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Abstract.We present a new field theoretic formulation of the quantun mechanics of dis- 
ordered systems. The problem is converted to an explicit field theory by changing variables 
in the functional integral over all random potentials to an integral over all possible wave- 
functions. Unlike previous formulations this field theory has the novel feature of having the 
'right' sign for the coefficient of the 'p" term. Thus the important excitations are kinks rather 
than instantons. In addition, it exhibits singular solutions with finite action. The method is 
illustrated with an exact calculation of the asymptotic density of states in a one-dimensional 
gaussian white noise potential. 

There has been a great interest in recent years in the quantum mechanics of random 
potentials. Typically one would like to calculate some property of the eigenvalues and 
eigenfunctions averaged over the ensemble of random potentials. For example, the 
average Green's function has spectral density 

where P is the probability distribution for the potential V ,  Yi is the ith eigenfunction 
with eigenvalue Ei and Z is the partition function. Considerable effort has recently gone 
into the question of how to apply the techniques of quantum field theory and statistical 
mechanics to this type of problem. In a typical phase transition problem one is interested 
in correlation functions for some field S of the form 

G, = 2-' DS P ( S )  S ( x )  Sol). I 
Unfortunately the random potential problem does not have this form since the functional 
integral is over the potential V ,  whereas the correlations of interest are between wave- 
functions. The main thrust of efforts to circumvent this difficulty have taken advantage 
of the formal equivalence (Ma 1972, Thouless 1975) (term by term in perturbation 
theory) between the random (gaussian distributed) potential problem and the n + 0 
limit (replica trick) of an n-component Landau-Ginzburg field theory. Cardy (1978) and 
BrCzin and Parisi (1980) have used this equivalence to calculate the ensemble averaged 
density of states in the weak coupling regime (deeply localised states). Wegner (1979a, 
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b, 1980) and others (Harris and Lubensky 1980,1981, McKane and Stone 1981) have 
extensively developed the replica field theory formulation of calculations for the four- 
point correlation function which yields information about localisation and transport. 
There has been much interest in the fact that the coefficient of the q4 term in the 
Lagrangian density has the 'wrong' sign, so that the important excitations in this problem 
are non-perturbative instanton solutions of the classical Landau-Ginzburg equation. 

The use of non-perturbative instanton solutions was justified (at least in the density 
of states calculation) by Houghton and Schafer (HS) (1979) (see also Houghton et a1 
1980). They avoided the n + 0 trick by formulating a direct variational principle for the 
problem. Variational formulations have been presented previously (Zittartz and Langer 
1966, Langer 1967, Halperin and Lax 1966,1967, Edwards 1970, Abram and Edwards 
1972, Thouless 1975, Thouless and Elzain 1978); however, the HS method takes advan- 
tage of field theoretic techniques for dealing with nonlinear quantum systems. Because 
they were forced to invoke second-order perturbation theory in evaluating fluctuations 
about the extrema1 potential, HS did not obtain an explicit field theory. It is thus difficult 
to develop a systematic expansion in the coupling constant with their scheme. Schafer 
and Wegner (1980) pointed out the importance of this difficulty and show that the 
perturbation theory is at least somewhat simpler in lattice models. 

We present here preliminary results of a new approach to the problem which avoids 
the replica trick and the necessity of perturbation theory and reduces the problem to an 
explicit field theory which is amenable to analysis using standard techniques. One of the 
novel features of this field theory is that the coefficient of the q4 term has the 'right' sign. 
There are also several other extremely interesting features which we shall discuss. As a 
simple illustration of the procedure we calculate the asymptotically exact density of 
states in a one-dimensional gaussian white noise potential. More extensive results will 
be reported elsewhere (Rendell et a1 1981). 

