
Magnetization reversal in ultrathin films

with monolayer-scale surface roughness

A. Moschel∗, R. A. Hyman, A. Zangwill

School of Physics, Georgia Institute of Technology

Atlanta, Georgia 30332

M. D. Stiles

Electron Physics Group, National Institute of Standards and Technology

Gaithersburg, Maryland 20899

(January 22, 1997)

Abstract

The intrinsic anisotropy of nominally flat, ultrathin ferromagnetic films typ-

ically is augmented by a uniaxial anisotropy at step edges. We report model

calculations of hysteresis for such systems with in-plane magnetization and

monolayer scale roughness. The reversal process is a combination of domain

nucleation at step edges, expansion of these domains through morphological

constrictions, and coherent rotation within domains. The initiation of re-

versal at well-separated step edges can explain the very small coercive fields

measured for real ultrathin magnetic films.
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Ultrathin film magnetism has evolved into a mature field of study over the past fifteen

years [1]. Two-dimensional critical phenomena provided much early motivation, but con-

siderable interest and activity now focuses on the complexities of exchange coupling and

anisotropy in order to understand the unusual hysteresis loops commonplace in magnetic

multilayers. Insight has been gained from even the simplest models of magnetization reversal

[2] where one assumes perfectly flat interfaces and the coherent rotation model of Stoner and

Wohlfarth [3]. Typical generalizations examine some effects of interface roughness within the

coherent rotation model [4] or consider the effects of inhomogeneous magnetization reversal

within the flat interface model [5]. But as Arrott [6] has pointed out, there is an intimate

connection between roughness and reversal that has been insufficiently explored for both

simple and multilayer films.

Our calculations are motivated by the steadily accumulating experimental evidence that

growth-induced surface roughness can profoundly affect magnetization reversal and coer-

civity in ultrathin films [7]. Scanning tunneling microscopy graphically demonstrates that

roughness at the monolayer scale is the best that can be achieved for any coverage of de-

posited material [8]. For this reason, even the best as-grown or annealed ultrathin films have

some step edges associated either with the perimeter of monolayer-height islands that nucle-

ate during growth or with the steps of an intentionally miscut substrate. This is significant

because the magnetic anisotropy at sites of reduced crystallographic symmetry can compete

successfully with the intrinsic anisotropy of the flat surface and thereby control coercivity

and magnetization reversal [6]. Measurements for magnetic films grown on vicinal substrates

add force to this general argument [9].

In this paper, we study magnetization reversal at T=0 for a model ultrathin ferro-

magnetic film with simple cubic crystal structure and monolayer-scale surface roughness.

Magnetostatic shape anisotropy favors magnetization in the average surface plane for this

geometry. Surface magnetocrystalline anisotropy [10] can either support or oppose this ori-

entational tendency and both cases are observed frequently in the laboratory [11]. For the

present study, we focus exclusively on the case of in-plane magnetization. We also choose
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a particularly simple, high symmetry, surface morphology. In detail, the film is taken to

be a continuous single crystal composed of one complete magnetic layer on a non-magnetic

substrate with a periodic array of square monolayer-height magnetic islands with side length

L and center-to-center separation D placed on top (Figure 1).

Exchange coupling guarantees that atomic moments remain aligned over microscopic

distances. For this reason, a two-dimensional classical XY model with spin lengths Si

proportional to the film thickness at lateral atomic site i will be sufficient for our purposes.

The magnetic energy is

E = −
∑
〈i,j〉

Jij cos(ϑi−ϑj)− a
2
∑
i

Ki
2 Si cos2ϑi

−a2
∑
i

Ki
4 Si cos2 2ϑi − µH

∑
i

Si cos(ϑi−ϕ)

where the angles ϑi denote the directions of the vector spins Si relative to [100], Jij =

J min[Si, Sj]
2 is the exchange energy between nearest neighbor sites i and j, Ki

2 and Ki
4

specify the strength of two-fold and four-fold magnetic surface anisotropies at site i, a is

the lattice constant, and µ = µ0m, where m is the atomic magnetic moment. The in-plane

magnetic field H is oriented at an angle ϕ from [100].

