-axis reversal occurs for a single domain system with four-fold

anisotropy [18]. From Fig. 3, we see that the III phases appear at larger values of W than

the IV phases. HT =
√
6/9HSW [16] is independent of step width (it is driven by the terrace

spins) while HS smoothly decreases withW. This guarantees that the curves of HS and HT

in Fig. 4 eventually cross as W increases and the III phases supplant the IV phases. The

field HS decreases with W for the following reason [15]. As H increases, the lens domain

expands to gain Zeeman energy. This is opposed by the domain wall energy which is pro-

portional to the domain perimeter. The domain wall depins when these two balance. One

gets HS ∝ 1/W because the domain wall is pinned at opposite ends of the step.

The (a)→(b) and (b)→(c) transitions in Fig. 3 occur with decreasing K. The first of

these agrees with the “dragging” argument given above. That is, when the step anisotropy is

large, the Stoner-Wohlfarth instability of the terrace spins does not produce enough torque

to rotate the step spins to complete reversal. But when K is small enough, a direct jump

to 0◦ is possible. The (b)→(c) transition occurs because HN increases (in magnitude) past

HS as the step anisotropy is reduced. This happens because, as noted earlier, easy (small

magnitude) nucleation is encouraged by the torque exerted by K2 on the step spins.
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These results are sufficient to qualitatively explain the experimental observation noted

earlier [12] that the coercive field HC rises rapidly with deposited material with a small

amplitude oscillation superimposed. We need only recall that K = K2/2σ where σ =
√
2JK4

is the domain wall energy. The latter is proportional to the film thickness so K ∝ t−1.

Figure 5 then shows that HC should indeed increase rapidly at t increases, at least for larger

thicknesses. On the other hand, it is well understood that the step density oscillates as

growth proceeds [20]. This translates into oscillations in W in the present model so Fig. 4

implies that oscillations will occur in the coercive field as well. When HC = HN (small

K), the oscillation amplitude is smaller or comparable to the overall change in HC . When

HC = HS (large K), the oscillation amplitude is comparable or larger than the change in

the coercive field.

III. THE ISLAND MODEL

The periodic surface morphologies shown in Fig. 1 permit us to model the variations in

step length and step separation that occur during growth in a fairly realistic manner. In

both cases, the square structures have center-to-center separation D and side length L. If

the flat surface has t complete magnetic layers, Fig. 1(c) and Fig. l(d) will be called the

island and pit models, respectively. In this section, we focus on the island model exclusively.

Except for the addition of magnetostatics, the magnetic energy we used to study hys-

teresis in the island model is the same as the one we used to analyze the isolated step model.

In detail, the substrate is taken as centered cubic so the thickness t is measured in units of

t0 = a/2 where a is the in-plane lattice constant. Classical Heisenberg spins at each surface

site i point in the direction Ŝi. We get a two-dimensional model because the spins are forced

to be parallel within each atomic column. This is acceptable because we limit ourselves to

values of t that are much less than the exchange length.

Each spin is subject to nearest-neighbor ferromagnetic exchange J , a large two-fold per-

pendicular surface anisotropy KZ > 0, a four-fold planar anisotropy K4 > 0, an external
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field H, and magnetic dipole-dipole interactions from all other spins. The saturation magne-

tization isMS and a two-fold anisotropy K2 is present at step edge sites only. The magnetic

energy is

EM = −
∑
〈i,j〉

JijŜi ·Ŝj − a
2K2

∑
i∈step

(Ŝi · b̂i)
2

−2a2K4
∑
i

ti [(Ŝ
x
i )
4+(Ŝyi )

4]− µH·
∑
i

tiŜi

+a2KZ
∑
i

(Ŝzi )
2 −
µ

2

∑
i

tiŜi ·HINT (1)

where ti is the film height at site i in units of t0, b̂i is a unit vector parallel to the local

step edge, Jij = J min[ti, tj], and µ = µ0a
2t0MS where µ0 is the magnetic constant (a k a

permeability of free space) in SI units.

The internal magnetostatic field HINT was calculated by solving the discretized Maxwell

equations ∇ ·HINT = −∇ ·M and ∇×HINT = 0. For this calculation an effective surface

layer with uniform thickness was used to exploit a two-dimensional fast Fourier transform

algorithm designed for a thin film with no surface roughness [21].

