560

ELECTRON INELASTIC MEAN FREE PATHS IN SOLIDS AT LOW ENERGIES

S. TANUMA,l ¢.J. POWELL? and D.R. PENN?

lcentral Research Laboratories, Nippon Mining Company Ltd., 3-17-35 Niizo-
Minami, Toda, Saitama 335, Japan

2National Institute of Standards and Technology, Gaithersburg, MD 20899, UsA

ABSTRACT

We have calculated electron inelastic mean free paths (IMFPs) for 50-200
eV electrons in 31 materials (27 elements and 4 compounds). These calculations
extend those previously reported for 200-2000 eV electrons in the same
materials but avoid an approximation valid for electron energies above 200 eV.
IMFP results are presented in this paper for magnesium, aluminum, silicon,
nickel, copper, and gold. The IMFP dependence on electron energy in the range
50-200 eV varies considerably from material to material; these variations are
associated with substantial differences in the electron energy-loss functions
amongst the materials. We have also extended the general IMFP formula derived
earlier to describe the calculated IMFPs over the 50-2000 eV energy range.

INTRODUGCTION

Values of inelastic mean free paths (IMFPs) and attenuation lengths (ALs)
are needed in quantitative surface analysis by Auger-electron spectroscopy
(AES) and x-ray photoelectron spectroscopy (XPS) as well as for determining the
surface sensitivity of other electron spectroscopies. The terms IMFP, AL, and
escape depth are often used interchangeably but each has a separate meaning
(1,2). The IMFP can be obtained from theory and certain types of experiments,
while the AL is obtained from overlayer-film experiments and with use of a
model in which the effects of elastic electron scattering are ignored. The
escape depth is the product of the AL and the cosine of the angle defined by
the analyzer direction and the surface normal (e.g., in an AES or XPS
experiment), The IMFP is systematically larger than the AL by up to about 35%
(3).

We have previously reported (4) new calculations of IMFPs for 200-2000 eV
electrons in 27 elements (C, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu, Y, Zr, Nb, Mo,
Ru, Rh, Pd, Ag, HE, Ta, W, Re, Os, Ir, Pt, Au, and Bi) and 4 compounds (LiF,
S109, ZnS, and Alp03). We fitted our calculated IMFPs to the Bethe equation
for inelastic electron scattering and were able to obtain empirical expressioﬁs
for the two Bethe parameters in terms of several material constants. - The
resulting general IMFP formula could then be used to predict IMFPs in other

materials.




Our IMFP calculations have now been extended to lower energies (50 eV).
We present here some of the new IMFP results and point out substantial
differences in the energy dependences of the IMFPs in the 50-200 eV range.
These differences are substantially greater than expected from a simple AL
formula (5) that is in widespread use. We have also modified our previous
general IMFP formula so that it can be applied over the 50-2000 eV energy

range.

PROCEDURE

Our IMFP calculations are based on an algorithm developed by Penn (6)
which should be applicable to a wide range of materials. Expériﬁeﬁéal optical
data are used to give information on the inelastic scattering probability as a
function of energy loss for each material and theory is used to describe the
dependence of the scaEtering probability on momentum transfer. This hybrid
approach enables us to take advantage of available optical data which has been
checked for internal consistency with two sum rules (4). We are particularly
interested in using the algorithm in a consistent way to determine IMFP
dependences on material and electron energy since AL measurements are extremely
difficult to perform with the needed accuracy (1,7).

The IMFPs are calculated from Eqs. (1) and (14) given in our previous
paper (4). The IMFP values reported in that paper were obtained with an
approximation valid above 200 eV. The Penn algorithm neglects vertex
corrections, self-consistency, and the effects of exchange and correlation; the
results are therefore expected to be useful for energies above about 50 eV.

IMFP calculations were made for the same 27 elements and 4 compounds we
examined previously (4); these materials were selected because suitable optical
data were convéniently available. The methods by which the optical data were
checked have been reported (4). Values of the energy-loss function
Im[-1/¢(AE)] were calculated from the complex dielectric constant ¢(AE) as a
function of electron energy loss AE (or photon energy).

All energies are reported here with reference to the Fermi level. A
parameter in the IMFP calculation is the Fermi energy (or width of the
conduction band); these values have been taken from band-structure calculations
for the elemental solids (8). It was found that the calculated IMFPs were not
sensitive to this parameter and so estimates from free-electron theory were

made for the four compounds.

RESULTS AND DISCUSSION

Figures 1 and 2 show calculated IMFPs at energies below 200 eV fo; six
representative solids: Mg, Al, Si, Ni, Cu, and Au; results for the other
materials will be reported elsewhere (9). Although the IMFP values at energies
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Fig. 1. Plots of the calculated IMFPs for M
| g (short-dashed line , Al 1
line), and Si (long-dashed line) as a function of electron energ;. (solid

Fig. 2. Plots of the calculated IMFPs for Ni short-d
dashed line), and Au (solid line), (short-dashed line), Cu (long-

below 50 eV may not be reliable, we present these results to show the IMFP
dependence on energy in the vicinity of the minima. The IMFPs for Mg, Al, and
S1 show minima at energies of about 30-40 eV (Fig. 1) while the IMFP
calculations for Ni, Cu, and Au show minima at about 70-140 eV (Fig. 2).