We restrict attention here to the case of ϕ = 0 [12] and choose the material parameters

as J ∼ 10−21 J, a = 0.3 nm, and m ∼ 10−23 J/T. All sites are assigned a small four-fold

anisotropy K4 ∼ 10−2 mJ/m2 and, as suggested by the phenomenological Néel model [10],

step edges are assigned a uniaxial anisotropy. The latter is chosen here to lay perpendicular

[13] to the local step edge with strength K2 ∼ 1 mJ/m2. All these numerical values are

consistent with recent experiments [14,15].

Unlike most micromagnetic calculations [16], the energy expression Eq. (1) does not

include an explicit contribution from magnetostatics. We suggest that this is acceptable in

the present case because: (i) the effect of shape anisotropy is already included when the

planar magnetization we assume is uniform in space; (ii) the magnetostatic contribution

to the energy of the non-uniform magnetization distribution within a Néel domain wall is
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negligible in the ultrathin film limit [6,17]; and (iii) it is useful to analyze the effect of

competing anisotropies alone so that the effect of re-introducing the dipolar interactions

can be appreciated more readily. For example, the atomic-scale discontinuity of the surface

height (and hence of the magnetization) at a step edge yields a magnetostatically induced

contribution to K2 [18] which breaks the symmetry between parallel and perpendicular

anisotropy at the step edges.

The material parameters imply a domain wall width W ' 8
√
J/2K4 ' 200a, indicating

that the magnetization changes exceedingly slowly on the atomic scale. For this reason, large

system sizes can be studied by transformation to a representation where the sum over atomic

sites in Eq. (1) is replaced by a sum over blocks of aligned spins. We choose square blocks

with b ∼ W/20a atomic spins per side so that the magnetization changes very little even

from block to block. Each block-spin length is rescaled to reflect the local average surface

height as before and the parameters in Eq. (1) are renormalized to guarantee that the new,

coarse-grained representation accurately reproduces the original atomic spin representation.

One easily checks that the four-fold anisotropy and Zeeman terms each acquire a factor of

b2 (all b2 spins per block contribute) while the two-fold anisotropy term acquires a factor of

b (only the b spins per step that run through the block contribute). The exchange term is

unaltered by the blocking transformation [19] as is the anisotropy associated with the island

corners.

Zero temperature magnetization reversal is studied by following the local minimum of

Eq. (1) as the external field is reversed in small steps from a large positive value to a

large negative value. At each new field, the conjugate gradient method is used to find a

local minimum close to the previous local minimum. But when jumps in the magnetization

occur, i.e. the minima are not close, the simulation backs up to the configuration before the

jump and relaxation dynamics is used to find the new minimum energy configuration.

For surfaces with no steps, or when the island separationD is small, our model reproduces

the Stoner-Wohlfarth result that magnetization reversal occurs by coherent rotation with

a coercive field HC equal to HSW = 8a2K4/µ. The magnitude of HSW (∼ 5 × 105 A/m
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∼ 2π103 Oe) is about 100 times larger than typical measured coercivities for ultrathin films

[7,9,20]. Such a discrepancy between experiment and theory for the coercive field is known as

Brown’s paradox [21]. It is resolved for bulk samples by invoking the presence of crystalline

defects where local magnetic properties may differ considerably from the average and thus

serve as nucleation centers for reversal or pinning sites for pre-existing domain walls [16].

Our calculations support the view that monoatomic steps of single crystal ultrathin

films both nucleate rotated domains [6] and impede the motion of domain walls. The

reversal process is a combination of nucleation, expansion of domains through morphological

constrictions, and coherent rotation within domains. For the geometry studied here, the

competition between these processes leads to many types of complex hysteresis loops as a

function of island size and separation. Figure 2 shows one characteristic of these loops–the

coercive field scaled by HSW–for three choices of the island separation D. The numerical

results accord surprisingly well with simple energy balance arguments [22] that predict four

regimes where HC/HSW varies successively as W/L, LW/D2, W/(D − L), and (D − L +

2W )/D as L/D increases.