Consider the density of states in one dimension for asymptotically deep energies, 
o-, - CQ . The ensemble average is 

where L is the sample length, Ei is the ith eigenvalue of the random potential V ,  3 is the 
action 

1 Li2 
3 - 1  dXVZ(x) 

202 -L/Z 

and 2 is the partition function. The mean square potential c? is a measure of the disorder. 
The main difficulty in evaluating equation (1) is the delta function which requires solving 
the Schrodinger equation with a random potential in order to determine the eigenvalues. 
The key to our approach is the observation that given a wavefunction Y and an eigenvalue 
w it is trivial to invert the Schrodinger equation to find the corresponding potential 
(h2/2m = 1): 

V(x)  = 0 + Y". (3) 
It is therefore desirable to change variables in equation (1) so that the integration is over 
all possible eigenfunctions and eigenvalues rather than all potentials. The functional 
integral will then have the form of a statistical mechanics problem. Because of the 
invariance of equation (3) with respect to the scale of Y, it is convenient to make use of 
the dimensionless field g defined by 
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1 Y’ 
a Y  

g(x) = -- (4) 

where a = (- w)’12. We also scale to a dimensionless length coordinate x -+ ar so that 
equation (3) becomes 

V(x)  = -w(-l  - g’ + g2). 

3 = K ( S  + SB) 

(5  1 

(6 )  

The corresponding action may be split into the sum of two terms 

where K = I Sis the action for an ordinary q4 theory (with positive self-coupling) 
112 

dX[(g’)’ - 2g2 + g4 + 11 
= I-, (7) 

1 = aL, and SB is a perfect derivative term. It is assumed that the potential vanishes 
outside the interval [ -l/2, N2] so that the eigenfunction boundary condition is 
g(k1/2) = k l .  Thus the field is restricted to topological charge +1 and the perfect 
derivative term integrates to SB = 8. 

Equation (1) may now be written 

p ( 0 )  = J5-lz-I I dQ I’ Dg J(Q7 g )  exp{-~(Q)(S[gl + 81 d(w - Q >  (8) 

where J is the Jacobian for the change of variables from the field V to the field g plus the 
eigenvalue variable 52. The constraint that g corresponds to an eigenfunction satisfying 
appropriate boundary conditions removes one degree of freedom which is compensated 
by the extra integration over S2. This constraint is indicated by a prime on the integral. 
The complicated delta function is now trivial and one obtains 

p(o)  = exp(-8K/3) L-’Z-’ I’ Dg J(w; g) exp(-KS[g]). (9) 

A similar change of variables may be made in the partition function 

Z = Dg H ( w ;  g) exp(-KS[g]). (10) I 
Because there is no delta function as in equation (1) to simplify the eigenvalue integra- 
tion, we have chosen to remove the constraint on g and hence have eliminated the 
eigenvalue integration degree of freedom. Thus the Jacobian in equation (10) differs 
from that in equation (9). 

The required Jacobians may be exactly evaluated (Rendell et al1981) by treating the 
real line as a discrete lattice and explicitly evaluating the determinant of the Jacobian 
matrix by a direct expansion in minors. In the continuum limit one obtains 

where Q is a (formally infinite) constant. This may be very simply expressed in terms of 
the wavefunction as 

Q 1 
I w J  IW(- N2) Y(N2)I‘ 

J = -  
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Likewise we have 

Equations (9)-(13) constitute a reduction of the problem to an explicit field theory. It is 
clear however that the Jacobian J introduces complicated long-range interactions into 
the problem. 

Having established the field theory we begin our analysis by seeking the classical 
extremal solutions. In the asymptotic regime (K+ m) one may neglect the variation of 
the Jacobian relative to the variation of S. TreatingJ and H as constants leaves one with 
ordinary q4 theory and so the extremal field satisfies the usual Landau-Ginzburg 
equation 

Using equation (4), equation (14) can be shown to be completely equivalent to the 
instanton equation obtained by HS. Thus our neglect of the variation of the Jacobian is 
equivalent to the neglect by HS of the variation of the measure of the delta function in 
equation (1). 

The simplest solution to (14) which has the required topological charge is the one 
kink solution, go(x)  = tanh(x). This has action S = $and corresponds to the wavefunction 
W ( x )  = [ d 2  cosh(x)]-’. The partition function will be evaluated in the vicinity of the 
extremal field g(x)  = -1 for which S = SB = 0. Evaluation of the Jacobians at the 
extremal fields using equations (12) and (13) yields JIH = 112 I w 1 .  