The results of Figs. 1 and 2 are not surprising since Mg, Al, and Si are
free-electron—iike solids. For such materials, the dominant inelastic
scattering mechanism in the bulk is volume-plasmon excitation (10). The volume
plasmon energies for these solids are about 10 eV, 15 eV, and 17 éV,
respectively, and it would be expected that the maximum inelastic scattering
cross sections (and the minimum IMFPs) would occur for electron energies
several times the principal excitation energies (11).

By contrast, the inelastic electron scattering in transition and noble
metals is largely due to single-electron excitations (10). The energy-loss
functions for these solids consist of broad, overlapping structures in the 10-
80 eV range. The structures associated with valence-electron and core-electron
excitations also overlap to an extent that it is not possible to make
meaningful distinctions among them (10). The broad minima in Fig. 2 for Ni,
Cu, and Au are thus consistent with the broad energy-loss spectra for these
metals and, possibly, more complex dependences of the excitation cross sections

for the various inelastic channels on electron energy (11).




It is useful to analyze the computed IMFPs in terms of the Bethe equation
for inelastic electron scattering (12). This equagion can be written in the
form (4):

A= B/(E)8 tn(vE)] A (1]

where A is the IMFP as a function of electron energy E (in eV), E, = 28.8
(va/A)l/2 is the free-electron plasmon energy (in eV), p is the bulk density
(in g/cm3), A is the atomic or molecular weight, and N, is the number of
valence electrons per atom or molecule. The parameter g = Mt°t2/28.8 N,, where
Mtotz is the square of the dipole matrix element for all available inelastic
scattering processes and can be computed from an integral of the energy-loss
function (4). The parameter vy is a complicated function of the dependence of
the energy-loss function on momentum transfer.

Since the Bethe equation is expected to be valid if the electron energy is
sufficiently high, this equation provides a useful means of analyzing
calculated or measured IMFPs (13) or cross sections (14). The analysis is
performed simply by constructing a Fano plot (15) in which values of E/A are
plotted versus fn E. If such a plot is linear and the slope is as expected
from established optical data (i.e., the value of Mtotz)o the set of data is
consistent with Eq. {1] and the optical data. The Fano plots typically have
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Fig. 3. Fano plot for aluminum. The open circles show the calculated IﬂFP
values, the solid line a fit with Eq. [2], and the dashed line the first term
of Eq. [2] (i.e., the Bethe equation).

Fig. 4. Fano plot for gold. G5See caption to Fig. 3.
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two linear regions, however, and it is only for -the linear reglon at higher
energies that consistency with optical data is attained (11,16). The Fano plot
is thus convenient for determining the minimum electron energy at which a set
of IMFP data is consistent with theory (Eq. [1]) and optical data,

Our previous IMFP calculations for 200-2000 eV electrons were analyzed
using Fano plots (4). We found linear plots but the slopes were greater than
expected from optical data; that {s, the electron energies were not high enough:
to be in the asymptotic Bethe region (11,16). Nevertheless, the Bethe equation
did fit the calculated IMFPs empirically over the 200-2000 eV range and we were
able to derive parametric expressions for f and vy, with guidance from theory,
so that IMFPs could be calculated for other materials (4). This general
formula will be referred to later as TPP-1.

Figures 3 and 4 show Fano plots for two prototypical elements, aluminum
and gold, which are free-electron-like and non-free-electron-like,
respectively. We have modified the Bethe equation by adding two terma in order
to fit our IMFPs over the 50-2000 eV range:

%

A = E/(E 21BIn(+E) - C/E + p/E2]) A 12]

Both Inokuti (14) and Ashley (17) have used similar modifications. The solid
lines in Figs. 3 and 4 show satisfactory fits to the IMFP data with Eq. [2].
The dashed lines in Figs. 3 and 4 show the first term of Eq. [2] (i.e., the
Bethe equation) and the necessity for the other terms.

