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ABSTRACT

The specific architecture of an AID converter influences the
code probability distributions that result from random input
noise. In particular, the ouput codes of successive
approximation AID converters have a spiked distribution, and
its variance is half that of the corresponding input noise. In
addition, the distribution has a small bias. These and other
related results are derived, and are qualitatively supported by
measurement data on a real16-bit AID converter.

II

I. INTRODUCTION
Architecture dependent effects are generally ignored when
consideringAID converter noise models [1]. In most analyses,
both the equivalent input noise and the corresponding digital
output codes are assumedto be normally distributed. However,
the influenceof a converter's specificarchitecture on the noise-
related probability distribution of output codes can be quite
significant,especiallywhen the equivalent input noise exceeds
a least significant bit (LSB) or so. As will be seen, the
consequences of these effects can be important. In a closely
related area, much work has been reported on quantization of
dithered signals (see for example, [2] and its references);
however, in those studies the dither signal is usually added
directly to the input signal, external to the AID converter (i.e.,
pre-sampler noise). These analyses ignore the effects of post-
sampler noise, internal to the converter.

Architecture dependent effects are particularly striking for
successiveapproximationAID converters,as is illustrated in fig.
1. Fig. I-a shows a recordingof the output noise from a 16-bit
successive approximation AID converter [3] that has
approximately 6 LSB's of internal noise (I-a), and fig. I-b
showsthe probability distributionfunction (PDF) of the output
codes. (We will use PDF here to mean probability distribution
function, rather than probabilitydensity function, since we will
be dealing primarily with the probability of occurrence of
codewords that are discrete random variables.) It is readily
apparent that the PDF differs significantly from that of a normal
distribution(see overlaid curve), and is characterized by sharp
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Fig. I a Output noise from a 16-bit successive approxi-
mation AID converter.
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Fig. I b Probability distribution of output codes from data of
fig. I a. A normal distribution is overlaid for comparison.

spikes. This behavior is the result of post-sampling noise, i.e.,
noise that appears at the comparator input and varies during the
successive approximation process. By modeling this process,
the resulting PDF is easily computed in closed form, as will be
described later. Two significantconsequences of this behavior
are: 1) the variance of the output value is actually on average
about 50 percent smaller than that of the inputnoise, regardless
of noise level; and 2) the process produces a small signal-
dependent bias. For Gaussian input noise, this bias limits the
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Fig. 2 Successive approximation decision tree,showing decision probabilities for Gaussian input noise with 0 = 0.2.
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improvement that averaging or digital filtering can achieve to

about5.7 effectivebits. This is in contrast to pre-sampling

noiseor ditherthatcan improve the effectivebits without limit,
givenenough averaging [2]. For post-sampling noise having a
uniform distribution, the improvement in effective bits is yet
smaller. Whilethe bias is sufficiently small to be insignificant
for most applications, the variance reduction could be
important.

II. SUCCESSIVE APPROXlMATION NOISE MODEL

Successive approximation AID converters perfonn an N-step
sequential,binary search to encode the signal value [4]. The
processbeginswith a reference level set to the mid-level of the
input signal range. At each step, the reference level is
incremented or decremented by 2-(i+I)FSR,where i is the step
indexranging from 1to N, and FSR is the full scale range of the
converter. The decision to increment or to decrement is
determined byacomparator that decides if the input signal is
greater than (output= 1) or less than (output =0) the reference
levelat that step in the process. The result of this process is a
decision tree as illustrated in fig. 2, that gives 2N unique
classificationintervals,each of which is assigned a binary code.
The ithbit in the binary code is given by the~ output of the
comparator. (This process results in a mid-riser transfer
characteristicin which the midrangeoccurs at a code-transition;
offsettingthe process by -0.5 LSB gives the more common mid-
tread characteristic.) When noise is present at either of the
comparator inputs, its decision at each step becomes a
stochastic process. If the noise distribution is known, the
probabilities of occurrence of each decision in the tree can be

readily computed, and the probability of occurrence of each
outputcode is the product of the conditionalprobabilities of the
N decisionsthat led to that code. Fig.2 illustrates the decision

t~__

tree for a 3-bit AID converter with the input signal level set at
0.5 (midscale)and with added Gaussian noise having zero mean
(Jl) and a standard deviation (a) of 0.2. The probability of
occurrenceof each decisionand of each output code is included
in the figure for this particular signal and noise distribution; the
PDF for ideally quantized pre-sampler Gaussian noise is also
included. (The probabilities for the first and last codes do not
includethe significantprobabilities of under and overflow that
this large amount of noise causes.)

Having calculated the PDF, p(k), of output codes, the mean and
variance of the output code distribution are given as

2N-1

[ ]

fl = L ~p(k)
k=0 2N

and

2N 1

[ ]

2

02 = i ~-fl p(k)
k=0 2N

where k is the codeword index, ranging from 0 to 2N-I.

III. RESULTS

Fig. 3 shows the calculated PDF of output codes of an 8-bit
successiveapproximationAID converterwith an inputsignal
range of 0 to l. The input noise is centered at 0.5 with a of 0.05,
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BINARY PDF of PDF of
OUTPUT OUTPUT GAUSSIAN
CODE CODES DISTRIBUTION

111 0.0016 0.0242
0.0304

0.9696
110 0.0512 0.0752

101 0.1190 0.1603
0.2660

0.7340
100 0.3282 0.2340

011 0.3282 0.2340
0.7340

0.2660
010 0.1190 0.1603

001 0.0512 0.0752
0.9696

0.0304
000 0.0016 0.0242
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Fig.3a POFof outputcodeswith Gaussian input noise
(~ = 0.5, a = 0.05). For comparison, the POF of the

input noise is overlaid.
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Fig. 4a POF of output codes, with Gaussian input noise
(~ = 0.45, a = 0.05). For comparison, the POF of the

input noise is overlaid.

