Plasma Chemical Model for Decomposition of SF₆ in a Negative Glow Corona Discharge

R. J. Van Brunt and J. T. Herron

National Institute of Standards and Technology, Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce, Gaithersburg, MD 20899, U.S.A.

Received January 28, 1994; accepted March 23, 1994

Abstract

A zonal plasma chemical model is proposed to account for the observed oxidation and decomposition of sulfur hexafluoride (SF₆) by a negative, point-to-plane glow-type corona discharge in pressurized SF₆/O₂/H₂O gas mixtures. The model yields dependencies of stable neutral oxidation by-products such as SOF₂, SO₂F₂, SOF₄, S₂F₁₀, and SO₂ on time, discharge current, and O₂ and H₂O concentrations which are consistent with measured results. Electron-impact-induced dissociation of SF₆ in the glow region of the discharge is the decomposition rate-controlling process. The relative roles played by different reactions involving neutral free radicals and ions in different zones of the discharge are examined, and in some cases, reaction rate coefficients have been adjusted within reasonable limits to give best fits to observed production rates of various by-products. Problems of uniqueness that arise because of gaps in our knowledge about important processes that should be included in the model are also discussed.

1. Introduction

Compressed sulfur hexafluoride (SF₆) is widely used as an electrical-insulating medium in equipment that operate at high-voltage such as found in electric-power transmission systems, high-energy particle accelerators, pulse-power switches, and X-ray machines. Previous work [1–6] has shown that when corona discharges occur in SF₆, a host of corrosive and/or toxic by-products can be formed which are obviously of concern from the points-of-view of system reliability and safety. The stable gaseous by-products formed in SF₆ corona include: SO₂F₂, SOF₂, SOF₄, SO₂, S₂F₁₀, S₂OF₁₀, S₂O₅, and HF. The absolute yields of all except SF₄ and HF have been measured for corona generated in point-to-plane electrode gaps under a variety of conditions [2, 7–16].

Determinations have been made of the dependencies of the by-product yields and production rates on various parameters including: absolute gas pressure, discharge current and polarity, duration of the discharge, and the concentrations of water vapor and molecular oxygen. The predominant sources of oxygen for formation of the oxyfluoride species SOF₂, SO₂F₂, and SOF₄ were identified from massspectrometric analyses of SF₆ decomposed by corona discharges for cases where normal ¹⁶O₂ or H₂¹⁶O were substituted respectively with ¹⁸O₂ and H₂¹⁸O (see Ref. [8]). It was found, for example, that SOF₂ derives its oxygen predominantly from H₂O, while SO₂F₂ derives its oxygen predominanly from O_2 . The species SOF₄ acquires its oxygen from either H₂O or O₂, where the predominant source depends on which of these two gases is the more abundant. Surprisingly, once H₂O and O₂ are present in the gas at trace levels, it is found that rates for oxyfluoride production are relatively insensitive to the concentrations of these gases [2, 6-10].

For constant-current negative-glow corona in sufficiently large gas volumes, the production rates of the predominant by-products tend to be nearly constant with time. Any deviations from constancy usually occur during early stages of the discharge [2, 9], and in the case of some species like S_2F_{10} , these deviations appear to be correlated with "electrode conditioning" as discussed in Ref. [16]. Significant deviations from a constant production rate have been reported [14] for SOF₂ and SO₂F₂ in cases where the gas volume is relatively small, the water vapor content is high $(\geq 2000 \text{ parts in } 10^6 \text{ by volume, ppm}_v)$ and the degree of decomposition exceeds more than about 0.1 percent of the original SF₆. Under such conditions, it is found that SOF, can actually be consumed during the discharge after a sufficiently long period of time, i.e, it has a "negative production rate". Deviations from constant production can be expected to occur as the concentrations of the by-products increase and secondary reactions begin to become more important. Heating of the gas by the discharge can also introduce changes in by-product production rates with time.

Previous interpretations [11] of measured SF₆ decomposition rates in negative-glow corona generated in SF₆/O₂, SF₆/N₂, and SF₆/Ne mixtures containing less than 20% SF₆ suggest that recombination of the SF₆ dissociation fragments back into SF₆ predominates and typically less than 3% of the SF₆ molecules initially dissociated within the discharge by electron impact form measurable gaseous decomposition products. The production rates for oxyfluorides in positive corona are typically an order-of-magnitude higher than in negative corona at comparable average discharge currents [2]. Positive corona in SF₆ tends to exhibit rapidly fluctuating or pulsating current with filamentary structure and is thus less easily controlled or quantified than negative corona. In the case of negative point-plane corona in SF₆, the discharge current is very constant with time and the glow region is restricted and clearly defined from optical observations. The positive corona in SF₆ appears to be a higher temperature discharge than negative corona and the dominant decomposition mechanisms are probably more like those that occur in a spark discharge [17-19]. At the present time, the negative-corona discharge appears to be more amenable to modeling.

The processes that should be considered in a model for discharge-induced chemistry of SF_6 decomposition and oxidation in low-temperature glow and corona discharges have been compiled and reviewed [20]. Since the time of this review, additional information has become available and revisions have been made in the rates for some key processes that need to be considered in formulating a model for SF_6 discharge chemistry. The model discussed in the present

work includes new information about reaction rate coefficients and can be considered as an extension of our earlier model [20, 21]. The present model calculations include many more reactions than previously considered. Two slightly different versions of the model are used to demonstrate the problem of uniqueness.

2. Zonal model of negative corona

2.1. Definition of zones

The assumptions upon which the proposed zonal model for negative glow-type point-plane corona discharge chemistry is based were introduced in earlier publications [8, 20, 21]. In this model, three zones of differing chemical activity are defined as shown in Fig. 1. Zone-1 corresponds to the volume of the discharge glow in which ionization and excitation of molecules by electron collisions is important. It is within this region that molecules dissociate and that fast reactions involving the dissociation products (free radicals) occur with highest probability. Zone-2 is defined as the region between the glow and the planar anode in which charge transport by negative ions occurs. The chemistry in this zone is dominated by ion-molecule reactions. The third zone (zone-3) is assigned to the main gas volume surrounding the point-plane gap and is the zone in which the chemistry is characterized by slow gas-phase or surface reactions.

In the present model, the relatively small cathode-fall region between the glow and point cathode is not considered to be a separate zone from the point-of-view of chemical activity. The relatively strong electric field in the cathode fall will accelerate ions from the glow toward the cathode and secondary electrons away from the cathode toward the glow. These accelerated ions and electrons are expected to make only minor contributions to the initial gas dissociation by ion-molecule or electron-molecule collisions

Fig. 1. Diagram of a negative point-plane glow-type corona discharge showing the three different zones of chemical activity postulated in the present model.

Physica Scripta T53

in the cathode fall. The discharge is sustained by the secondary electrons released at the cathode by processes such as electric-field emission or impact of positive ions, metastable excited species, and photons. The basic assumptions that apply to each of the zones defined above are discussed in the next section. The transport of species between zones is governed by diffusion, which in the case of negative ions, is influenced by the electric field in the gap.

2.2. Basic assumptions

2.2.1. Zone-1 (glow region). The glow region for negative point-plane corona corresponds to the small volume which is observed to be of nearly uniform luminosity near the tip of the point electrode. The glow region is assumed, in the present model, to be spherical with a radius R and volume τ_c . The actual size of the glow is determined from optical observations [12]. For the experimental conditions to which this model applies, τ_c is much smaller than the main gas volume τ_t , i.e., $\tau_c/\tau_t \simeq 10^{-9}$.

Within the glow, the electron temperature (T_e) is much greater than the gas temperature (T_g) , i.e., $T_e \ge T_g$. The value of T_g within τ_c is assumed to be the same as that of the gas in the main volume. This is justified by the small ratio τ_c/τ_t . The electric field-to-gas density ratio (E/N) within the glow is assumed to satisfy the condition

$$E/N \simeq (E/N)_{\rm c}, \quad r < R, \tag{1}$$

where $(E/N)_c$ is the critical value of E/N at which the electron-impact ionization rate equals the electron-molecule attachment rate. This assumption is justified by theoretical models [22] of discharge development in SF₆ and measurements [23] of electric fields within constricted gas discharges in SF₆. It is possible that at high currents (greater than a milliampere) E/N can exceed $(E/N)_c$ within the glow [23], however, large deviations of the field from the critical value in a highly electronegative gas like SF₆ will lead to discharge instabilities. As noted by Morrow [24] in discussing a model for streamer propagation in SF₆, the electron density in the discharge will drop by more than an order-of-magnitude as E/N is decreased from $1.03(E/N)_c$ to $0.97(E/N)_c$. It can be expected that when the discharge is initiated, the space charge associated with ions and electrons in a stable glow will build up to the point where the electric field acquires a value at or slightly above the minimum value, $(E/N)_{c}$, needed to sustain ionization.

Dissociation or ionization of SF₆ and other "contaminant" molecules such as O₂ and H₂O is confined to the glow region, since for $E/N < (E/N)_c$, energetic electrons are quickly thermalized by collisions and subsequently removed by attachment processes [25, 26]. It is additionally assumed that all biomolecular reactions of neutral or ion species in the glow region are at their high-pressure limit and are sufficiently fast (greater than about 10⁻¹⁵ cm³/s) that they go to completion in or near this region. The reaction times are therefore short compared to the times required for diffusion of the active species out of the volume τ_c . These assumptions are reasonable for highly reactive free radicals and high absolute gas pressures equal to or greater than 100 kPa. The previous measurements [2, 8, 13-16] of SF₆ decomposition in corona discharges to which the predictions of the present model can be compared were performed for pressures in the range of 100 to 500 kPa.

A consequence of the above assumptions is that the highly reactive intermediates that result directly or indirectly from dissociation of SF_6 such as F and SF_5 are not only confined to τ_c , but are also in a steady-state condition within that volume, i.e.,

$$\frac{\mathrm{d}[\mathrm{F}]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathrm{SF}_{5}]}{\mathrm{d}t} = 0, \quad r \leq R$$
$$[\mathrm{F}] = [\mathrm{SF}_{5}] = 0, \quad r > R, \tag{2}$$

where t denotes time. It will be argued in Section 3.1.1 that in order to make the additional asumption that species such as F and SF₅ have a spatially uniform density distribution within the glow, the radius of this zone should be assigned an effective value that is somewhat smaller than the measured value R. This assumption is used in calculating the quantities in moles of the by-products that are formed. When considering neutral diffusion rates out of the glow, it is desirable to choose an effective value for the radius that is greater than R. As will be discussed in Section 3.3.2, the choice of a large value for R to calculate the diffusion loss rates tends to compensate for the "trapping" of neutral species near the glow by turbulent effects.

2.2.2. Zone-2 (ion-drift region). In this zone, E/N decreases from the critical value at the glow boundary to a lower value at the anode which depends on the point-to-plane spacing. As noted above, once the electrons exit zone-1 they rapidly attach to form stable or quasi-stable negative ions through processes such as three-body attachment, e.g.,

$$e + SF_6 + M \to SF_6^- + M \tag{3}$$

where M is an arbitrary molecular species in the gas, or dissociative attachment, e.g.,

$$e + \mathrm{SF}_6 \to \mathrm{SF}_5^- + \mathrm{F},\tag{4}$$

where SF_5^- is formed in an energetically stable state.

The negative ions formed outside of the glow region are responsible for nearly all of the charge transport in zone-2. At electric-field strengths below the critical value, it is known that negative ions such as F^- , SF_5^- , and SF_6^- will not readily relinquish the extra electron by collisional detachment processes [27, 28]. Photodetachment processes are also known to be unimportant [29]. However, various ion-conversion processes such as charge exchange, and Fexchange are known [9, 30-34] to be fast at the low fields and gas temperatures associated with zone-2. In particular, reactions of SF_6^- with discharge by-products like SOF_4 and SiF₄ have rates at or close to the collision limit, and have the potential for significantly influencing the overall discharge chemistry. The possible importance of these reactions is enhanced by the fact that they take place in a volume that is much larger than that of the glow region. The effects of ion-molecule reactions in the drift region are assessed here assuming that once a negative ion hits the anode surface it is destroyed, e.g., either deposited or consumed, so that it does not result in formation of a neutral species that is returned to the main gas volume. Implications of this assumption are considered later in Section 3.2.

2.2.3. Zone-3 (main gas volume). The discharge occurs in a gas volume that is much larger than the volume of the glow region. This main gas volume is assumed to be at ambient temperature ($T_g \sim 300 \text{ K}$). The gas in this volume is static and consists of SF₆ with initial low levels of water vapor

and oxygen, where $[H_2O]/[SF_6] \le 4 \times 10^{-4}$ and $[O_2]/[SF_6] \le 0.01$. Both $[H_2O]$ and $[O_2]$ are maintained at constant levels. This is justified by the additional assumption that the maximum level of SF₆ decomposition is weak, i.e., $[X_i]/[SF_6] \le 2 \times 10^{-4}$, where X_i , i = 1, 2, ... is any stable gaseous by-product of the discharge. These assumptions conform to the conditions of experiments with which the results of the present model are to be compared [2].

The fact that the decomposition is weak is of significance in that it allows one to neglect second-order reactions resulting from diffusion of the by-products X_i back into the small volume of the discharge. It is assumed that once a neutral by-product reaches a boundary at or near that of τ_e , it essentially escapes into the main gas volume, never to return. There they either remain as stable components of the gas or undergo reactions with the minor gas constituents, H_2O and O_2 , or with contaminants on the walls of the containment vessel. The possible effect on diffusion of species out of the glow region from perturbations of the gas flow near the point electrode are also considered but not specifically included in the model. These effects are manifested by vortex formation in gas flow resulting from local ion transport. [35].