We are now in a position to evaluate the functional integral in equation (9) in terms 
of the fluctuations about the classical solution using standard field theoretic techniques 
(Goldstone and Jackiw 1975, Rajaraman 1975, Coleman 1977). Integration over the 
collective coordinate describing the kink position yields a factor (4/3)”2aL.. The ‘free 
energy’ for the kink is found to be 

-112g” - g + g3 = 0. (14) 

F = 5K + 1 ln(2d6K) + (ln(24K12n) (15) 
where the first term is the classical energy, the second is due to the kink breather mode, 
and the third is the change in the ‘phonon‘ free energy due to the presence of the kink. 
Because the kink automatically satisfies the boundary conditions placed on g, equation 
(15) was derived requiring the fluctuations to vanish at the boundaries. There is no such 
constraint on the field in the partition function so that there is one more integration over 
the zero wavevector phonon mode (which does not vanish at the boundaries). This gives 
an extra factor of (2n/8K)”* in the denominator. Combining all these factors together, 
equation (9) becomes 

exp(-16K/3) = - ’ exp( - 16Ki3) 
8 aK 

na2 P ( 4  = - 
n l w l  

which agrees exactly with the known asymptotic result (Frisch and Lloyd 1960, Halperin 
1965, Zittartz and Langer 1966). 

The above result is based on the assumption that only a single kink is present and 
hence is valid only for infinitesimal disorder. For finite disorder one must consider a gas 
of kinks and antikinks. We are currently investigating this question and briefly outline 
here only the main features involved. A fuller discussion of the statistical mechanics of 
this system will be presented elsewhere (Rendell et a1 1981). 

In seeking corrections to the asymptotic result, it is necessary to consider the Jacobian 
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J in greater detail since it produces non-local interactions in the field theory. We begin 
by considering the simplest multikink case which consists of two kinks separated by an 
antikink. We again ignore the variation of the Jacobian when calculating the shape of 
the kinks and consider its effect only on the interaction of the kinks. This leads to a 
long-range attractive potential vxy - - Ix - y I between the kinks which confines them. 
For a general cluster of n kinks and n - 1 antikinks one finds that the potential energy 
depends primarily on the separation of the end kinks. 

Notice that up to now we have implicitly assumed that the wave function Y has no 
nodes, It is clear from equation (4) that if Y has a node the fieldg will have a singularity. 
We have found a new solution to the Landau-Ginzburg equation (14) which corresponds 
to the presence of a node in Y 

g(x) = -coth(x). (17) 
We refer to this as a chirp because of its singular nature. Such a singular solution would 
normally have infinite action but in this case the action vanishes because of the perfect 
derivative terms in the Lagrangian which were mentioned earlier. Because g is not 
integrable in the presence of a chirp it is impossible to turn the perfect derivatives into 
a simple boundary term as in equation ( 6 ) .  

When evaluating fluctuations about the ordinary kink, it is well known that the kink 
presents a reflectionless potential to the ‘phonons’. One of the interesting features of 
the chirp is that it presents an infinite barrier and is therefore transmissionless. This 
means that a pair of chirps traps of gas of phonons between them. The pressure of this 
gas will contribute to a long-range interaction between the chirps. 

In summary we have presented a new approach to the quantum mechanics of random 
potentials. The key feature is that instead of ensemble averaging over all possible 
random potentials we change variables to the ensemble of all possible random wave- 
functions. We have presented preliminary results for the calculations of a simple 
quantity-the asymptotic density of states in one dimension. We find that this variable 
change allows the problem to be reduced to an explicit field theory with a repulsive q4 
self-interaction plus non-local interactions. The physical sector is constrained to topo- 
logical charge + 1. This field theory exhibits several novel features including the existence 
of singular classical solutions with finite action. It is hoped that the present formulation 
will allow the systematic calculation of corrections to the asymptotic results and can be 
extended to the study of higher correlation functions. 

We are extremely grateful to W Caswell, M Ogilve, J Schonfeld and M Danos for 
valuable assistance in our efforts to come to grips with field theoretic techniques. 
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