Similar fits to those of Figs. 3 and 4 have been made using Eq. (2] and
the IMFP results for the other 29 materials. We have found empirically that
the parameters 8, vy, C, and D in Eq. [2] can be represented approximately by
the following equations:

2,1/2 4

B = - 0.0216 +~0.94A/(Ep2 +Eg +7.39x 107% (3]
v = 0.191,:'0‘50 (4]
C = 0.0650,/U% - 0.130/U + 1.11 (5]
D =1.91/U% - 5.12/U + 35.3 (6]

where Eg is the bandgap energy (in eV) for nonconductors and U = Nyp/A.
Equations [3] and {4] are similar to the corresponding expressions for g and v
derived earlier in fits to the IMFP data over the 200-2000 eV range (TPP-1).
Equations [2] - [6] comstitute a new general formula for IMFPs over the
50-2000 eV range and will be referred to as TPP-2. Figures 5 and 6 show plots
of the calculated IMFP values for aluminum and gold, fits to these data with
Eq. (2], and IMFP values prediéted by TPP-2 (using appropriate values of the
parameters for each material). It can be seen that TPP-2 provides a reasonable
representation of the calculated IMFPs, particularly the very different IMFP-

ehergy dependences for these two elements. In this respect, TPP-2 is superior
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Fig. 5. Comparison of calculated IMFP values for aluminum (open circles) with

the fit (solid line) using the modified Bethe equation [Eq. (2)}, and the
predictions (dashed line) of the general formula TPP-2 [Eqs. (2)-(6)] using
values of parameters for Al.

Fig. 6. Comparison of calculated IMFP values for gold (open circles) with the
modified Bethe equation (solid line) and the general formula TPP-2 (dashed
line) using values of parameters for Au. See caption to Fig. 5.

The additional terms in TPP-2
compared to TPP-1 are needed to represent adequately the IMFP dependence on
energy for E < 200 eV, as indicated by Figs. 3 and 4.

The rms errors in the IMFP values calculated by TPP-2 compared to the IMFP

to the AL formula of Seah and Dench (5).

values calculated from the Penn algorithm range from 24% at 50 eV to 15% at 100
eV and 14% at 2000 eV,
electrons in C, Ni, Cu, and S10j3.
considering the empirical nature of TPP-2 and the fact that such formulas

The largest relative errors were around 50% for 50 eV

These errors are considered reasonable

cannot adequately represent the variations in the electron energy-loss
functions for different materials. Nevertheless, TPP-2 is considered to be a

useful guide for predicting IMFPs in other materials.

SUMMARY

We have calculated IMFP values over the 50-2000 eV energy range in 31
materials. There are substantiai_differencgs in the shapes of the IMFP versus
energy curves in the 50-200 eV range. 'These differences could be understood in

terms of variations in the shapes of the electron energy-loss functions.




We found that the IMFP values could be fitted by a modified form of the
Bethe equation and that the four parameters in this modified equation could be
empirically related to several material constants. The resulting general
formula can be used to predict IMFP values in other materials (over the same
range of electron energies). Further work is necessary to check the validity
of the new formula for other materials. Nevertheless, we believe that the new
formula will be useful for predicting the IMFP dependence on energy for a given

material (particularly in the lower energy part of the range) and the material-
dependence for a given energy.

REFERENCES

1 C.J. Powell, J. Electron Spectrosc. Relat. Phenom., 47 (1988) 197.

2 A. Jablonski and H. Ebel, Surf. Interface Anal., 11 (1988) 627.

3 A. Jablonski, Surf. Science, 188 (1987) 164; A. Jablonski, B. Lesiak, H.
Ebel, and M.F, Ebel, Surf. Interface Anal., 12 (1988) 87: H. Ebel, M.F.
Ebel, P. Baldauf, and A. Jablonski, Surf Interface Anal., 12 (1988) 172.

4 §. Tanuma, C.J. Powell, and D.R. Penn, Surf. Interface Anal., 11 (1988)
577. ’ o

35 M.P. Seah and W.A. Dench, Surf. Interface Anal., 1 (1979) 2.

6 D.R. Penn, Phys. Rev B, 35 (1987) 482.

7 C.J. Powell and M.P. Seah (to be published).

8 V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calculated Electronic

Properties of Metals, Pergamon, New York, 1978; D.A. Papaconstantopoulous,
Handbook of the Band Structure of Elemental Solids, Plenum, New York, 1986.

9 S. Tanuma, C.J. Powell, and D.R. Penn (to be published).

10 ¢.J. Powell, in: D.F. Kyser, H. Niedrig, D.E. Newbury, and R. Shimizu
(Eds), Electron Beam Interactions with Solids for Microscopy, Microanalysis
and Microlithography, Scanning Electron Microscopy, AMF O'Hare, 1984, pp.
19-31.

11 C¢.J. Powell, Ultramicroscopy, 28 (1989) 24,

12 H. Bethe, Ann. der Physik, 5 (1930) 325.

13 C.J. Powell, Surf. Interface Anal., 7 (1985) 256; ibid. 10 (1987) 349,

14 M. Inokuti, Rev. Mod. Phys., 43 (1971) 297,

15 U. Fano, Phys. Rev., 95 (1954) 1198,

16 F.J. de Heer ‘and M. Inokuti, in: T.D. MArk and G.H. Dunn (Eds), Electron
Impact Ionization, Springer, New York, 1985, p. 232.

17 J.C. Ashley, J. Electron Spectrosc. Relat. Phenom., 46 (1988) 199,