Gas-phase reactions that occur in the main gas volume are necessarily much slower than those that occur in or near the glow. Surface reactions are limited by the times required for species to diffuse from the glow region to the walls, and will be relatively unimportant when the experiment observation times is shorter than this diffusion time.

3. Reaction scheme

3.1. Glow region (zone-1)

It is within the glow region of the negative corona that most of the significant and complex chemistry occurs. In the following subsections, the chemistry of zone-1 is discussed in terms of four different types of processes, namely: (1) dissociation by electron impact, (2) recombination reactions involving the fragment species produced by dissociation of SF_6 , (3) oxidation reactions of SF_6 fragments with the molecules H_2O and O_2 or fragments from the breakup of these molecules, and (4) losses from the glow region due to diffusion into the other zones.

3.1.1. *Electron impact dissociation*. The electron-impact induced dissociation reaction

$$e + SF_6 \to SF_{6-n} + nF + e, n \ge 6 \tag{5}$$

is the process that controls the rate of SF₆ decomposition in the glow, and therefore it is important to make a reasonable estimate of this rate. It has been shown previously [2, 11] that the net SF₆ dissociation rate from all reactions of the type indicated by process (5) determines the upper limit on the SF₆ decomposition rate in the discharge. This means that the net decomposition rate, r_t , must satisfy the condition $r_t < r_d$, where r_d is the net SF₆ dissociation rate in the discharge. The net decomposition rate is that corresponding to the sum of the production rates for all observed sulfurcontaining by-products, i.e.,

$$r_{\rm t} = \sum j d[\mathbf{X}_{ij}]/dt \tag{6}$$

where X_{ij} is a by-product containing j sulfur atoms, $j \ge 1$.

The net equivalent unimolecular SF_6 dissociation rate by electron impact can be estimated by the formula [2, 11, 21].

$$r_{\rm d} \simeq (Ilk_{\rm d}/ev_{\rm d}\,\tau_{\rm c})[\rm{SF}_{6}],\tag{7}$$

where I is the discharge current associated with electron transport in the glow, l is the effective mean path length for electron motion in the glow, e is the electron charge, and k_d and v_d are, respectively, the SF₆ dissociation rate constant and electron drift velocity at $E/N = (E/N)_c$. The quantity in parentheses has the units of a unimolecular rate constant and will be denoted here by k_D , i.e., $r_d \simeq k_D[SF_6]$. The form of eq. (7) implies a uniform electron density within the volume τ_c . In general, the electron density is not uniform. Allowing that E/N can slightly exceed the critical value $(E/N)_c$ within parts of the glow, it is expected that the density will vary and that at any position x < R, it will be approximately proportional to the factor

$$\exp\left\{\int_0^x \left[\alpha_i(x') - \eta_a(x')\right] \, \mathrm{d}x'\right\}$$

where α_i and η_a are respectively the ionization and attachment coefficients of the gas [2]. It can be expected, therefore, that the mean electron path length, l, will be less than implied by the size of the glow. Assuming that $l = \gamma R$, where γ is an adjustable constant such that $\gamma < 1.0$, we obtain

$$k_{\rm D} = \frac{3\gamma I k_{\rm d}}{4ev_{\rm d}(\pi R^2)}.$$
(8)

A value of $\gamma = 0.33$ has been selected for the present calculations. This is equivalent to assuming that the electron density is uniform within a sphere that has about half the radius of the observed glow, i.e., $R_{eff} \simeq 0.01$ cm. This adjustment is significant but also within the experimental uncertainties of the measured values for R at different discharge currents [21]. The value for k_d and v_d at $(E/N)_c$ have been calculated from numerical solutions to the Boltzmann transport equation using a set of electron-impact collision cross sections derived by Phelps and Van Brunt [36] from fits to measured electron-transport data. The Boltzmann transport-equation yields electron kinetic-energy (ɛ) distribution functions $f(\varepsilon, E/N)$ that depend on E/N. The distribution function for $E/N = (E/N)_c$, denoted here by $f_c(\varepsilon)$, can then be used to compute k_d and v_d .

Summing over the cross sections $\sigma_{xi}(\varepsilon)$ for excitation by electron collision to all antibonding electronic states of SF₆, one obtains a net dissociation rate coefficient k_d given by [36]

$$k_{\rm d} = (2/m_{\rm e})^{1/2} \int_0^\infty \varepsilon f_{\rm c}(\varepsilon) \sum_i \sigma_{xi}(\varepsilon) \, \mathrm{d}\varepsilon, \qquad (9)$$

where m_e is the electron mass. In selecting the cross sections for inclusion in eq. (9), it was assumed that SF₆ behaves like CF₄ in that all electronic excitation leads to dissociation [37]. It was previously argued [20] that this assumption is supported by optical-emission data [38]. At electron-impact energies high enough for electronic excitation, the SF₆ emission spectrum is dominated by atomic fluorine lines and broad featureless peaks indicative of dissociative excitation. It is not yet certain that the weak emission band at 480 nm recently observed by Casanovas and coworkers [39] from corona discharges in "pure" SF₆ is really due to SF₆ itself. It

Physica Scripta T53

was noted [39] that this radiation might come from an SF_n (n < 6) fragment or an unknown contaminant.

The electron drift velocity at $(E/N)_c$ was computed from $f_c(\varepsilon)$ using

$$v_{\rm d} = (-e/3)(2/m_{\rm e})^{1/2}(E/N)_{\rm c} \int_0^\infty \sigma_{\rm m}(\varepsilon)^{-1} \frac{\mathrm{d}f_{\rm c}(\varepsilon)}{\mathrm{d}\varepsilon} \,\mathrm{d}\varepsilon, \tag{10}$$

where $\sigma_m(\varepsilon)$ is the electron momentum transfer cross section. The calculated values for v_d are in agreement with experimental results such as reported by Aschwanden [40] and Nakamura [41].

It was shown from previous calculations [20, 36] that the presence of H₂O or O₂ in SF₆ at low levels (below 10% concentration by volume), has a negligible effect on the electron-energy distribution $f_{c}(\varepsilon)$. Therefore, the dissociation rate determined for pure SF₆ is assumed also to apply for all the gas mixtures considered here that contain small quantities of H₂O and O₂. If all dissociation processes are included in the calculation using eq. (9), i.e., all processes leading to ions as well as neutral fragments, one obtains the value k_d (max) = 7.43 × 10⁻⁹ cm³/s at the critical field, $(E/N)_{\rm c} = 3.57 \times 10^{-19} \,{\rm V}\,{\rm m}^2$. This value was shown [20] to be consistent with the results of Masek and coworkers [42] obtained at a lower E/N and agrees to within a factor of 2 with resuls of a similar calculation by Kline [43] who used a different SF₆ cross-section set. (Uncertainties of about a factor of 2 are considered to be reasonable for this calculation [36].)

It can be expected that processes leading to ion formation such as dissociative ionization and dissociative attachment will make less of a contribution to chemistry in the glow region than processes leading to neutral fragment formation. This is because ions are swept out of the glow more rapidly by the field and will thus have less time to react. If ion-formation processes are completely excluded, one obtains k_d (min) = 5.7×10^{-9} cm³/s.

The net SF₆ dissociation rate constants used for the two versions of the model (model-1 and model-2) considered were selected to lie within the range k_d (min) $< k_d < k_d$ (max), namely $k_d = 6.55 \times 10^{-9}$ cm³/s for model-1 and $k_d =$ 6.70×10^{-9} cm³/s for model-2. The difference in these values is of no significance and is due to the choice of a higher rate for SF₆ dissociation into the SF₂ fragment in model-2 than in model-1 when the rates for all other dissociation channels are kept the same. More will be said about the differences between the two models later. Again, the purpose of considering two models is to demonstrate that, to within the uncertainties of the information about various rates, it is possible to construct more than one version of the model that yields nearly the same results.

Although the value of k_d given by eq. (9) using known cross sections is considered to be a reliable estimate, there is no information about the relative contributions to k_d from the various possible dissociation channels leading to different SF_n fragments. Four different dissociation channels are included as indicated in Table I. Of these, it is assumed that the channel leading the SF₅ predominates and accounts for more than 90 percent of the dissociation in both versions of the model. Listed in Table I are equivalent unimolecular rate constants calculated using k_d and v_d [determined from eq. (10) to be 2.0×10^7 cm/s at $(E/N)_c$] in eq. (8) for a current of 40 µA and R = 0.02 cm. The rates for the individTable I. Equivalent unimolecular SF_6 dissociation rates for model-1 and model-2 calculated using eq. (8) with $I = 40 \,\mu A$ and $R = 0.02 \,cm$

Rate Coefficients (1/s)		
Model-1	Model-2	
$k_1 = 60.5$	$k_1 = 60.5$	
$k_2 = 2.9$	$k_2 = 2.9$	
$k_3 = 0.85$	$k_3 = 0.85$	
$k_4 = 0.87$	$k_4 = 2.37$	
	Rate Coefficients Model-1 $k_1 = 60.5$ $k_2 = 2.9$ $k_3 = 0.85$ $k_4 = 0.87$	

ual channels, k_i , satisfy the requirement that

$$k_{\rm d} = \sum_{j=1}^{4} k_j. \tag{11}$$

It should be noted that the summation of eq. (11) is not necessarily the same as that in eq. (8), since it is possible that a particular SF_n fragment is formed from excitation of more than one electronic state of SF_6 .

No distinction is made between dissociation leading to fragments in their ground state and to fragments in excited states. The subsequent chemistry assumes a predominance of interactions involving species in their ground electronic state and with internal energies consistent with gas-kinetic conditions at 300 K. This is equivalent to the assumption that all dissociation fragments have been thermalized, i.e., have undergone deexcitations, before entering into a chemical reaction.

It must be emphasized that the rate coefficients in Table I are model specific and may not be applicable to conditions that deviate from a glow-type corona discharge considered here. The rate coefficients were adjusted to give results that agree with experimental observations. The rates for dissociation into SF_4 and SF_2 fragments were found, for example, to be significant in affecting the production rates for SOF_2 and SO_2F_2 respectively. The higher rate for SF_2 formation in model-2 is more consistent with observations of Ryan and Plumb [44, 45] in a microwave plasma which suggests that SF_6 breaks down as far as SF_2 in a single-step collision process.

The electron-impact dissociation rates assumed for other species are listed in Table II. These rates correspond to the same discharge conditions used to obtain the rates for SF_6 dissociation given in Table I. As will be shown in Section 5.4, dissociation of the SF_6 fragments such as SF_5 into smaller fragments is generally of minor significance. The multistep fragmentation of SF_6 was omitted from earlier versions of the model [20, 21]. Neglect of multistep frag-

Table II. Equivalent unimolecular dissociation rates assumed for SF_6 dissociation products and the minor constituents O_2 and H_2O . These rates are used in both versions of the model and apply to the condition $I = 40 \,\mu A$ and $R = 0.02 \,cm$

Reaction	Rate coefficient (1/s)	
$SF_5 \rightarrow SF_4 + F$	$k_{5} = 65$	
$SF_4 \rightarrow SF_3 + F$	$k_{6} = 65$	
$SF_3 \rightarrow SF_2 + F$	$k_7 = 88$	
$SF_2 \rightarrow SF + F$	$k_8 = 55$	
$S_2F_{10} \rightarrow SF_5 + SF_5$	$k_{9} = 135$	
$S_2F_{10} \rightarrow SF_6 + SF_4$	$k_{10} = 80$	
$0_2 \rightarrow 0 + 0$	$k_{11} = 50$	
$H_2O \rightarrow H + OH$	$k_{12} = 50$	

mentation can usually be compensated for by small adjustments in the rates for other processes.

Provided the concentrations of H_2O and O_2 are low, electron-impact dissociation of these molecules does not play an important role in the overall oxidation chemistry of SF₆ (see Section 5.4). Because of the insensitivity of the model predictions to the assumed rates given in Table II, no attempt was made to determine these rates more accurately. Although the rates in Table II are physically reasonable, they are model specific and should therefore not be used in cases where these processes are more important such as in SF₆/O₂ mixtures containing more than 10% O₂.

3.1.2. Recombination of SF_6 dissociation fragments. Following the dissociation of SF_6 by electron impact in the glow region, the next most important class of reactions are those among the SF_6 dissociation fragments that either lead to reformation of SF_6 or other long-lived stable sulfur-fluoride compounds such as SF_4 and S_2F_{10} . Table III lists the radical recombination reactions that have been considered together with their recently estimated rate coefficients and the rate coefficients actually used in models-1 and -2.

Of particular importance in determining the net SF_6 decomposition rate is the reaction

$$\mathbf{F} + \mathbf{SF}_5 + M \xrightarrow{\kappa_{15}} \mathbf{SF}_6 + M, \tag{12}$$

where again M is a third body required for stabilization. The important role played by this reaction is expected because of the assumption that SF_5 and F are the primary products of SF_6 dissociation. From a reanalysis of the data relevant to determination of the S-F bond energy in SF_6 , Tsang and Herron [46] have argued that the rate constant for reaction (12) at the high-pressure limit should have a temperature dependence given by

$$k_{15} = 1.1 \times 10^{-11} (T_g/300)^{-1} \,\mathrm{cm}^3/\mathrm{s}.$$
 (13)

This yields a rate constant at 300 K (see Table III) that is more than an order-of-magnitude smaller than that used in our earlier model [20]. In both versions of the present model, we have selected a rate for process (12) of 1.5×10^{-11} cm³/s which is close to that predicted by eq. (13). In the process of adjusting k_{15} downward, it was necessary to make compensating changes in other rates that will be discussed later.