Typical values of the material parameters, J = 10−21 J and K4 = 1 × 10−3 mJ/m2,

[22] imply, in the absence of magnetostatics, a domain wall energy per unit length σ =

t
√
2JK4 ≈ t × 10−14 J/m and an exchange length δ =

√
J/2K4 ≈ 20 nm. The numerical

results reported below all use the values |K2| = KZ = 1 mJ/m2 [2], a = 0.3 nm, and

MS = 1.44 × 106 A/m (1440 emu/cm3), in addition to those quoted above for J and K4.

The lengths L and D are measured in spin block units of 10a ≈ δ/7, a distance over which no

appreciable spin rotation occurs. Positive step anisotropy K2 > 0 corresponds to a preferred

spin axis parallel to the step edges while negative step anisotropy K2 < 0 corresponds to a

preferred spin axis perpendicular to the step edges.

The simulation technique was the same as described previously [14]. Beginning with

a large value of H = Hx̂ ‖ [100], the local minimum of Eq. (1) was followed as the field

was reversed adiabatically by a combination of conjugate gradient minimization and relax-

ational spin dynamics. The magnetization parallel to H was computed directly from the
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corresponding spin configurations.

Figure 6 illustrates the variation of the computed coercive field HC with total coverage

Θ = t+ θ (in monolayers) for the island model. The islands contribute the partial coverage

θ = (L/D)2 to the total. To mimic a typical growth scenario, the island separation was

fixed at D = 64 and the coverage was increased by increasing the island dimension L. The

heavy (light) dashed curves are for step anisotropies that favors spin alignment parallel

(perpendicular) to the step. The solid curve was computed without magnetostatics. There

is only one such curve because the magnetic energy Eq. (1) is invariant if K2 → −K2 and

we rotate the Cartesian axes (from which the spin angles are measured) by 90◦ in the plane.

For simplicity, we discuss the case of no magnetostatics first. The most striking features

in Fig. 6 are the periodic maxima where HC = HSW . These are actually artifacts of the

growth scenario sketched above because they correspond to perfect layer completion and

perfect Stoner-Wohlfarth reversal at integer values of thickness. We will correct for this

artifact qualitatively in the next section. Another major trend in Fig. 6 is that HC decreases

very rapidly as each layer begins to grow [14]. This may be understood immediately from

the lower panel of Fig. 4 for the isolated step model where HC is given by either HN or

HS. Both decrease rapidly, especially when W, i.e., θ is small. Notice that our parameter

choices for the island model are such that the full range of W in this figure corresponds to

about θ ∼ 1/5.

Another trend seen in Fig. 6 is that the coercive field averaged over each partial monolayer

apparently decreases slowly until about Θ = 3 and then increases rapidly. In fact, the

behavior of HC as t increases by integer amounts for fixed values of the partial coverage θ

depends very strongly on θ. Figure 7 and Figure 8 illustrate this for θ = 0.06 and θ = 0.76,

respectively. The θ = 0.06 curves shown in Fig. 7 are directly interpretable using the isolated

step model. The sequence shown illustrates the transition from phase IV(b) to phase IV(c)

loops. The coercive field is set by HN and its increase (in magnitude) as t increases (so K

decreases) is clear from Fig. 5. In this regime, the coercive field is a monotonic function of

t.
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Technically, neither the upper panel (t = 1) nor middle panel (t = 3) of Fig. 8 belong to

the phase diagram of Fig. 3 because both have additional magnetization jumps associated

with the presence of multiple steps. The associated changes in the magnetization affects

the coercive field [HC = HT for these two cases; this never occurs for the single step model]

much more than they affect the characteristic fields HN , HS, and HT . Moreover, the values

of K used in Fig. 4 are nearly the same as the ones for the cases under discussion. Notice

that the step instabilities in Fig. 8 (HS for t = 1 and HN for t = 3) occur at practically the

same value of external field as they do in Fig. 4. HC is larger at t = 1 than t = 3 because

the step edges parallel to the field inhibit the coherent rotation of terrace spins to the 90◦

state more effectively when K is larger. This effect is absent from the isolated step model.