So long as D is not so small that HC ' HSW , reversal begins with 90◦ domains nucleated

at the edges of each island where the torque due to the local two-fold anisotropy is largest

[23]. Figure 3 shows a stable configuration at remanence where these lens-shaped domains

are pinned to the island edges by the energy cost to increase the domain wall length. For

small L/D, the 90◦ domains expand as the field is reduced from positive to negative until

they “burst” at a field HL ∝ HSWW/L. So long as D − L > L, the domains expand freely

through the channels between the islands until nearly the entire surface is covered. The

remaining unrotated spins are confined to regions of area A ∝ LW that surround the island

edges with anisotropy parallel to the applied field. For very small L/D, HL exceeds the field

H⊥ = 2HSW/3
√

6 at which the 90◦ state is unstable to complete reversal into the 180◦ state.

Accordingly, there is an additional jump in the hysteresis loop whenH⊥ > HL. But HC =HL

nonetheless because the magnetization in the domains is not precisely perpendicular to the

H-axis. There is a small negative component of the magnetization (Mx = H/HSW for small
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H) along the reversed field direction that overcompensates the positive contribution from

the unrotated spins noted above.

For fixed D, this scenario remains correct as L increases until HL becomes so small

that the negative magnetization of the 90◦ domains cannot compensate the unrotated edge

spins. The hysteresis loop magnetization thus remains positive after its jump at H =HL.

The magnetization smoothly passes through zero as the spins in the 90◦ domains coherently

rotate with the applied field. The magnetization is zero when the magnetic field reaches the

value HR ∝ LW/D2. The crossover from the first to the second scaling regime in Fig. 2

occurs when HL = HR.

When L > D/2, the channel width is smaller than the island edge length and the 90◦

domains between the islands are pinned at the island corners (see Figure 4). They cannot

expand laterally due to the energy cost to create more wall length. Only when the field

reaches the value HD ∝ HSWW/(D − L) does a jump in magnetization signal that the

domains have squeezed through this morphological constriction. But when HD < HR, this

jump does not effect the coercive field because the post-jump magnetization is still positive.

Not until HD ≥ HR does HD becomes the coercive field. Finally, near layer completion (L ∼

D) the positive magnetization of the unrotated edge spins can be compensated by rotation

of the magnetization in the 90◦ domains that now do not include the narrow channels. The

coercive field in this final regime is HF ∝ HSW (D − L+ 2W )/D.

Magnetization reversal that appears to be closely related to the results reported here has

been observed in Kerr microscopy and vector magnetometry experiments reported by Cow-

burn et al. for an ultrathin Ag/Fe/Ag(001) multilayer system [24]. These authors discussed

their results using a model that combines the domain wall pinning mechanism of coercivity

with a Stoner-Wohlfarth model that features both four-fold and two-fold anisotropies. The

origin of the uniaxial anisotropy was not specified but a rather small value of K2 ∼ 10−4

mJ/m2 was found to produce the best fit to experiment. Note however that this value is

assigned (by necessity) to every site of the surface in their spatially uniform theory. By

contrast, the Néel model [10] and experiments [15] for stepped surfaces suggest a value of
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K2 that is 104 times larger at step edge sites. We use this larger value but assign it only

to step edge sites. Systematic experiments where the step density is varied by changing

deposition conditions, coverage, or vicinal miscut will help resolve this matter.

The generalization of the results presented here to the case of an external magnetic

field applied at an angle ϕ 6= 0, islands with non-square shapes and multilevel roughness is

straightforward. Our investigation of these situations, including the effects of magnetostat-

ics, will be reported in full elsewhere [22].
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FIGURES

L
D

Substrate

FIG. 1. Schematic view of the rough ultrathin film morphology used in this work. The indicated

island geometry is repeated periodically. Arrows indicate local anisotropy axes.
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FIG. 2. Coercive field HC of hysteresis loops obtained upon quasistatic reversal of the external

field in (1) with ϕ = 0 for the film geometry of Figure 1 as a function of L/D for different system

sizes as labelled. Not shown are the coercivities for L = 0, 2,D, for which HC = HSW in this

model. The vertical lines divide the D = 128 curve into four regions that are discussed in the text.
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FIG. 3. Spin configuration for L = 32, D = 64 at the remanent state (H=0). Only every fourth

spin block (in each direction) is shown for clarity. The lines indicate the island boundary. This

configuration is reproduced periodically in the plane.
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FIG. 4. Spin configuration for L = 32, D = 64 for H/HSW = −0.077. Only every fourth spin

block (in each direction) is shown for clarity. The lines indicate the boundaries of two neighboring

islands. This configuration is reproduced periodically in he plane.
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