Most of the reactions listed in Table III involve the radicals SF_3 and SF_5 that are known [47, 48] to be the least energetically stable of the SF_n fragments and therefore likely to be the most reactive. The rates for reactions involving F_2 such as [49]

$$SF_4 + F_2 \rightarrow SF_5 + F, \quad k = 5.3 \times 10^{-22} \text{ cm}^3/\text{s},$$

 $SF_5 + F_2 \rightarrow SF_6 + F, \quad k = 7.3 \times 10^{-16} \text{ cm}^3/\text{s},$ (14)

are too low to be of any consequence in the glow region. In both versions of the model, the species F_2 is assumed, after being formed by the reaction

$$F + F + M \rightarrow F_2 + M, \quad k = 2.9 \times 10^{-16} \text{ cm}^3/\text{s},$$
 (15)

to drift without further reaction into the main gas volume where it remains. At the present time, there have been no determinations of the F_2 production rate in corona discharges.

Table III.	High-pressure	limit for radica	l recombination rate	constants at 300 K
		2		

		$k_i (\mathrm{cm}^3/\mathrm{s})$		the first the future we
i	Reaction	tion Calculated	Model-1	Model-2
13	$SF + F \rightarrow SF_2$	$(2.0 \times 10^{-11})^{a}$	1.0×10^{-12}	2.0×10^{-11} *
14	$SF_3 + F \rightarrow SF_4$	$(2.4 \times 10^{-11})^{b}$	2.0×10^{-13}	2.4×10^{-11} *
15	$SF_5 + F \rightarrow SF_6$	$(1.1 \times 10^{-11})^{c,d}$	1.5×10^{-11}	1.5×10^{-11}
16	$SF + SF \rightarrow S + SF_2$	$(1.8 \times 10^{-11})^{c}$	2.5×10^{-11}	2.5×10^{-11}
17	\rightarrow S ₂ F ₂		1.0×10^{-14}	1.0×10^{-14}
18	$SF_3 + SF_3 \rightarrow SF_2 + SF_4$	$(2.2 \times 10^{-12})^{c}$	2.0×10^{-13}	2.2×10^{-12} *
19	$SF_5 + SF_5 \rightarrow S_2F_{10}$	$(1.8 \times 10^{-12})^{c}$	1.4×10^{-12}	1.4×10^{-12}
20	\rightarrow SF ₄ + SF ₆		1.5×10^{-14}	1.5×10^{-14}
21	$SF + SF_3 \rightarrow S + SF_4$	$(1.3 \times 10^{-11})^{b}$	5.0×10^{-11}	5.0×10^{-12} *
22	$SF_2 + SF_2$		6.0×10^{-19}	6.0×10^{-14} *
23	$SF + SF_5 \rightarrow SF_4 + SF_2$	$(1.1 \times 10^{-10})^{b}$	1.0×10^{-15}	1.0×10^{-15}
24	$SF_3 + SF_5 \rightarrow SF_6 + SF_2$	$(4.0 \times 10^{-12})^{b}$	5.0×10^{-12}	5.0×10^{-12}
25	\rightarrow SF ₄ + SF ₄		7.0×10^{-14}	7.0×10^{-14}
26	$SF_4 + F \rightarrow SF_5$	$(2.3 \times 10^{-15})^{e}$	1.0×10^{-16}	1.0×10^{-16}

* Different rates for models-1 and -2

* From Ryan and Plumb (Ref. [50])

^b From Refs [51] and [52], estimated using geometrical mean rule: $k_{A+B} = 2\{(k_{A+A})(k_{B+B})\}^{1/2}$

^c From Refs [51] and [53] estimated using Benson's geometrical model

^d From Tsang and Herron (Ref. [46])

^e From Herron (Ref. [49])

As seen from Table III, the recombination reaction

$$F + SF_4 + M \to SF_5 + M \tag{16}$$

was assumed to have a rate coefficient in both versions of the model that is more than an order-of-magnitude lower than that suggested by Herron [49]. It is presently believed that the rate for process (16) is probably smaller than originally suggested. Nevertheless, if its rate is increased in model-2 to the value recommended in Ref. [49], then it has a small effect in reducing the SOF₂ yield to give a better agreement between the predictions of model-1 and model-2 (see Section 5.1).

Because the density of the SF radical in the glow region is typically much smaller than that of the other SF, radicals, the reactions involving SF such as $SF_n + SF$, which are estimated [50-53] to be fast, generally have little or no consequence on the predicted yields of the major by-products and can therefore be neglected (see Section 5.4). The present model allows for the formation of stable S₂F₂ from SF reactions. Although this species has been identified from mass spectrometric observations [54, 55] as a product of SF₆ decomposition in discharges, there is no information about its formation rate in high-pressure corona with which the present predictions can be compared. Moreover, the mechanism for its formation may be more complex than suggested by the present model [55]. The predicted S_2F_2 yield is, in any case, much smaller than that of the major by-products, and the inclusion or exclusion of the process that leads to its formation does not affect the yields of the major byproducts.

Other than the differences in the dissociation rates for $SF_6 \rightarrow SF_2 + 4F$ given in Table I, the difference between model-1 and model-2 are those rates for the recombination reactions marked with an asterisk in Table III. The recombination rate coefficients used for model-2 tend to agree more closely with the estimated [50-53] rate coefficients.

The rates for the $SF_5 + SF_5$ reactions are important in determining the S_2F_{10} yield from discharge-induced decomposition. It is desirable to obtain reasonable predictions of

the S_2F_{10} yield in light of the recent experimental results reported in Ref. [16]. The rate coefficients for the SF_5 -self reactions shown in Table III have been revised and differ significantly from those used in earlier versions of our model [20, 21].

The rate for $SF_5 + SF_5 \rightarrow S_2F_{10}$ used previously was based in part on an interpretation [49] of measurements by Tait and Howard [56] in nonaqueous solvents over the temperature range of 153 to 233 K. In retrospect, the positive temperature coefficient that they reported for this reaction raises questions about its relevance to the related gas-phase process because radical-radical association reactions usually have a negative temperature coefficient. It is suspected that the rates reported by Tait and Howard are diffusion limited.

Although it is not easy to quantify the contribution of diffusion, it can be shown [51] that the positive activation energy reported by Tait and Howard is not incompatible with that estimated for a diffusion controlled reaction with a small temperature coefficient given by

$$k_{\rm diff} = 8 \times 10^{-10} \exp\left(-1500/T_{\rm g}\right) \,{\rm cm}^3/{\rm s.}$$
 (17)

Shown in Fig. 2 is an extrapolation of the data of Tait and Howard [56] compared with the diffusion rate coefficient given by eq. (17). The results shown in Fig. 2 suggest that equating gas and solution phase rate constants is probably invalid in this case.

The rate for S_2F_{10} formation by SF_5 combination can be estimated with the geometric method of Benson [53] used by Ryan and Plumb [45] and Tsang and Herron [46] to treat the $SF_5 + F$ recombination reaction. The method is based on a collision model in which the rate constant is defined as the product of the ratio of electronic degeneracies of the product (adduct) and reactants, g_e , the collision rate, Z_b , and a steric factor α_s , i.e.,

$$k = q_e Z_b \alpha_e. \tag{18}$$

Each of the terms in eq. (18) is readily obtained from spectroscopic tables, bond energies and molecular geometry.

Fig. 2. Temperature dependence of the rate coefficient for the $SF_5 + SF_5$ reaction. Shown are the data of Tate and Howard (Ref. [56], open points and solid line) compared with an estimated diffusion limited rate coefficient (dot-dashed line) and results of present calculation based on the geometric model of Benson (solid points and dashed line).

The values for these parameters are tabulated in detail elsewhere [51]. The rate coefficient for the $SF_5 + SF_5$ reaction predicted by the model of Benson is shown in Fig. 2 as a function of temperature. The predicted rate coefficient has an expected negative temperature coefficient, further supporting the argument that the experimental results obtained in solution give an unreliable estimate of the gas-phase rate.

The Tait and Howard [56] measurements, irrespective of their applicability to gas-phase reactions, refer to the rate of decay of SF₅ radicals, and give no information about the reaction products. In the present model, it is important to known the ratio of the rates leading to S_2F_{10} formation and to disproportionation into $SF_4 + SF_6$. This ratio, k_{19}/k_{20} (see Table III) was derived previously [49] from modeling of the pyrolysis of S_2F_{10} in the presence of NO which serves as a radical scavenger. This led to a value for S_2F_{10} unimolecular decomposition rate constant, and ultimately to a value for k_{19}/k_{20} at 444 K of 1.9. There are conflicting data that can be used to argue that this number is too small. In particular, the data of Leary and coworkers [57] on infrared multiphoton photolysis of SF_5Cl leads to a much higher value for k_{19}/k_{20} .

In pure SF₅Cl, photolysis gives:

$nhv + SF_5Cl \rightarrow SF_5 + Cl,$	(19)
---------------------------------------	------

$$nhv + SF_5 \to SF_4 + F, \tag{20}$$

 $Cl + SF_5 \rightarrow SF_5Cl,$ (21)

 $F + SF_5 \to SF_6, \tag{22}$

 $SF_5 + SF_5 \rightarrow S_2F_{10}, \tag{23}$

$$SF_5 + SF_5 \rightarrow SF_4 + SF_6, \tag{24}$$

where nhv corresponds to n photons. In this case, the primary products of the photolysis are SF_4 , SF_6 , and

 S_2F_{10} . When H_2 is added, the following processes occur:

$$Cl + H_2 \rightarrow HCl + H,$$
 (25)

$$F + H_2 \rightarrow HF + H, \tag{26}$$

 $SF_5 + H \rightarrow SF_4 + HF,$ (27)

 $SF_5Cl + H \rightarrow SF_5 + HCl.$ (28)

Reactions (25) and (26) are particularly significant because they remove the Cl and F radicals and thereby inhibit the recombination reactions (21) and (22). It is found experimentally [57] that the addition of H_2 strongly reduces the SF₆ yield and enhances the S₂F₁₀ yield. This observation suggests that the disproportionation [reaction (24)] is a minor process. Recently Willner [58] studied photolysis of SF5Cl in the presence of H₂ using infrared spectroscopy and also found that the yield of SF_6 was much less than that of S_2F_{10} . There are additional sources of data on the SF₅ combination/disproportionation ratio that are discussed in more detail elsewhere [51]. It can be concluded from this analysis that the ratio k_{20}/k_{19} at 300 K should be no greater than 0.01. In both versions of the present model we assume that $k_{20}/k_{19} = 0.01$. In fact, the disproportionation reaction can be completely omitted without significant effect on the yields of the major by-products.

Schested and coworkers [59] have recently estimated that the rate coefficient k_{19} for process (23) is about 2.3×10^{-13} cm³/s from recent measurements of SF₆ gasphase chemistry using a pulsed radiolysis ultraviolet absorption technique. This is about a factor of 0.16 smaller than the rate coefficient used in the present model, although closer to that used in our previous work [20]. This lower rate is not completely inconsistent with the present model since a decrease in the rate for process (23) can be at least partially offset by decreasing the assumed dissociation rates for S₂F₁₀ by electron impact (k_9 and k_{10} in Table II).

3.1.3. Oxidation reactions. The relatively fast oxidation reactions that are assumed to occur in the glow region are tabulated in Tables IV and V. In order to identify the major sources of oxygen in the formation of the various oxyfluoride by-products such as SOF₂, SO₂F₂, and SOF₄, a distinction is made between oxygen originating from O₂ and that originating from H₂O. In the former case, it is assumed that the normal ¹⁶O₂ is replaced with isotopically pure ¹⁸O₂, and in the latter case, the water vapor is assumed to contain only ¹⁶O. The model predictions can therefore be compared with results from experiments in which isotopic substitutions were made [8]. The rate coefficients are not allowed to have an isotope dependence, e.g., the rates for the S¹⁸O₂F + SF₅ and S¹⁶O₂F + SF₅ reactions are the same.

The basis for the selection of rate coefficients given in Tables IV and V is the same as used in our earlier work [20]. When possible, we have selected data available in the literature. In other cases, recourse was made to estimates based on analogy. Unfortunately, for many of the radicals of interest here, there are few experimental data available. In cases where the reactions can be treated as the reverse of simple bond breaking reactions, the rate constants can be expected to fall in the range of 10^{-10} to 10^{-12} cm³/s depending on steric factors. Because most of the reactions listed in Tables IV and V are of minor importance, it is generally sufficient to estimate their rates to within an order-of-magnitude (see Section 5.4).