96 160 192

with both Gaussianand uniformdistributionsshown. In both
plots, the PDF of the input noise is laid over the PDF of output
codes, for comparison. Note that the output distributions are
narrower than the input distributions. The tails of the input
distributions are surpressed because each time an intermediate
decision causes an excursion into the tails, the next decision
almost certainly brings the excursion back toward the center.
However, this same process tends to favor some moderate
excursions, causing the sharp spikes that show up in these plots.
Note that these processes produce an output PDF for the
uniform distribution that is similar in appearance to that of the
Gaussian distribution. In the case of Gaussian noise, the ratio
of the variances of output codes to input noise is 0.43; for
uniform noise, the ratio is 0.48. In both cases, the bias, i.e., the
mean of the output distribution minus the mean of the input
signal-plus-noise, is zero, since for these cases the distributions
are symmetrical. When the input signal is offset from midscale,
the output distribution becomes skewed as shown in fig. 4 (an
offset of 0.05), and the bias is nonzero. In this example, the
offset is -13 LSB's or -0.05078, and the bias is discussed below.
The bias varies cyclically with offset as shown in fig. 50 Thus,
as the input
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Fig. 3b POF of output codes with uniform input noise
(~= 0.5, a = 0.05). For comparison, the POF of the

input noise is overlaid.

Uniform Distribution
0.14 'I

0.12 ........-----...--.-.--
"

~ 0.1
:s 0.08 .

C'CI

.g 0.06 '..
Q.

0.04 '

.---.----------

..--...-...-.---...-..-.-.- !f

''I

0.02 ------..--

o
64 96 128

Code Index
160 192

if..

Fig. 4b PDF of output codes with uniform input noise
(~ = 0.45,a = 0.05). For comparison,the POF of the
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offset is swept through a range of2\ where x = int[logi 40)] and -'I
int[*] designates the integer part of [*], the bias goes through ~
one cycle. From this, it is apparent that the cycle width is ail
approximately proportional to 0, and is not dependent on the "It,
number of digitized bits, so long as 0 is significantly greater illthanone LSB. 11.
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Fig. 5 Normalized bias vs. offset. The input noise is Gaussian with a ranging

from 0.03125 through 0.0625. 1 ,
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le functional curve describing a cycle however, varies
':cordingto the remainder part of [log2(40)]. In fig. 5, the bias,
bnnalized by the standard deviation of the input noise, is

~otted versus offset (ranging from -64 LSB's to +64 LSB's),
~r Gaussian input noise for 10 values of 0 ranging from

0.03125to 0.0625. The maximumand minimum values of the
;~ean error ~nonnalized by 0) vary betwe~n :f: 0:028 a~d
;$ 0.032, whale the nns value of the nonnahzed bias vanes

-ibetWeen 0.017 and 0.021. Over this same range, the ratio of
l' variances (output code divided by input noise) ranged from 0.42
:: to 0.56. For the specific case shown in fig. 4, with Gaussian

, noisethe nonnalizedbias is 0.025,and for the unifonnnoise
J~'~e, it is 0.073. The ratios of variances for the two
"'distributions are 0.53 and 0.61, respectively.
(n
-«Fromthe data in fig. 5, we can compute the maximum increase
~iD effective bits that can be achieved for such a converter, by

;:..06taveragingits output data. The effective bits, E, of a converter

'~iSgiven by [5]:

::
(

FSR

)
E = log2

rms noise. fl2
.~

'j Assumingthat the input noise is greater than one LSB so that
111quantization error can be neglected, and that FSR = 1, this
,-o~expressioncan be rewritten in tenns of the nonnalized bias asd

1\' E = -log2 ~ (0) - log2 (0 .fl2)(,I
.!,f

where J.1(o)is the nns value (over all offset values) of the
normalized bias for input noise o. The first tenn in this
expression is the amount by which the effective bits can be
improvedwith unlimited averaging. For Gaussian noise, this

J amount ranges from 5.6 to 5.9 bits depending on 0, Le., on
whichof the traces in fig. 5 is appropriate. Averaged over all
values of 0 (all of the data in fig. 5), the improvement is 5.74
bits.
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It is interesting to note that the application of external (pre-
sampler)dither can be used to reduce the bias even further. The
result iscalculatedby convolvingone cycle of the bias produced.
by post-sampler noise (fig. 5) with the PDF of the external
dither. For example, when the external dither has a standard
deviationequal to that of the internal noise, the bias is reduced
by 0.28 (an increase of 1.8 effective bits), and if the external
noise is twice as large as the internalnoise, the reduction factor
is 0.012 (6.4 effective bits). However, to approach these levels
of reduction would require much more averaging.

IV. CONCLUSION

This work suggeststhat architectureshouldnot be ignoredwhen
consideringthe effects of internal noise on the perfonnance of
AID converters. While only one architecturewas studied in this
paper, it is likely that other architectures will exhibit different
noise transfonnations. For successive approximation
converters, the most important findings are that the PDF of
output codes is characterized by spikes showing marked
preference for certain specific codes, and the variance of the
output codes is only about half that of the input noise.
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