By the time we reach t = 5 (lower panel of Fig. 8), K is so small that HN determines the

coercivity in phase IV(c) at the large value implied by Fig. 4. Evidently, HC is not always

a monotonic function of film thickness.

Finally, we remark on the very rapid decrease in the coercive field that occurs near layer

completion (θ � 1) when Θ is large in Fig. 6. In this regime, HC = HN as we have discussed

and the film consists of large islands that are closely spaced. Nucleation occurs very readily

in this circumstance both because the steps are long and because they are close together.

The long length simply generates more torque. The step proximity effectively doubles K (if

the step separation is less than an exchange length [16]) and therefore enhances nucleation

as well. Of course, this effect is also absent from the single step model.

We turn now to the influence of magnetostatics reflected in Figure 6. This contribution

to the energy is extensive and so has little effect until the film begins to thicken. Dipole

interactions then generally increase HC although the effect is far more pronounced when the

step anisotropy is perpendicular to the steps than when it is parallel to the steps. Because

HC = HN in the relevant regime, we can understand this by rewriting the magnetic energy

in the form

ED−D =
µ0

2

∫
d3r
∫
d3r′
∇ ·M(r)∇ ·M(r′)

|r − r′|
. (2)
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This term clearly disfavors the creation of “magnetic charge” with density ∇·M(r). This has

two consequences, both of which break the symmetry between parallel and perpendicular

anisotropy. First, the magnetization is larger on the islands than on the terraces. This means

that∇·M(r) will be unequal to zero at the island edges even if the spin configuration is com-

pletely uniform (unless the magnetization points along the edges). Magnetostatics therefore

increases the parallel step anisotropy and decreases the perpendicular step anisotropy.

A second effect is more important. At saturation, Mx is a constant and My = 0. To

lowest order, Mx remains constant at nucleation so only the variations of My in the y

direction contribute to ED−D. The magnetization pattern at nucleation consists of lens-

shaped domains centered on those step edges where the local anisotropy axis points in the y

direction [23]. At the smallest coverages when the islands are very small, My =My(x, y) is a

function of both x and y so a finite magnetostatic effect is expected. This effect increases as

the island size increases initially because more step edge contributes to nucleation. But for

large enough island size, the magnetization pattern at nucleation is nearly one dimensional

with My = My(y) for perpendicular step anisotropy and My = My(x) for parallel step

anisotropy. The effect of magnetostatics thus increases in the former case and decreases in

the latter case as the islands grow larger. This is the trend seen in Fig. 6.

IV. COMPARISON TO EXPERIMENT

A direct comparison between experiment and the island model results of Fig. 6 is not

really justified because, for θ just less than one, the model morphology consists of large

disconnected islands separated by long narrow troughs. In reality, island coalescence occurs

at these coverages and the morphology is better approximated by a collection of small pits.

The pit model of Fig. 1(d) is an idealization of this morphology. We performed simulations

for this model also using the Hamiltonian Eq. (1). Figure 9 compares the computed coercive

field for the island model (dashed line) and the pit model (light solid line) for the case when

the step anisotropy is parallel to the steps. Notice that the coercivity at Θ = t + θ for the
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island model is similar to the coercivity at Θ = t − θ for the pit model. This is because

the magnetic reversal is almost the same for islands and depressions of the same size. Small

differences occur because the magnetic domain wall energy is not exactly the same in the

two cases.

Of course, neither the island model nor the pit model is correct when the coverage is

exactly (or very near) t complete layers. A better model would exhibit both small islands and

small pits. Based on the foregoing, we would expect the coercivity to be determined by the

pits or islands with the longest sides. On the other hand, no large pits form during growth

and islands with long sides coalesce to form pits with relatively small step lengths. For this

reason, the coercivity never becomes very small. The bold curve in Fig. 9 “synthesizes”

this behavior from our island and pit results by removing the unphysical jumps at layer

completion and otherwise tracking whichever of the models has the larger coercivity.

The single step model explains almost all of the structure that appears in our synthetic

HC(Θ) curve. When Θ is small, the scale of the oscillations dominates the variations in the

mean value of HC . In the isolated step model, this is the large K limit when HC = HS

and is nearly independent of K but varies with W. Conversely, when Θ is large (K small),

the scale of the oscillations is comparable to the change in the mean value of HC , which

is increasing. This is the small K limit of the isolated step model where HC = HN . HC

increases as K decreases and varies with W on a comparable scale.