Table IV. Radical-radical reactions involving ¹⁶O from H₂O

i (* 19	Reaction	$k_i (\mathrm{cm}^3/\mathrm{s})$
27	$F + H_2^{16}O \rightarrow {}^{16}OH + HF$	9.0×10^{-12}
28	$^{16}OH + SF_5 \rightarrow S^{16}OF_4 + HF$	1.1×10^{-12}
29	$^{16}OH + SF_4 \rightarrow S^{16}OF_3 + HF$	3.6×10^{-15}
30	$F + S^{16}OF_3 \rightarrow S^{16}OF_4$	5.0×10^{-11}
31	$H + {}^{16}OH \rightarrow H_2 {}^{16}O$	5.0×10^{-13}
32	$S^{16}OF_3 + {}^{16}OH \rightarrow S^{16}O_2F_2 + HF$	5.0×10^{-13}
33	$^{16}OH + F \rightarrow F^{16}OH$	5.0×10^{-13}
34	$^{16}OH + ^{16}OH \rightarrow H_2 ^{16}O + ^{16}O$	2.0×10^{-12}
35	${}^{16}O + {}^{16}OH \rightarrow {}^{16}O_2 + H$	3.3×10^{-11}
36	$^{16}O + SF_5 \rightarrow S^{16}OF_4 + F$	2.0×10^{-11}
37	$S^{16}OF_3 + {}^{16}O \rightarrow S^{16}O_2F_2 + F$	5.0×10^{-13}
38	$SF_2 + {}^{16}O \rightarrow S {}^{16}OF + F$	8.0×10^{-14}
39	$S^{16}OF + {}^{16}O \rightarrow S^{16}O_2F$	1.0×10^{-13}
40	$S^{16}O_2F + F \rightarrow S^{16}O_2F_2$	1.0×10^{-14}
41	$S^{16}OF + F \rightarrow S^{16}OF_2$	2.0×10^{-12}
42	$SF_3 + {}^{16}O \rightarrow S {}^{16}OF_2 + F$	1.0×10^{-12}
43	$SF + {}^{16}O \rightarrow S {}^{16}OF$	1.0×10^{-11}
44	$SF_3 + {}^{16}OH \rightarrow S {}^{16}OF_2 + HF$	8.1×10^{-14}
45	$SF_2 + {}^{16}OH \rightarrow S {}^{16}OF + HF$	6.0×10^{-14}
46	$SF + {}^{16}OH \rightarrow S {}^{16}OF + H$	5.0×10^{-13}
47	$SF + {}^{16}OH \rightarrow HF + S {}^{16}O$	1.0×10^{-11}
48	$S^{16}O + F \rightarrow S^{16}OF$	1.0×10^{-12}
49	$S^{16}O + {}^{16}O \rightarrow S^{16}O_2$	1.0×10^{-11}
50	$SF_5 + {}^{16}O \rightarrow S {}^{16}OF_5$	1.0×10^{-11}
51	$SF_{5} + S^{16}OF_{5} \rightarrow S_{2}^{16}OF_{10}$	1.0×10^{-13}
52	$S^{16}OF_5 + S^{16}OF_5 \rightarrow S_2^{16}O_2F_{10}$	1.0×10^{-13}
53	$S^{16}O_2F + SF_5 \rightarrow SF_6 + S^{16}O_2$	1.0×10^{-12}
54	$S^{16}O_2F + SF_3 \rightarrow SF_4 + S^{16}O_2$	1.0×10^{-11}
55	$S^{16}OF_3 + F \rightarrow S^{16}OF_4$	1.0×10^{-10}
56	$S^{16}OF_3 + SF_5 \rightarrow SF_6 + S^{16}OF_2$	1.0×10^{-12}
57	$S^{16}OF_3 + SF_3 \rightarrow SF_4 + S^{16}OF_2$	1.0×10^{-12}
58	$S^{16}OF_5 + SF_5 \rightarrow S^{16}OF_4 + SF_6$	5.0×10^{-13}
59	$S^{16}OF + SF_5 \rightarrow S^{16}O + SF_6$	1.0×10^{-13}

In some cases we have used rate coefficients that differ slightly from recommended values. For example, the rate coefficient recommended [60] for the important $F + H_2O$ reaction (reaction 27 in Table IV) is 1.4×10^{-11} cm³/s. The best fits to observed oxyfluoride production rates were obtained using a lower value of 0.9×10^{-11} cm³/s which lies

Table V. Radical-radical reactions involving ¹⁸O from ¹⁸O₂

i gai	i Reaction	
60	$S^{18}O_5 + SF_5 \rightarrow S^{18}OF_4 + SF_6$	5.0×10^{-13}
61	$S^{18}OF + SF_5 \rightarrow S^{18}O + SF_6$	1.0×10^{-13}
62	$S^{18}O_2F + SF_3 \rightarrow S^{18}O_2 + SF_4$	1.0×10^{-11}
63	$S^{16}O^{18}OF + SF_3 \rightarrow SF_4 + S^{16}O^{18}O$	1.0×10^{-11}
64	$S^{18}O_2F + SF_5 \rightarrow SF_6 + S^{18}O_2$	5.0×10^{-12}
65	$S^{18}O^{16}OF + SF_5 \rightarrow SF_6 + S^{16}O^{18}O$	1.0×10^{-12}
66	$S^{16}OF + {}^{18}O \rightarrow S^{16}O^{18}OF$	1.0×10^{-13}
67	$S^{18}OF_5 + S^{18}OF_5 \rightarrow S_2^{18}O_2F_{10}$	1.0×10^{-13}
68	$SF_5 + {}^{18}O \rightarrow S {}^{18}OF_5$	1.0×10^{-11}
69	$SF + {}^{18}O \rightarrow S {}^{18}OF$	1.0×10^{-11}
70	$SF_3 + {}^{18}O \rightarrow S {}^{18}OF_2 + F$	1.0×10^{-12}
71	$S^{18}OF + F \rightarrow S^{18}OF_2$	2.0×10^{-11}
72	$S^{16}O^{18}OF + F \rightarrow S^{16}O^{18}OF_2$	1.0×10^{-14}
73	$S^{18}O_2F + F \rightarrow S^{18}O_2F_2$	1.0×10^{-14}
74	$S^{18}OF + {}^{16}O \rightarrow S^{16}O^{18}OF$	1.0×10^{-13}
75	$SF_2 + {}^{18}O \rightarrow S {}^{18}OF + F$	8.0×10^{-14}
76	$S^{16}OF_3 + {}^{18}O \rightarrow S^{16}O^{18}OF_2 + F$	5.0×10^{-13}
77	$^{18}O + SF_5 \rightarrow S^{18}OF_4 + F$	2.0×10^{-11}
78	$^{18}O + ^{16}OH \rightarrow ^{16}O^{18}O + H$	3.3×10^{-11}
79	$S^{18}OF + {}^{18}O \rightarrow S^{18}O_2F$	1.0×10^{-13}
80	$SF_5 + S^{18}OF_5 \rightarrow S_2^{18}OF_{10}$	1.0×10^{-13}
81	$S^{18}OF_5 + S^{16}OF_5 \rightarrow S_2^{18}O^{16}OF_{10}$	1.0×10^{-13}

Physica Scripta T53

within the estimated uncertainty [60] for k_{27} . This is also lower than the rate used in our earlier model [20]. The rate coefficients for reactions of O atoms with SF₂, SF₅, and SOF are assigned values close to those measured by Plumb and Ryan [61].

As in our earlier calculation [20], we use a rate for the reaction

$$F + SOF_3 \rightarrow SOF_4$$
 (29)

that is close to the collision limit suggested by Ryan [62] $(k_{55} = 1.0 \times 10^{-10} \text{ cm}^3/\text{s in Table IV})$. However, if the rate for this reaction is reduced by two orders-of-magnitude to $1.0 \times 10^{-12} \text{ cm}^3/\text{s}$, the yields for the major by-products SOF₂ and SOF₄ change by less than 0.35% and 0.33% respectively. The insensitivity of the model predictions to this reaction can be explained by the relatively low steadystate SOF₃ concentration in the glow. Other radicals that tend to have low steady-state concentrations are S¹⁸OF, S¹⁸OF₅, S¹⁶O¹⁸OF, S¹⁸O₂F, S¹⁶O₂F, ¹⁸O, ¹⁶O, SF₃ and SF. Therefore, as will be seen from the sensitivity analysis discussed in Section 5.4, reactions involving these species are usually of less importance than other reactions. Among the radicals that appear with highest density in the glow are: SF₅, SF₄, SF₂, F, H, ¹⁶OH, S¹⁶OF₅, and S¹⁶OF. The fast reactions involving these species are usually among the most significant in determining by-product yields.

Although the reaction scheme shown in Tables IV and V applies to SF_6 that contains low levels of O_2 and H_2O , it should not be applied to gas mixtures that contain higher concentrations of O_2 . Consistent with experimental observations, the present model predicts yields for oxygenated products like SO_2 , $S_2O_2F_{10}$, and S_2OF_{10} that are an order-of-magnitude or more below those of the major byproducts. When oxygen is present at higher levels (>10%), reactions involving O_2 , O, and O_3 become more important and yields of the minor products can significantly increase [11, 12]. At higher O_2 levels, it may be necessary to consider processes presently omitted from the reaction scheme such as those involving formation of O_3 and reactions affecting $S_2O_2F_{10}$ production such as

$$SF_5 + O_2 + M \to SF_5O_2 + M, \tag{30}$$

$$SF_5O_2 + SF_5 + M \rightarrow SF_5O_2SF_5 + M, \tag{31}$$

which are relatively fast [59, 63, 64] and can significantly affect the S_2F_{10} yield [16].

In constructing the reaction scheme shown in Tables IV and V, it was necessary to make assumptions about the predominant reaction paths that are often difficult to justify and should therefore be subjected to future investigations. For example, the reaction of SF₃ with OH is assumed to predominantly yield the stable products $SOF_2 + HF$ rather than the intermediate SF₃OH which is of questionable stability, but may have a long lifetime in the glow. The reaction of SF₅ with O is assumed to yield both SOF₅ and SOF₄ + F with nearly equal probability. Here the SOF, is formed initially with sufficient internal energy to either decompose back to the reactants or decompose into $SOF_4 + F$. However, it is assumed here that under the high-pressure conditions considered, the initially formed SOF₅ radicals are stabilized about 30% of the time by collisions. The choice of predominant pathways for reactions must necessarily take into account the fact that the reaction rates are at their high-pressure limit. In our earlier model [20], the possibility of forming SOF₅ was ignored.

In addition to the reactions given in Tables III, IV, and V, both versions of the model also include the following radical-radical reactions:

$$H + H + M \rightarrow H_2 + M, \quad k_{82} = 1.0 \times 10^{-15} \text{ cm}^3/\text{s}, \quad (32)$$

 $F + H + M \rightarrow HF + M$, $k_{83} = 0.9 \times 10^{-15} \text{ cm}^3/\text{s}$, (33)

$$F + F + M \rightarrow F_2 + M, \quad k_{84} = 0.2 \times 10^{-15} \text{ cm}^3/\text{s.}$$
 (34)

These reactions are relatively slow and tend to be of minor importance. The rate coefficients for reactions among the radicals F, H, O, and OH are based on values given in the literature [60, 65, 66].

3.1.4. Diffusion losses from the glow. Species formed in the glow region that do not experience subsequent reactions after formation are assumed to drift into the main gas volume and eventually become uniformly distributed within that volume. Among the products in this category are the compounds SOF₄, HF, H₂, F₂, FOH, SO₂, S₂O₂F₁₀, S_2OF_{10} , and S_2F_2 . Of these, only SOF_4 is a major byproduct for which production rates have been experimentally determined. The only other major by-product in this category is HF, for which (although experimentally identified as a discharge by-product) [1, 67] no data exist about its production rate. The species SO₂, S₂O₂F₁₀, and S₂OF₁₀ have been detected from corona discharges, but make minor contributions to the total decomposition of SF₆ under the conditions considered here. The compounds SOF₄, SO₂, and HF can undergo gas-phase or wall reactions in either the main gas volume or the ion-drift region.

The highly reactive intermediate species such as SF_5 , F, SF_3 , SF, SOF_3 , SO_2F , SOF, and SOF_5 are confined to the glow region. However, the moderately reactive species that include SF_2 , SF_4 , and S_2F_{10} are allowed to escape the glow region. Although these species undergo subsequent reactions in the glow after being formed, it is required that they attain a steady-state condition within the glow so that $[SF_2]$, $[SF_4]$, and $[S_2F_{10}]$ are constant in time for r < R.

In this reaction scheme for the glow, the loss of species SF_2 , SF_4 , and S_2F_{10} from the glow region by diffusion is represented by effective unimolecular rate constants. These rate constants are pressure dependent. The values that apply at an absolute gas pressure of 200 kPa are listed in Table VI. The method used to estimate these rate coefficients is discussed in Section 3.3.2. The diffusion rates of the species listed in Table VI from zone-1 into zone-3 are significant in determining the production rates for SOF_2 , SO_2F_2 , and S_2F_{10} .

3.2. Ion drift region (zone-2)

The processes that occur in the ion-drift region are limited to negative ion-molecule reactions. These reactions are

Table VI. Unimolecular rate coefficients for diffusion loss from the glow region at a pressure of 200 kPa

i	Species	Rate coefficient
85	SF ₂	$k_{85} = 140.0 \ 1/s$
86	SF4	$k_{86} = 94.0 \ 1/s$
87	S2F10	$k_{87} = 33.5 \ 1/s$

found to be of minor importance in affecting the overall corona chemistry in SF_6 . Fast reactions that are potentially significant in zone-2 are listed in Table VII. Given in this table are the rate coefficients measured at two different gas temperatures [29]. These rate constants are consistent with data obtained by different methods [30–32] and with expectations based on F⁻ affinities of the various molecules [33, 34]. All of the reactions given in Table VII involve F⁻ transfer from SF_6^- , which is expected to be the predominant initial charge carrier that enters zone-2 from zone-1. The ion SF_6^- does not appear to react with the oxyfluorides SOF_2 and SO_2F_2 [30].

There are other fast ion-molecule reactions that are likely to occur in the ion-drift region such as [29, 68]

$$SO_2F^- + SOF_4 \rightarrow SOF_5^- + SO_2,$$
 (35)

$$O_2^- + SO_2 \rightarrow SO_2^- + O_2$$
, $C_2^- = C_2^- C$

$$O_2^- + S \to O_2 + S^-.$$
 (37)

However, these reactions have not been considered in the model because they involve minor ion or neutral species. It has been suggested [11] that reaction (37) might be responsible for the formation of circular sulfur deposits observed on the anode in some experiments [2]. Sulfur dimer formation has also been observed [69] in low-pressure glow discharges in SF₆. These observations suggest the formation of S atoms either directly from dissociation of SF₆ molecules or by subsequent reactions as considered in the present model.

Of the reactions shown in Table VII, only the first two are likely to be important in affecting the concentrations of SOF₄ and SF₄ in the main gas volume. A detailed analysis of the influence of the SF₆⁻ + SOF₄ reaction on SF₆ chemistry in glow-type corona has already been made [9]. It was shown in Ref. [9] that the rate equation for SOF₄ production that includes the effect of the SF₆⁻ + SOF₄ reaction can be written as

$$\frac{d[SOF_4]}{dt} = r_s - \frac{\beta I k_{89} [SOF_4]}{e \bar{v} \tau_t} \\ \times \left\{ \frac{\exp\left[-(k_{89} [SOF_4]/\bar{v} - k')Z_0\right] - 1}{k_{89} [SOF_4]/\bar{v} - k'} \right\}, \quad (38)$$

where β is the fraction of the current at the boundary between zones-1 and -2 corresponding to SF₆⁻ charge carriers, \bar{v} is the mean drift velocity of SF₆⁻, Z₀ is the distance between τ_c and the anode, r_s is the production rate for SOF₄ within τ_c and k' is a decay constant associated with competing SF₆⁻ removal or deactivation processes that can also occur in the ion-drift zone.

The effect of the $SF_6^- + SOF_4$ reaction is to introduce an initial nonlinearity in the $[SOF_4]$ vs. time curve. At t = 0, $d[SOF_4]/dt$ is given by r_s , and after a sufficiently long time

Table VII. Rate constant for fast F^- transfer reactions at 298 K and 373 K (see Ref. [29])

i		$k_i (\mathrm{cm}^3/\mathrm{s})$		
	Reaction	298 K	373 K	
88	$SF_6 + SF_4 \rightarrow SF_5 + SF_5$	7.4×10^{-10}	5.0×10^{-10}	
89	$SF_6^- + SOF_4 \rightarrow SOF_5^- + SF_5$	8.5×10^{-10}	4.0×10^{-10}	
90	$SF_6^- + SO_2 \rightarrow SO_2F^-SF_5$	1.06×10^{-9}	8.1×10^{-10}	

it approaches a lower constant value of $r_s - \beta I/e\tau_t$ that represents the limit where all available SF₆⁻ is consumed by reaction with SOF₄. This latter condition is likely to be reached for the experimental conditions considered here.

Using a calculation based on eq. (38) to fit the measured yields of SOF₄ from corona in SF₆ and its mixtures with O_2 , N_2 , and Ne gave relatively high values for the SF₆ decay constant k'. This indicates the importance of competing reactions that effectively remove SF₆⁻ from the ion drift zone. It has been speculated that a mechanism that could deactivate SF₆⁻ is the formation of hydrated complexes such as SF₆⁻ (H₂O). These complexes are known to form under high-pressure conditions when water vapor is present [70]. Although this possibility is consistent with the measured data, no information exists about the reactivity of hydrated SF₆⁻ toward species like SOF₄. It was also shown [20, 29] that the competing reactions

$$SF_6^- + SiF_4 \rightarrow SiF_5^- + SF_5 \tag{39}$$

and

 $SOF_5^- + SiF_4 \rightarrow SiF_5^- + SOF_4 \tag{40}$

can be effective in inhibiting the $SF_6^- + SOF_4$ reaction if SiF_4 is present at trace levels. This species was observed in corona discharges for the experimental conditions used by Van Brunt [2, 29].

The experimental results of Sauers and Harmon [71] clearly show the dramatic influence of SOF_4 on ion transport after the discharge has been on for relatively short times (<500 s). Within about 300 s of discharge initiation, the predominant charge carrier changes from SF_6^- to SOF_5^- . However, data were not obtained for longer times needed to reveal the possible effect of SiF_4 . It is significant that the ion clusters $SF_6^- \cdot (HF)$ and $SOF_5^- \cdot (HF)$ are observed to attain relatively high abundances within a short time. These cluster ions together with possible formation of $SF_6^- \cdot (SF_6)$ and $SF_6^- \cdot (SF_6)_2$ reported by Patterson [72] could also significantly affect the SOF_4 chemistry in zone-2.

It is interesting to note that fits to experimental results using eq. (38) consistently yielded values for β that were close to unity [9]. This is consistent with the results of Sauers and Harman [71] and Sieck and Van Brunt [29] which indicate that SF₆⁻ is the predominant initial negativeion charge carrier. This was also shown [9] to indicate that there is no significant conversion of SOF₅⁻ back into SOF₄ at the anode.

Because of the relatively high values that were obtained for k', the overall effect of the $SF_6^- + SOF_4$ reaction in reducing the yield of SOF_4 measured in the main gas volume is not significantly greater than the effect of slow gas-phase hydrolysis discussed in the next section. This conclusion is especially true in the case considered here of SF_6 that contains only low levels of O_2 and H_2O . Moreover, a small effect on the SOF_4 yield implies an even smaller effect on the SF_4 concentration in zone-3 because SF_4 is expected to be at a much lower level that that of SOF_4 due to its conversion into SOF_2 by hydrolysis (see next section).

3.3. Main gas volume (zone-3)

3.3.1. Gas-phase reactions. The gas-phase reactions in zone-3 that are considered in the present model and that can affect the yields of the major oxyfluoride products

 SOF_2 , SO_2F_2 , nd SOF_4 are listed in Table VIII. The rate coefficients given in this table are those estimated for a gas temperature of 300 K. The rate coefficient, k_{91} , for the SF_4 hydrolysis reaction was determined by Sauers and coworkers [73] to be $1.7 \times 0.9 \times 10^{-19} \text{ cm}^3/\text{s}$ at 350 K which agrees to within the uncertainties with the value of $2.0 \pm 0.6 \times 10^{-19} \text{ cm}^3/\text{s}$ obtained by Ruegsegger and coworkers [74] at 340 K. We assume that a slightly lower value of $1.5 \times 10^{-19} \text{ cm}^3/\text{s}$ applies at 300 K; although, as shown below, the model prediction is not sensitive to the precise value selected for k_{91} even though this reaction is important in determining the SOF₂ yield.

It should be noted that, although the rate assumed for the $SF_4 + H_2O$ reaction appears to be consistent with measured data, there are remaining questions about the temperature dependence of this reaction. Results from measurements in the aqueous phase [75] give a rate for the SF₄ hydrolysis of 2.8×10^{-19} cm³/s at 291 K which is also consistent with the value assumed here. However, the fact that the data taken over a temperature range of 60 K all yield the same rate suggests that the activation energy for the reaction is close to zero. Hydrolysis reactions in the aqueous phase usually have activation energies between 50 to 100 kJ mol⁻¹. If we use a value of 75 kJ mol⁻¹ for estimation purposes, we predict [51] a rate constant that changes by about a factor 200 for a temperature change of 60 K. It can thus be argued that the apparent agreement between the $SF_4 + H_2O$ reaction rates obtained in the gas phase and in solution is probably fortuitous.

It was suggested earlier [76] that the reaction of SF_4 with H_2O in the gas phase is likely to be a two step process, i.e.,

$$SF_4 + H_2O \rightarrow SF_3OH + HF, \tag{41}$$

$$SF_3OH \rightarrow SOF_2 + HF,$$
 (42)

which may differ from the process that occurs in solution. Sauers and coworkers [73] have argued that the SF_3OH intermediate could react with water in the aqueous phase to give final products that do not include SOF_2 .

The rate coefficients given in Table VIII for the reactions of SOF₂ and SOF₄ with H₂O are those measured by Van Brunt and Sauers [77] at 298 K. In the case of SOF₂, the rate constant given in Table VIII is a factor of 3×10^{-4} smaller than the rate reported by Ruegsegger and coworkers [74] at 340 K. It was suggested that this large difference may have been a consequence of contributions from wall reactions in the latter work. However, as in the case of SF₄ hydrolysis, nothing is known about the temperature dependence of the SOF₂ + H₂O reaction. At least part of the difference in reported rates for this reaction could merely reflect the fact that the reaction has an appreciable activation energy. If one assumes, for example, an activation energy of about 120 kJ mol⁻¹, then it would be possible for

Table VIII. Gas-phase reactions considered to occur in the main gas volume at 300 K

	Reaction	Rate coefficient (cm ³ /s)
91	$SF_4 + H_2O \rightarrow SOF_2 + 2HF$	$k_{91} = 1.5 \times 10^{-19}$, Refs [73,74]
92	$SF_2 + O_2 \rightarrow SO_2F_2$	$k_{92} \leq 5 \times 10^{-16}$, Ref. [61]
93	$SOF_{2} + H_{2}O \rightarrow SO_{2} + 2HF$	$k_{93} = 1.2 \times 10^{-23}$, Ref. [75]
94	$SOF_4 + H_2O \rightarrow SO_2F_2 + 2HF$	$k_{94} = 2.0 \times 10^{-21}$, Ref. [75]

the rate to increase by two orders-of-magnitude for a 40 K increase in temperature. A strong dependence of k_{93} on temperature could account for the observed destruction of SOF₂ reported by Casanovas and coworkers [14] if the experimental conditions are such as to allow a significant heating of the gas with time by the discharge. Significant heating of the gas by the discharge did not occur in the experiments with which the present model calculations are compared due to the sheer size of the main gas volume and the fact that the discharge power dissipation was always less than 1 W [2].

The reaction of SF₂ with O₂ is the least known of those listed in Table VIII. An upper limit of the rate constant is estimated by Plumb and Ryan [61] to be less than 5×10^{-16} cm³/s. In the present model, SF₂ is the only species that is assumed to react directly with O₂ in the main gas volume. There is no evidence that SF₂ reacts with H₂O, and the possibility of such a reaction is not considered in this model.

None of the gas-phase measurements upon which the rates given in Table VIII are based have been carried out under conditions which convincingly prove that the reactions are entirely homogeneous. This would require, at a minimum, very extensive studies of the role of wall materials and surface- volume ratios. Even then, the distinction between heterogeneous and homogeneous reactions is difficult to establish. Because of the difficulty in making these kinds of measurements, the "gas-phase" hydrolysis rate constants given in Table VIII should be treated as upper limits.

In the present model, the distinction between heterogeneous and homogeneous reactions in the main gas volume is not a major concern because it is simply assumed that once SF_4 and SF_2 enter the main gas volume, they convert respectively to SOF_2 and SO_2F_2 . In the case of SOF_2 , the oxygen is derived from H_2O , and in the case of SO_2F_2 , it is derived from O_2 independent of where or how the reactions occur in the volume. The reactions involving hydrolysis of SOF_2 and SOF_4 are, as will be shown below, of relatively minor significance and have been neglected in the final calculation of oxyfluoride production rates.

Estimates of decreases in the concentrations of SF_4 , SOF_4 , and SOF_2 from hydrolysis in the main gas volume can be made using a rate equation that neglects spatial non-uniformities due to diffusion (see next section):

$$\frac{\mathrm{d}[X_j]}{\mathrm{d}t} = r_{\mathrm{s}j} - k_j [X_j] [\mathrm{H}_2 \mathrm{O}], \tag{43}$$

where X_j corresponds to one of the compounds SF₄, SOF₄, or SOF₂ and $k_j[X_j][H_2O]$ and r_{sj} are respectively the rate for hydrolysis and the rate for production for X_j in the glow plus the main gas volume. Integrating this equation gives:

$$[X_{j}]_{t} = \frac{r_{sj}}{k_{j}[H_{2}O]} [1 - \exp(-k_{j}[H_{2}O]t)].$$
(44)

The fractional loss of X_j due to hydrolysis at time t is defined by

$$\Delta[X_j]_t \equiv (r_{sj}t - [X_j]_t)/r_{sj}t.$$

$$\tag{45}$$

Using eq. (44) gives

$$\Delta[X_j]_t = \frac{1}{t} \left\{ t - \frac{[1 - \exp(-k_j [H_2 O] t)]]}{k_j [H_2 O]} \right\}.$$
 (46)

The calculated fractional losses using the rate coefficients from Table VIII are shown in Table IX for two different times measured from the start of discharge operation. The calculations were made using a typical H₂O concentration of 100 ppm_v in 200 kPa SF₆ ([H₂O] = 0.5×10^{-16} cm⁻³). The shorter time of 1×10^3 s corresponds to the normal minimum time interval used for gas sampling in some experiments [2], and the longer time of 7.5×10^4 s corresponds to the maximum time used in the model calculation and the typical maximum time for most experiments with which the calculations are compared. These calculations show that nearly all the SF₄ is converted to SOF₂ during the time of discharge operation, whereas only a small fraction of the SOF₄ and SOF₂ are removed by reaction with H₂O. Under most of the conditions considered here, the total SOF₄ yield is estimated to be reduced by less than 30% during the course of an experiment due to the combined effects of hydrolysis and ion-molecule reactions in zone-2.

The SOF₄ + H₂O process will introduce nonlinearities in the yield-vs.-time curves for SOF₄ and SO₂F₂. The effect of this reaction on the SOF₄ yield curve is similar to that of the reaction SOF₄ + SF₆ as discussed in Ref. [9]. The modification of the yield curve for SO₂F₂ is represented by its slope at any time, namely:

$$\frac{d[SO_2F_2]}{dt} = r_{s1} + r_{s2}[1 - \exp(-k_{94}[H_2O]t)],$$
(47)

where r_{s1} is the production rate for SO₂F₂ excluding the SOF₄ hydrolysis reaction and r_{s2} is the production rate of SOF₄ from the glow region. The SO₂F₂ production rate will thus increase from an initial value of r_{s1} at t = 0 to a final value of $r_{s1} + r_{s2}$ as $t \to \infty$. Although this type of behavior appears to be consistent with experimental data on SO₂F₂ yields [2, 8], no attempt was made to use eq. (47) to fit experimental data. Nonlinearities of the type observed in the SO₂F₂ yield curves would also be explained in part by the slowness of the SF₂ + O₂ reaction. Since only an upper limit is known for the rate of the SF₂ + O₂ reaction, it is not possible to estimate this contribution to nonlinearities. The nonlinearities in both the SOF₄ and SO₂F₂ yield curves tend to be minor when the O₂ and H₂O concentrations in SF₆ are within the relatively low ranges considered here.