We now are in a position to compare with experiment. Our lower coverage results

(0 ≤ Θ ≤ 2) are relevant to the results of Buckley et al. for the Cu/Co/Cu(001) system [13].

There, the observed coercivity decreases very rapidly for submonolayer deposition of copper

and then shows a local maximum near θ = 1. In some cases, additional oscillations in HC

were detected. Copper is non-magnetic but our results are still germane because the copper

islands break the translational invariance of the surface. The Néel model [7] then predicts

that a two-fold anisotropy will be induced for those cobalt atoms that lie just beneath the

copper step edges.

For Θ ≥ 2, we compare our results with the measurements of Weber et al. [12] who
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deposited Co on a surface slightly vicinal to Cu(001). The presence of steps produces

split loop hysteresis curves whose origin we have discussed elsewhere [16]. Here, we focus

on the thickness dependence of the width of the shifted loop which, as the authors note,

corresponds to the coercive field. The basic observation is that HC exhibits small amplitude,

sub-monolayer oscillations superposed on a monotonic rise with increasing coverage. This

is in qualitative agreement with the bold curve in Fig. 9.

The authors of Ref. [12] attributed the existence ofHC oscillations to periodic oscillations

in the surface morphology as we do. However, owing to the uniaxial anisotropy induced by

the steps, they supposed that the presence of rectangular islands was the key to the effect.

Our results show that oscillations arise even with square islands. Indeed, the isolated step

model shows that it is only necessary that there be a periodic change in the length of the

steps in one direction.

V. SUMMARY

We have used several classical spin models to study zero temperature hysteresis in ultra-

thin films with planar magnetization and surface roughness characteristic of the epitaxial

growth process. To lend insight into the complicated situation of many steps, we first dis-

cussed a simplified model of a smooth surface with a single finite-length step. The magnetic

interactions were taken to be a four-fold anisotropy at all sites, a two-fold anisotropy at step

edge sites, and the Zeeman interaction with an external magnetic field. The hysteresis loops

that occur were presented in the form of a phase diagram with axes labeled by (scaled) step

anisotropy and step length.

We then considered a periodic island and periodic pit model that allowed for one layer of

incomplete coverage. Magnetostatic interactions were added at this stage. The characteristic

hysteresis fields HN , HS, and HT were found to vary as a function of both film thickness

and partial coverage of the surface layer in an explicable manner. As a result, the coercivity

exhibited monolayer-scale oscillations on a background that varies non-monotonically with
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thickness. These results are all in qualitative agreement with recent experiments for the

planar Co/Cu(001) system.
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FIG. 1. Schematic view of (a) a “real” ultrathin film; (b) a flat film with a single step; (c) a

period island morphology; and (d) a periodic pit morphology. Arrows indicate the easy axes of the

in-plane anisotropy.
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FIG. 2. Hysteresis loops for the isolated step model. The characteristic fields HN , HS, and HT

are discussed in the text. The Roman numeral labels correspond to different parts of the phase

diagram of Figure 3.
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FIG. 3. Loop structure phase diagram for the isolated step model. K is the scaled step

anisotropy and W is the scaled step width.
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FIG. 4. Characteristic fields as a function of W for fixed K.
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FIG. 5. Characteristic fields as a function of K for fixed W.
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FIG. 6. Scaled coercive field as a function of coverage for the island model. The solid curves

give the results without magnetostatics. The heavy dashed curve and light dashed curve give the

results with magnetostatics for the cases of step anisotropy parallel and perpendicular to the steps

respectively.
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FIG. 7. Hysteresis loops for the island model for θ = 0.06 and t = 1, 3, 5.
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FIG. 8. Hysteresis loops for the island model for θ = 0.76 and t = 1, 3, 5.

25



0 2 4 6
0.0

1.0

Pits

Islands

FIG. 9. Scaled coercive field as a function of coverage. The light solid line is the island model.

The dashed line is the pit model. The bold solid line synthesizes these two into a curve more

suitable for comparison with experiment.
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