3.3.2. Diffusion and surface reactions. In this section the effects of diffusion and surface reactions within the main gas volume will be considered. It will first be shown how the diffusion rates of species from zone-1 into zone-3 (see Table VI) have been estimated. The diffusion coefficients, D_i , for the relevant neutral species given in Table VI are estimated

Table IX. Calculated fractional losses in concentration due to gas-phase hydrolysis in zone-3 for two indicated times measured from the start of discharge operation ($[H_2O] = 0.5 \times 10^{16} \text{ cm}^{-3}$)

		Discharge time	(s)
Species	$\Delta[X_i]_i$	1.0×10^{3}	7.5 × 10 ⁴
SF4	$\Delta[SF_4],$	0.30	0.98
SOF	$\Delta[SOF_4],$	2.5×10^{-3}	0.16
SOF ₂	$\Delta[SOF_2]_r$	2.5×10^{-5}	1.8×10^{-3}

using the classical expression [78]

 $D_i = \frac{1}{2}\lambda_i \langle v_i \rangle \tag{48}$

where λ_i and $\langle v_i \rangle$ are respectively the mean-free path and mean molecular speed of the *i*th species. Assuming ideal-gas kinetics, eq. (48) can be written as

$$D_i = \frac{2}{3} \frac{\left[(k_{\rm B} T_{\rm g})^3 / \pi m_i \right]^{1/2}}{\sigma_i P}$$
(49)

where $k_{\rm B}$ is the Boltzmann constant, P is the absolute gas pressure, and σ_i and m_i are respectively the collision cross section and mass of the *i*th species.

Within the glow region (r < R), the species SF₂, SF₄, and S₂F₁₀ satisfy rate equations of the form

$$\frac{\partial [X_i]}{\partial t} = k_{ie} [SF_6] + \sum_{n, m} k_{nm} [Y_n] [Y_m] -\sum_l k_{il} [X_i] [Y_l] - k_{id} [X_i] - k_{is} [X_i],$$
(50)

which are coupled to corresponding rate equations for the species Y_i . In eq. (50), $[X_i]$ corresponds to one of the compounds SF_2 , SF_4 , or S_2F_{10} . The unimolecular rate coefficients k_{ie} , k_{id} , k_{is} correspond respectively to those given in Tables I, II, and VI. In the case of S_2F_{10} , $k_{ei} = 0$. The bimolecular rate coefficients k_{nm} and k_{ii} correspond to processes in Tables III-V that respectively form and consume the compound X_i . In the main gas volume (r > R), $[X_i]$ depends on r and the rate equation for X_i is

$$\frac{\partial [X_i]}{\partial t} = D_i \nabla^2 [X_i] - k_{ih} [Z_i] [X_i], \qquad (51)$$

where k_{ih} corresponds to the appropriate gas-phase reaction in Table VIII and Z_i is either H₂O or O₂. For S₂F₁₀, $k_{ih} =$ 0 since this species does not appear to react directly with H₂O or O₂ in the gas phase at 300 K. The possible effect of reactions that are known [79] to occur between S₂F₁₀ and H₂O adsorbed on surfaces will be considered below.

The coefficient k_{is} for the surface diffusion loss rate from τ_c is found by matching the solutions to eqs (50) and (51) at r = R. For the species SF₂ and SF₄, it is assumed that a steady-state condition applies within the main gas volume, i.e., $\partial [X_i]/\partial t = 0$ ($R_W > r > R$) where $r = R_W$ at the wall. It was previously noted that a steady-state condition for these species also applied within zone-1. For a spherically symmetric gas volume under steady-state conditions, the following boundary condition must also be satisfied at the wall:

$$-D_i \frac{\partial [X_i]}{\partial r} = K_i [X_i], \quad r = R_{\rm W},$$
(52)

where $K_i \ge 0$ is an effective wall absorption coefficient $(K_i = 0 \text{ implies total reflection and } K_i \rightarrow \infty \text{ implies total}$

Table X. Predicted relative ¹⁶O, ¹⁸O isotope content of the major oxyfluoride by-products from model-2 for different relative ¹⁸O₂ and H_2 ¹⁶O concentrations and $I = 40 \,\mu A$

$\frac{[^{18}O_2]}{[SF_1]}$	[H ₂ ¹⁶ O]	$\frac{[S^{16}OF_4]}{[S^{18}OF_4]}$	$\frac{[S^{16}OF_2]}{[S^{18}OF_2]}$	$\frac{[S^{16}O_2F_2]}{[S^{18}O_2F_2]}$
[01 6]	[01 6]	[0 01 4]		
1×10^{-4}	2×10^{-4}	1.70×10^{3}	8.18×10^{3}	2.83×10^{-3}
1×10^{-4}	0.5×10^{-4}	1.00×10^{3}	4.43×10^{3}	0.57×10^{-3}
1×10^{-2}	2×10^{-4}	16.7	80.9	2.76×10^{-3}
1×10^{-2}	0.5×10^{-4}	9.55	42.8	0.54×10^{-3}

Physica Scripta T53

absorption). It can be shown [80, 81] that this parameter is related to the reflection coefficient, ξ_i , by

$$K_i = \frac{\langle v_i \rangle (1 - \xi_i)}{2\kappa (1 + \xi_i)},\tag{53}$$

where κ lies in the range of 0.5 to 1.0, and ξ_i lies in the range of 0 to 1.0. Here, $\xi_i = 0$ corresponds to perfect absorption and $\xi_i = 1.0$ to total reflection.

The general solution to eq. (51) for r > R, assuming steady-state and a spherically symmetric volume, is:

$$[X_{i}] = \frac{R[X_{i}]_{R}[(1 + K_{i}) e^{\Lambda_{i}(R_{W}-r)} + (1 - K_{i}) e^{-\Lambda_{i}(R_{W}-r)}]}{r[K_{i}/(\Lambda_{i} + R_{W}^{-1}) (e^{\Lambda_{i}(R_{W}-R)} - e^{-\Lambda_{i}(R_{W}-R)}) + e^{-\Lambda_{i}(R_{W}-R)} + e^{\Lambda_{i}(R_{W}-R)}]}$$
(54)

where

$$\Lambda_i^2 \equiv k_{ih}[Z_i]/D_i. \tag{55}$$

When $R_{W} \ge R$ and wall effects are negligible, the solution reduces to

$$[X_i] = \frac{R[X_i]_R}{r} e^{-\Lambda_i(r-R)}.$$
(56)

In both eqs (54) and (56), $[X_i]_R$ is the density of X_i at the boundary (r = R) between zones 1 and 3. In cases where eq. (56) is a good approximation, the matching of solutions at r = R under steady-state conditions allows a determination of k_{is} that gives the following expressions for the rates of SOF₂ and SO₂F₂ production in the main gas volume:

$$\frac{\mathrm{d}[\mathrm{SOF}_2]}{\mathrm{d}t} = \frac{4\pi R D_1 [\mathrm{SF}_4]_R}{\tau_t} (\Lambda_1 R + 1), \tag{57}$$

$$\frac{d[SO_2F_2]}{dt} = \frac{4\pi R D_2[SF_2]_R}{\tau_c} (\Lambda_2 R + 1),$$
(58)

where D_1 and D_2 are the diffusion coefficients for SF₄ and SF₂ respectively that are estimated using eq. (49). The appropriate expression for k_{is} that corresponds to eqs (57) and (58) is:

$$k_{\rm is} = \frac{3D_i}{R} \left[R^{-1} + \Lambda_i \right].$$
(59)

For the conditions to which the model applies, it is found that $\Lambda_i \ll R^{-1}$, so that, to a good approximation

$$k_{\rm is} \simeq \frac{3D_i}{R^2}.\tag{60}$$

This is a consequence of the relatively small values for both R and the product $k_{ih}[Z_i]$. The implication of eq. (60) is that the observed production rates for SOF₂ and SO₂F₂ are insensititive to the precise values of the rate coefficients given in Table VIII. As noted above, this permits one to assume that once SF₄ and SF₂ enter the main gas volume they will, within a reasonably short time, convert entirely to SOF₂ and SO₂F₂.

The diffusion loss rate coefficients given in Table VI are smaller than those used in the earlier version of our model [20]. The present values are considered to be more realistic because they are based on better estimates for D_i and because allowance has been made for longer retention times

of neutral species in the glow due to vortex formation resulting from momentum transfer to the gas from positive and negative ions moving in opposite directions [35]. Vortex formation can be at least partly compensated for by increasing the effective radius of the glow region used in eqs (59) and (60). The effective radius for the diffusion calculation is allowed to be up to 50% larger than that which defines the actual glow. Localized turbulence is therefore assumed to reduce the rate of neutral species diffusion out of the glow.

Equation (60) was also used to estimate the S_2F_{10} diffusion loss rate from the glow even though the steady-state condition required to derive this equation does not strictly apply in this case. There is experimental evidence that S_2F_{10} is slowly destroyed by surface reactions in the main gas volume [79]. One of the products of S_2F_{10} decomposition on surfaces is SOF₂ which enters the gas phase. At 300 K, the reactions that destroy S_2F_{10} on surfaces are evidently too slow to allow development of a steady-state condition in the main gas volume, i.e., $[S_2F_{10}]$ continues to build up with time during discharge operation. Only for very low discharge currents (less than $2\mu A$) is there evidence that the production rate of S_2F_{10} from the discharge is low enough that a steady-state condition is approached [15, 16].

Even in the extreme case where S_2F_{10} is completely destroyed at the walls of the containment vessel by surface reactions, there is a minimum time required to reach an equilibrated condition in the main gas volume. This minimum time is determined by the time it takes the S_2F_{10} molecules to diffuse to the wall from the glow region, and as will be shown below, this time can be comparable to the total time of the experiment in some cases.

If an extreme case is assumed where S_2F_{10} is completely destroyed at the wall and has a constant concentration of $[S_2F_{10}]_R$ at r = R, the solution of eq. (51) with $k_{ih} = 0$ is [82]

$$C(r, t) = [S_2 F_{10}]_R \frac{R}{r} \left\{ 1 - \frac{(r-R)}{(R_W - R)} + \frac{2}{\pi} \sum_{j=1}^{\infty} \frac{1}{j} \sin \left[j\pi \frac{(r-R)}{(R_W - R)} \right] \exp \left[\frac{[D_3(j\pi)^2 t}{(R_W - R)^2} \right] \right\},$$
(61)

where C(r, t) is the time and position dependent concentration of S_2F_{10} for $R_W > r > R$ and D_3 is the S_2F_{10} diffusion coefficient. Spherical symmetry was assumed in deriving this equation together with the initial condition C(r, 0) = 0 for $R_W > r > R$. The flux of the diffusing species at the wall is given by

$$F_{\mathbf{w}}(t) = -D_{3} \left[\frac{\partial C(r, t)}{\partial r} \right]_{r=R_{\mathbf{w}}}$$
$$= \frac{D_{3} \left[S_{2} F_{10} \right]_{R}}{R_{\mathbf{w}}(R_{\mathbf{w}} - R)} R$$
$$\times \left\{ 1 - 2 \sum_{j=1}^{\infty} \cos\left(j\pi\right) \exp\left[\frac{-D_{3}(j\pi)^{2} t}{(R_{\mathbf{w}} - R)^{2}} \right] \right\}.$$
(62)

The net S_2F_{10} loss rate at the wall is then

$$L_{\rm W}(t) = -4\pi R_{\rm W}^2 F_{\rm W}(t).$$
(63)

The fractional loss rate of S_2F_{10} in the main volume is defined by

$$f_{\rm L} \equiv \frac{|L_{\rm W}(t) - L_{\rm R}|}{L_{\rm R}},\tag{64}$$

where L_R is obtained from the flux of S_2F_{10} released from τ_c and is approximated here by

$$L_R \cong -4\pi [S_2 F_{10}] D_3 R \tag{65}$$

using eq. (60). From eqs (62)–(65), the fractional loss rate can be written as

$$f_L(t) = 2\sum_{j=1}^{\infty} \cos(j\pi) \exp\left[\frac{-D_3(j\pi)^2 t}{R_W^2}\right],$$
 (66)

for $R_{\rm W} \ge R$. Under steady-state conditions it is required that $f_L = 0$, i.e., the rate of release of $S_2 F_{10}$ molecules from the glow should equal the rate of loss at the walls.

Shown in Fig. 3(a) are plots of normalized $\log_{10} C(r, t) vs.$ radius at different indicated times after the start of the discharge. The values for C(r, t) were calculated using eq. (61) with R = 0.01 cm, $R_W = 10$ cm, and $D_3 = 0.007$ cm²/s corresponding to an absolute gas pressure of 200 kPa. The data plotted in the figure have been normalized to the value of C(r, t) at r = R and t = 0, i.e., $C(R, 0) = [S_2F_{10}]_R$. Figure 3(b) shows corresponding values for $f_L(t)$ -vs.-time calculated for three different indicated values of R_W . It is seen from these results that the time required to reach steady state depends significantly on the value of R_W . In the experiments

Fig. 3. (a) Normalized concentration of S_2F_{10} calculated using eq. (61) for different radial distances from the glow at different times in the range of 1 to 10⁴ seconds assuming $R_w = 10 \text{ cm}$ and $C(t, R_w) = 0$ for all $t \ge 0$; (b) fractional loss rate of S_2F_{10} calculated using eq. (66) for different indicated values of R_w .

with which the present model are compared, R_w was in the range of 10 to 15 cm. For $R_w = 15$ cm, the equilibration time exceeds 10^4 s, which is comparable to the total time of some experiments. The calculations also show that equilibration time increases significantly with pressure. The results of Fig. 3(a) indicate that diffusion of a molecule to the wall from the source can take more than 10^3 s if $R_w =$ 10 cm. The above analysis suggests that, even under extreme conditions of total S_2F_{10} destruction, reactions on the wall will not have a significant effect on S_2F_{10} yields during early stages of discharge operation. It is found experimentally that the half-life of S_2F_{10} in the main gas volume due to wall reactions at 300 K is typically more than 10^6 s, even under conditions where the container is highly contaminated with water vapor [79, 83].

Of greater significance to S₂F₁₀ production in corona discharges is the possibility of S_2F_{10} decomposition on the surface of the point electrode. This surface is, of course, much closer to the glow region and can be at significantly higher temperatures than the surrounding walls due to heating by ion bombardment. There is experimental evidence [15, 16] that as the tip of the point electrode is roughened by ion bombardment it becomes more effective in catalyzing the destruction of S₂F₁₀. This "conditioning" of the electrode by the discharge appears to account for the initial nonlinearity in measured S₂F₁₀ yield curves. In the calculations described in the next section, we allow for a possible 25% reduction in the S_2F_{10} yield from reactions on a fully conditioned electrode surface. This is considered to be a reasonable upper limit even when account is taken of possible enhancement of electrode-gas interactions due to vortex formation [35].

4. Calculations

The set of coupled rate equations for the reactions listed in Table I-VI were solved numerically using a chemical kinetics code known as ACUCHEM which was developed by Braun and coworkers [84]. The rate coefficients for some of the key processes discussed in the previous section were adjusted to within acceptable limits to give calculated yield curves for the major species SOF2, SO2F2, SOF4, and S₂F₁₀ that correspond closely to experimental data. Shown in Fig. 4 are examples of calculated yield curves compared with measured results [2] for a pressure of 200 kPa, a discharge current of $40 \mu A$, and the indicated amounts of O_2 and H₂O expressed in percent of the SF₆ content. The yields in micro-moles are plotted vs. net charge transported, Q, in coulombs which is given by Q = It, where I is always a constant for the discharge conditions considered here. It is convenient to express the production rates in terms of quantity produced per unit-of-charge transported. The charge rateof-production of species X_i is related to the time rate-ofproduction by

$$\frac{\mathrm{d}[X_i]}{\mathrm{d}Q} = I^{-1} \frac{\mathrm{d}[X_i]}{\mathrm{d}t}.$$
(67)

The current dependence of the production rates is determined by the electron-impact dissociation rates. The rate coefficients for those processes given in Tables I and II apply specifically to $I = 40 \,\mu$ A. The dissociation rate coefficients

Fig. 4. Calculated (lines) and measured (Refs [8] and [20], points) absolute yields of the oxyfluorides (SOF₄, SOF₂, and SO₂F₂) vs. net charge transported for a discharge current of 40 μ A, pressure of 200 kPa, and the indicated relative concentrations of H₂O and O₂.

for other values of the current are found using eq. (7), i.e., the dissociation rates are directly proportional to I.

Once the rate coefficients are determined from fits to the yield curves shown in Fig. 4 for a specific current and H_2O and O_2 content, no further changes are made and these rate coefficients are then used to compute yields for other values of *I*, $[H_2O]$, and $[O_2]$. All of the calculations performed here apply to an absolute gas pressure of 200 kPa for which the optical measurements of the glow region are considered to be most reliable.

At this pressure, the size of the glow was not found to change significantly with discharge current in the range of 10 to $100 \mu A$ [12]. Therefore, the parameter R is assumed here to be independent of I.

The spatial extent of the glow region can change significantly with gas pressure, generally becoming more constricted as pressure increases. The dependence of R on Pwould have to be considered in any attempt to extend the model to other pressures. Assuming that R is proportional to $P^{-\eta}$, where η is a positive constant, it can be shown from considering eq. (7) that the number of SF₆ molecules dissociated per unit of time by electron-impact for a given current will be proportional to $P^{2-\eta}$. The measured yields of SOF_2 , SOF_4 , and SO_2F_2 are found [2] to be relatively insensitive to changes in P within the range of 100 to 400 kPa. For example, the experimentally determined production rate for SOF₂ decreases by about a factor of 2.0 as P is increased from 144 to 300 kPa. These results suggest that η has a value slightly greater than 2.0. A consideration of eq. (59) suggests that the diffusion rate coefficients (see Table VI) will increase with pressure by a factor of $P^{\eta-1}$. However, the effect of changes in the diffusion rates on the yields of the major by-products is not nearly as significant as the effect of changes in the dissociation rates.

As noted previously, the calculations were performed assuming that the concentrations of SF₆, H₂O, and O₂ are all constant during the time of discharge operation, i.e., as these molecules are consumed by dissociation in the glow, they are replenished by molecules that diffuse in from the main gas volume. The ACUCHEM code yields the number densities of the products within the volume τ_c . Those products whose concentrations build up in time are assumed to enter the main gas volume and become uniformly distributed within that volume at the time of measurement. The absolute quantities that are present at time t in the main volume are given by $[X_i]_t \tau'_c N_A$ where $[X_i]_t$ is the number density of the species X_i predicted by ACUCHEM in the glow at time t, N_A is the Avogadro's constant, and $\tau'_c < \tau_c$ is the assumed effective glow volume of radius $R_{eff} = 0.5R$ within which the electrons and products can be assumed to have a uniform density distribution as discussed in Section 3.1.1.

All of the rate coefficients are independent of time, i.e., possible effects due to local heating by the discharge are neglected. The species SF_4 and SF_2 are allowed to convert immediately to the by-products of SOF_2 and SO_2F_2 respectively (see previous section). This means that the rates for the relatively slow gas-phase processes given in Table VIII are not included directly in the calculation. Allowance is made for small reduction in the SOF_4 yield due to the F^- transfer reaction in the ion-drift zone.

5. Results and discussion

5.1. Dependencies of production rates on $[H_2O]$ and $[O_2]$

The predicted dependencies of the production rates for the major species SOF_4 , SOF_2 , SO_2F_2 , and S_2F_{10} on the concentrations of H_2O and O_2 in the discharge cell are shown in Figs 5 and 6 respectively for models 1 and 2. Similar results are obtained from both models. The trends shown in Figs 5 and 6 are also consistent with those found using the much simpler model discussed in our earlier work [13, 20, 85].

All versions of the model give the following ordering of the magnitudes for the production rates: $d[SOF_4]/dQ > d[SOF_2]/dQ > d[SO_2F_2]/dQ > d[S_2F_{10}]/dQ$, when $5 \times 10^{-4} > [H_2O]/[SF_6] > 5 \times 10^{-5}$. This ordering is in agreement with experimental results [2].

The present model gives a rate for S_2F_{10} production that is lower than that from our earlier model and in better agreement with measured data [13]. The biggest difference between the results from the two versions of the present model is in the predicted rate for SOF₂. Although the SOF₂ rate from model-1 is in better agreement with the data shown in Fig. 4, model-2 gives results that are in better agreement with most of the other available experimental data as shown in the next section. The SOF₂ production rates predicted by model-2 can be brought into agreement with those predicted by model-1 by increasing the rate coefficient k_{26} for SF₄ + F (see Table III) by an order-of-magnitude in model-2. This increase would make the rate coefficient more consistent with the value originally suggested by Herron [49].

The predicted production rates for the oxyfluorides and S_2F_{10} are seen to be insensitive to the oxygen concentration for $[O_2]/[SF_6] \leq 0.01$. This is consistent with results [2, 8,

Fig. 5. Predicted dependencies of the SOF₄, SOF₂, SO₂F₂, and S₂F₁₀ production rates on [H₂O] for the indicated oxygen concentrations from model-1. The results correspond to a current of 40 μ A and pressure of 200 kPa.

11] which show that the effect of O_2 content does not become significant until its level exceeds about 10% of the SF₆ concentration (see Fig. 4). In the case of SOF₄ and SOF₂, the insensitivity to O_2 content is expected because

Fig. 6. Predicted dependencies of the SOF_4 , SOF_2 , SO_2F_2 , and S_2F_{10} production rates on [H₂O] for the indicated oxygen concentrations from model-2. The results correspond to a current of 40 μ A and pressure of 200 kPa.

oxygen simply does not play an important role in the formation of these species. This is shown by the predicted oxygen isotope content of these species given in Table X. It is found experimentally [8, 11] and by the present calculations that O_2 has its biggest effect on SO_2F_2 production. This is not too surprising since SO_2F_2 derives its oxygen predominantly from O_2 (see Table X). However, even in this case, the dependence of the production rate on $[O_2]$ is not significant. This is due to the fact that SO_2F_2 is formed predominantly in the main gas volume by reaction of SF_2 with O_2 , and consequently the SO_2F_2 production rate is governed primarily by the rate of SF_2 release into this volume from the glow region (see Table XI).

Even though SOF_2 derives it oxygen predominantly from H_2O (see Table X), its rate of production is not sensitive to the H_2O concentration. As in the case of SO_2F_2 , this is due to the fact that it is primarily formed in the main gas volume (see Table XI). Its rate of formation is governed to a large extent by the rate of SF_4 production in the glow.

The species SOF_4 and S_2F_{10} , which are formed entirely within the glow region, exhibit a greater dependence on [H₂O]. In the case of SOF_4 , the increase in its production rate with increasing [H₂O] is due mainly to the combined effect of the three reactions:

 $F + H_2O \rightarrow OH + HF$, (68)

$$SF_5 + OH \rightarrow SOF_4 + HF,$$
 (69)

$$SF_5 + F \to SF_6. \tag{70}$$

As $[H_2O]$ increases so does [OH] due to the first of these reactions. Also [F] decreases thereby allowing [SF₅] to increase. The combined increases in [OH] and [SF₅] give a higher yield for SOF₄ through the second reaction. Similarly the S₂F₁₀ production rates will also increase with [H₂O] due to the corresponding increase in [SF₅].

The predicted increase in the S_2F_{10} production rate with increasing H_2O concentration is not consistent with some experimental results that show the opposite trend [13], i.e., the measured S_2F_{10} yields seem to decrease as water content increases. It should be kept in mind, however, that the predicted behavior shown in Figs 5 and 6 is based entirely on gas-phase chemistry. It can be expected that the previously observed [79] surface catalyzed reactions of S_2F_{10} with H_2O could become significant with the addition of water vapor, particularly in a relatively small discharge cell such as described in Ref. [13].

Table X shows the predicted ¹⁶O and ¹⁸O isotope content of the oxyfluorides for different concentrations of oxygen and water vapor. The results given in this table are

Table XI. Percentages of the total oxyfluoride yields that come from processes in the main gas volume for the different indicated relative O_2 and H_2O concentrations and for $I = 40 \,\mu A$

[0,]	[H-O]	Percentage of yield from zone-3			
[SF ₆]	[SF ₆]	SOF ₄	SOF ₂	SO ₂ F ₂	
1×10^{-4}	2×10^{-4}	0.0	71	99	
1×10^{-4}	0.5×10^{-4}	0.0	76	99	
1×10^{-2}	2×10^{-4}	0.0	71	99	
1×10^{-2}	0.5×10^{-4}	0.0	75	99	

Physica Scripta T53

consistent with experimental results [8] which show that for relatively low oxygen concentrations both SOF_4 and SOF_2 derive oxygen predominantly from H₂O, whereas SO_2F_2 derives its oxygen from O₂. As the oxygen content increases, it makes an increasingly greater contribution to SOF_4 and SOF_2 formation. The results shown in Table XI indicate that both SOF_2 and SO_2F_2 are predominantly formed in the main gas volume whereas SOF_4 and S_2F_{10} are formed entirely within the glow region.

5.2. Dependence of production rates on current

The predicted charge rates-of-production of the predominant by-products as a function of the discharge current are shown in Fig. 7 in comparison with experimental results from different sources [2, 8, 10, 13-16, 20]. The predicted production rates indicated by the various solid and dashed lines were calculated using both versions of the model for $[H_2O]/[SF_6] = 2 \times 10^{-4}$, and $[O_2]/[SF_6] = 1 \times 10^{-4}$. The error bars associated with the theoretical curves correspond to the variations of the rates for different H₂O content from 0.5×10^{-4} to 3.0×10^{-4} . This is the range of water-vapor concentrations that best corresponds to the experimental results shown in Fig. 7. Since it is known [2] that water-vapor content can change during the course of an experiment, it is impossible to know precisely what value of [H₂O] applies best to a particular set of experimental data.

The upper set of curves for S_2F_{10} were obtained from a consideration of gas-phase chemistry only and do not include possible effects of surface chemistry. The lower set of

Fig. 7. Calculated current dependencies of the charge rates-of-production for SOF₄, SOF₂, SO₂F₂, and S₂F₁₀ compared with the experimental results from different sources $(1 (V) - \text{Ref. [13]}, 2 (\nabla) - \text{Ref. [14]}, 3 (I I), <math> \bullet$, $\bullet) - \text{Refs [8]}$ and [20], $4 (\nabla , V) - \text{Refs [15]}$ and [16], $5 (\Box , \bigcirc , \bigtriangleup) - \text{Ref.}$ [2], $6 (\bullet - \text{Ref. [10]})$. The lines correspond to an H₂O concentration of 0.02% and an O₂ concentration of 0.01% and the bars corresponds to variations of [H₂O] from 0.005% to 0.03%.

curves for this species allow for an estimated 25% reduction in the yields due to reactions on the point electrode surface. The upper curves should be compared with the solid points marked with the number 4 that correspond to the initial experimentally determined rates from Refs [15] and [16] at t = 0. The lower curves should be compared with the open points marked with a 4 that correspond to the S₂F₁₀ production rates determined from the measured data at a time when the yield curve becomes linear. At this time the electrode surface is fully conditioned by the discharge and becomes most efficient as a catalyzer of S₂F₁₀ destruction.

The calculations have been performed for currents in the range of 10 to 80 µA. This is the range in which the glow is known to be stable and its size does not change significantly with current. At currents below about 1 to 2µA, the discharge assumes a pulsating characteristic, and at currents above about 100 µA, the discharge can become unstable with development of fluctuations in the size and shape of the glow [86]. If R were to increase with current by a factor of I^{η} , where η is a positive constant, then it can be shown using eq. (7) that the number of SF_6 molecules dissociated per unit time will increase by a factor of I^{n+1} . This would mean that the charge rate-of-production of the by-products should also increase with I. It is seen in Fig. 7, however, that the measured charge rates-of-production for the major byproducts do not change significantly with current over the range considered. This suggests that $\eta \ll 1$. The predicted charge rates-of-production of SOF₂ and SO₂F₂ from both model-1 and model-2 are nearly independent of I and in agreement with experimental results. This means that the time rates-of-production for these species are approximately proportional to I. Model-2 gives results for SOF₂ that are in better agreement with those reported in Ref. [2], whereas model-1 gives results in better agreement with those reported in Ref. [10].

The predicted rates for SOF₄ and S₂F₁₀ both of which are formed entirely in the glow region, show a decrease with increasing current which is not entirely consistent with the experimental results, especially in the case of S_2F_{10} . The failure of the experimentally determined rates for these species to show a decrease with I is most likely due to the increasing role played by destruction processes in the main gas volume as I decreases. When the discharge current is reduced, the time required to observe a given yield for SOF₄ and S₂F₁₀ increases (approximately in direct proportion to I). This means that there is more time available for the gasphase hydrolysis or, surface reactions to take effect in reducing the yields for these species as discussed in Sections 3.3.1 and 3.3.2. Other than to consider the reduction of S_2F_{10} yield due to reactions on the point cathode, no attempt has been made to use the reactions in the main gas volume (zone-3) to reduce the production for either S_2F_{10} or SOF₄. From eq. (46) it is found that,

$$\Delta[\text{SOF}_4]_t / \Delta[\text{SOF}_4]_{2t} \simeq 2.0, \tag{71}$$

provided $k_{94}[H_2O]t < 1$. This means that the predicted 17% increase of d[SOF₄]/dQ in going from $I = 40 \,\mu\text{A}$ to $I = 20 \,\mu\text{A}$ can be at least partly offset by an 18% decrease in the SOF₄ yield due to destruction by hydrolysis assuming that the 20 μA experiment requires twice the time of the 40 μA experiment. At this time, not enough is known about the reactions that destroy S_2F_{10} on surfaces to estimate the possible changes in the yield of this species due to changes in the duration of the experiment.

5.3. Recombination efficiency

From a consideration of eqs (6), (7), (8) and (67), the SF_6 recombination efficiency, $E_{\rm ff}$, can be estimated by the formula

$$E_{\rm ff} = 100 \left\{ 1 - \frac{I \sum_{i} j \, d[X_{ij}]/dQ}{k_{\rm D}[\rm{SF}_6]} \right\}.$$
 (72)

The recombination efficiency represents the percentage of the SF₆ molecules dissociated by electron impact that convert back into SF₆. In the case where H₂O and O₂ are maintained at levels respectively of 200 and 100 ppm_v, it is found from the calculated production rates using model-2 that $E_{\rm ff}$ varies from 85% at 80 µA to 73% at 10 µA (see Table XII). Keeping the current fixed at 40 µA and the O₂ content at 100 ppm_v, it is seen from Table XII that $E_{\rm ff}$ increases from 76% to 89% as H₂O content decreases from 400 ppm_v to 50 ppm_v. Under most of the conditions considered here, the recombination efficiency is greater than 75%.

The values for $E_{\rm ff}$ obtained from the present calculations are lower than the value of 97% estimated using the earlier version of our model [11, 20]. The lower value for $E_{\rm ff}$ are a consequence of the lower estimates of the SF₆ dissociation rates used here. The dissociation rates estimated for the models discussed here are considered to be more reasonable and are required to offset the lower rate used for the SF₅ + F recombination reaction.

In estimating $E_{\rm ff}$, it is sufficient to include only the production rates for the major sulfur-containing by-products in eq. (72), namely: SOF₄, SOF₂, SO₂F₂, and S₂F₁₀. The predicted production rates of the other sulfur-containing byproducts tend to be too small to be of any consequence in calculating the total SF₆ decomposition rate. The relative yields for the minor oxygenated products are seen from Table XIII to fall an order-of-magnitude or more below the yields of the major oxyfluoride products. The relative yields

Table XII. Calculated SF_6 recombination efficiency (E_{ff}) for the different indicated conditions

	[H ₂ O]	[O ₂]	
Ι (μΑ)	[SF ₆]	[SF ₆]	$E_{\rm ff}$ (%)
40	4×10^{-4}	1×10^{-4}	76
40	2×10^{-4}	1×10^{-4}	81
40	5×10^{-4}	1×10^{-4}	89
80	2×10^{-4}	1×10^{-4}	85
10	2×10^{-4}	1×10^{-4}	73

Table XIII. Predicted yields of the minor sulfur-containing by-products relative to the yield of SOF_2 from model-2 at $I = 40 \,\mu A$ and for the indicated H_2O , O_2 levels

$\frac{[H_2O]}{[SF_6]}$	$\frac{[O_2]}{[SF_6]}$	$\frac{[S_2F_2]}{[SOF_2]}$	$\frac{[SO_2]}{[SOF_2]}$	$\frac{[S_2OF_{10}]}{[SOF_2]}$	$\frac{[S_2O_2F_{10}]}{[SOF_2]}$
2×10^{-4}	1×10^{-4}	2.2×10^{-7}	1.1×10^{-2}	2.9×10^{-2}	1.3×10^{-3}
1×10^{-4}	1×10^{-2}	1.2×10^{-7}	4.2×10^{-3}	2.3×10^{-2}	1.5×10^{-2}
4×10^{-4}	1×10^{-2}	3.2×10^{-7}	2.3×10^{-2}	4.3×10^{-2}	1.7×10^{-2}

shown in Table XIII are consistent with comparable experimental results [2, 16].

5.4. Sensitivity analysis

In an attempt to assess the relative importance of the different reactions included in the model described here, the rate coefficient for each was either increased or decreased by two orders-of-magnitude and the corresponding relative changes in the yields for the major by-products were recorded. Examples of results from this type of analysis are given in Tables XIV and XV. The indicated percent changes in the yields of the major sulfur-containing by-products correspond to the change in the rate coefficient for a single reaction from a value k_i used in the model to a value $k'_i = bk_i$, where $b = 10^{-2}$ or 10^{+2} . Table XIV show results for some reactions that are considered to be relatively important in the sense that a two order-of-magnitude change in the rate for the reaction results in a $\pm 20\%$ or more change in the yield of at least one of the major by-products. Table XV shows results for selected reactions that do not meet this criterion and are therefore considered to be relatively unimportant.

More than half of the radical-radical type reactions listed in Tables III-V are found to be sufficiently unimportant that they could be excluded from the model without significant effect on the predicted yields of the major by-products. This observation explains why simpler models [20, 21, 85] that contain fewer processes can be adjusted within reasonable limits to yield results that are comparable to those obtained with the much more complex model considered here.

Most of the secondary electron-impact induced dissociation reactions in Table II are also unimportant as illustrated by the results for SF5 dissociation [process (5) in Table XV]. The only exceptions are the process corresponding to electron-impact dissociation in S₂F₁₀ which can have a significant effect on the yield for this compound [see results for process (4) in Table XIV]. The assumed S_2F_{10} dissociation rate is higher than that of the other species given in Table II. This was justified because of the relatively weak S-S bond that suggests a low threshold energy for S_2F_{10} dissociation [87]. This is further supported by the measured appearance poentials of fragment ions from dissociative ionization of S_2F_{10} which are found to be much lower than those for corresponding ions from SF₆ [88]. It was previously noted that the present model can accommodate a lower rate for S_2F_{10} formation by the SF₅ + SF₅ reaction (see Table III), such as found by Sehested and coworkers [59], by making a downward adjustment in the assumed electron-impact dissociation rate for S₂F₁₀.

The dissociation rates for SF_6 given in Table I are the most important in controlling the overall rate of SF_6 decomposition in the discharge. The rate of SF_5 formation is particularly important in determining the production rates for SOF_4 and S_2F_{10} . It can be seen from Table XIV that the rates for formation of SF_4 and SF_2 from dissociation of SF_6 are significant in determining the production rates respectively for SOF_2 and SO_2F_2 .

Table XIV. Examples of relatively significant reactions revealed from sensitivity analysis calculations made using model-2 with $I = 40 \,\mu A$, $[H_2O]/[SF_6] = 2 \times 10^{-4}$ and $[O_2]/[SF_6] = 1 \times 10^{-2}$

	Reaction	Rate constant change	Percent change in yields			
religios			SOF ₄	SOF ₂	SO ₂ F ₂	S ₂ F ₁₀
1	$SF_5 + F \rightarrow SF_6$	$k_{15}' = 10^{+2} k_{15}$	-85.8	- 12.7	-11.9	- 99.9
2	$F + H_2O \rightarrow OH + HF$	$k'_{27} = 10^{-2}k_{27}$	-95.6	- 5.3	+19.2	- 99.9
3	$S_2F_{10}(zone-1) \rightarrow S_2F_{10}(zone-3)$	$k'_{87} = 10^{-2}k_{87}$	+1.4	+3.5	+1.6	-98.9
4	$S_2F_{10} \rightarrow 2SF_5$	$k'_{0} = 10^{-2}k_{0}$	+0.28	+18.7	-1.8	+ 77.5
5	$SF_6 \rightarrow SF_4 + 2F$	$k_2' = 10^{-2}k_2$	-8.1	-40.0	-0.41	+28.7
6	$SF_6 \rightarrow SF_2 + 4F$	$k'_{A} = 10^{-2}k'_{A}$	+ 3.4	-13.4	-74.0	+ 50.0
7	$SF_5 + O \rightarrow SOF_4 + F$	$k'_{50,77} = 10^{-2} k_{50,77}$	-27.8	+ 3.9	+ 3.0	+20.3
8	$SF_5 + OH \rightarrow SOF_4 + HF$	$k'_{28} = 10^{-2}k_{28}$	- 36.3	+ 3.0	+0.88	+21.5
9	$SF_4 + OH \rightarrow SOF_3 + HF$	$k_{29}^{\prime} = 10^{+2} k_{29}^{\prime}$	+ 43.1	- 72.6	-1.4	+ 30.2

Table XV. Examples of relatively insignificant reactions revealed from sensitivity analysis calculations made using model-2 with $I = 40 \,\mu A$. $[H_2O]/[SF_6] = 2 \times 10^{-4}$ and $[O_2]/[SF_6] = 1 \times 10^{-2}$

		Pote constant	Percent cha	Percent change in yields			
	Reaction	change	SOF ₄	SOF ₂	SO ₂ F ₂	S ₂ F ₁₀	
1	$H_2O \rightarrow OH + H$	$k_{12}' = 10^{-2}k_{12}$	0.00	0.00	0.00	0.00	
2	$SOF_3 + OH \rightarrow SO_2F_2 + HF$	$k'_{32} = 10^{-2}k_{32}$	+0.07	0.00	0.00	0.00	
3	$SOF_3 + F \rightarrow SOF_4$	$k_{55}' = 10^{-2} k_{55}$	-0.08	+0.06	-0.02	-0.06	
4	$SOF + F \rightarrow SOF_2$	$k'_{41,71} = 10^{-2} k_{41,71}$	-4.2	-15.3	-0.10	-8.5	
5	$SF_5 \rightarrow SF_4 + F$	$k_5' = 110^{-2}k_5$	0.00	-0.26	0.00	+0.11	
6	$SF + SF_3 \rightarrow SF_4 + S$	$k'_{21} = 10^{-2}k_{21}$	0.00	0.00	0.00	0.00	
7	$SF + F \rightarrow SF_2$	$k'_{13} = 10^{-2}k_{13}$	-9.45	+2.4	-11.4	+0.52	
8	$SOF_3 + O \rightarrow SO_2F_2 + F$	$k'_{37,76} = 10^{-2} k_{37,76}$	0.00	0.00	0.00	0.00	
9	$SOF + O \rightarrow SO_2F$	$k'_{39,74,79} = 10^{-2}k_{39,74,79}$	+ 0.04	0.00	0.00	0.00	
10	$SF_3 + SF_5 \rightarrow 2SF_4$	$k'_{25} = 10^{+2} k_{25}$	+1.4	+11.6	-2.2	-4.5	
11	$SF_5 + O \rightarrow SOF_5$	$k_{50,68}' = 10^{-2} k_{50,68}'$	- 5.5	+2.5	+1.1	+9.9	