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Abstract - Timebase distortion causes nonlinear
distortion of waveforms measured by sampling
instruments. When such instruments are used to
measure the rms amplitude of the sampled waveforms,
such distortions result in errors in the measured rms

values. This paper looks at the nature of the errors that
result from nonrandom quantization errors in an
instrument's timebase circuit. Simulations and

measurements Oil a sampling voltmeter show that the
errors in measured rms amplitude have a non-normal
probability distribution, such that the probability of
large errors is much greater than would be expected
from the usual quantizatioll noise model. A novel
timebase compensation method is proposed which makes
the measured rms errors normally distributed and
reduces their standard deviation by a factor of 25. This
compensation method was applied to a sampling
voltmeter and the improved accuracy was realized.

I. INTRODUCTION

Nominally uniformly spaced sample intervals are
fundamental for modern sampling instruments. This is
true whether the samples are taken in real time or
equivalent time. The deviations away from uniform time
intervals have two components: a random part called time
jitter that is not the subject of this paper, and a
deterministic part called timebase distortion. Uncorrected
timebase distortion causes nonlinear distortion of the

sampled waveforms. Several papers have been written on
techniques for measuring and correcting for deterministic
timebase distortion [1-6]. These correction techniques
usually depend on resampling the recorded waveform to
produce a new waveform that represents the signal
sampled uniformly. Here we present an alternative
correction method that does not rely on recalculation of
the waveform if the quantity of interest is the root-mean
squared (rms) amplitude of the sampled signal.

Not all instruments have the type of timebase error
discussed in this paper, although most equivalent-time
types do. The following describes the type of timebase
error under discussion. The timebase on many instruments
uses a clock circuit that runs independent of the signals
being sampled. This clock circuit usually has a smallest
time resolution unit that can be programmed. This time
unit is the quantization resolution .of the timebase. If the

instrument makes a measurement that requires sample
intervals that are not integer multiples of this unit, the
realized sample times will have a quantization error. Such
an error can occur when the measurement requires an
integral number of samples over one or more periods of
the signal being sampled. In this case the timebase will
have quantization errors that are dependent on the
frequency of the signal being sampled.

When designing sampling instruments the timebase
quantization resolution is usually selected such that its
effects on the accuracy of the instrument are below the
random noise level of the sampling process. To do this
requires estimates of the effects of such an error process.
The traditional method employed is to treat the
quantization as a random noise process [7-10]. For an
instrument used to measure the rms amplitude of thy
sampled signal, such a model leads to an error estimate
for the calculated rms values characterized by a normal
probability density error distribution. The timebase
quantization, however, violates the assumptions necessary .

for use of the random noise model. To use that model the

errors must be independent and identically distributed
(iid). As will be shown in this paper, certain timebase
quantization processes can cause the quantization errors
to be correlated with each other and with the signal being
measured. This causes the errors in the calculated rms

values to be non-normally distributed. A consequence of
using the wrong error model is that it underestimates the
probability of large errors.
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This paper examines the nature of the sampled waveform
errors that arise from timebase quantization. A unique
method of correcting the sampling process is described
that significantly reduces the errors in the calculated rms
amplitudes of such sampled waveforms and results in a
normal error distribution. This modified sampling
technique requires only a very small change in the way
that sample times are calculated and no change in the
basic design of the quantized timebase.

Timebase quantization errors were encountered at NIST
during the development of a high accuracy sampling
voltmeter [11]. The NIST Wideband Sampling Voltmeter
(WSV) measures the rms amplitude of periodic signals by
sampling the signal's waveform using equivalent-time
sampling. The design for this timebase and how it
interacts with the signals being sampled is described in
section II. Results from a simulation model of the
voltmeter indicated the differences between the correct
error model and a random error model as described in
section Ill. A modified quantization scheme, which
significantly reduces the errors caused by this type of
timebase distortion, is described in section IV. In addition
to the simulation studies, measurements on the NIST
WSV verified the accuracy of the simulations and the

improvements possible by use of the modified
quantization scheme as described in section V.

II. RAMP QUANTIZATION

The NIST WSV adjusts the sampling rate to be an integer
multiple of the signal frequency. However, because the
timebase is quantized, the actual sample times are not
precisely uniformly spaced. The following is a simplified
description of the way the sample times are generated to
help the reader understand how the time quantization
process interacts with the signal frequency and results in
an error in the measured rms value.

The timebase generator makes use of a voltage ramp, a
reference DAC, and a comparator. Because of the large
frequency range covered by the voltmeter, 10Hz to
200 MHz, multiple ramp slopes are used. Twenty-two
slopes are used altogether; three are used to cover each
decade of frequency. During the measurement process the
frequency of the input signal is determined and used to
select the fastest ramp such that for one signal period the
ramp voltage changes by less than the DAC full scale
voltage range. The ramp start time is synchronized with
the input signal. The ideal sample interval, ti , is calculated
by dividing the signal period by the number of samples to
be taken over one period. Selecting a start delay and

adding multiples of the ideal sample interval generates the
ideal sample times. From the known slope of the ramp the
reference voltage corresponding to each sample time is
determined and rounded to the nearest DAC level. This
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Fig. I. Example of timing relation bctween quantized time, ideal
sample time, quantized sample times, quantization error, and sample
intervals.

rounding is the cause of the timebase quantization and
from the computations the timebase quantization error for
each sample time is known. For each sample time the
DAC is set to the corresponding voltage level and a
sample strobe is generated when the comparator detects
the ramp crossing the DAC voltage. The signal amplitude
at each sample time is measured and the signal's rms
value is calculated as the rms of all the measured sample
values.

The time intervals are quantized by the resolution of the
reference DAC. The weight Q (in volts) of the least

significant bit (lsb) of the DAC and the ramp slope r (in
volts per second) determines the timebase resolution tb(r);
therefore, the smallest time interval that can be realized
for the selected slope r is given by tb(r)= Q/r. The actual
time intervals are limited to multiples of this unit of time.
Since the ideal sample times are rounded up or down to
the nearest quantized time, the quantized sample sequence
will have two sample intervals m x tb(r) and (m+ 1) x tb(r),
such that

t.
m :::;--'--= (m+8)< m+ I,

th(r)
(1)

where m is the integer number of quantization intervals in
the ideal sample interval and () is the fractional ideal
sample-interval quantization factor. Figure 1 shows an
example of the relation between the quantized times, the
ideal sample times, and the quantized sample intervals.

If () is close to 0.5. then in general the quantized sample
intervals will alternate between the two quantized sample
intervals. Occasionally two sample intervals of the same
size will occur together. For ()close to 0.5 the sequence of
quantization errors will be negatively correlated.
However, if () is very close to 0 or 1, the pattern is
different. Then the quantization intervals are primarily of
one size with an occasional interval of the other size. In

these cases the sequence of quantization errors will be
positively correlated. Thus the pattern of quantization
interval is determined by <>.

When used as the timebase for measuring the rms value of
a sinewave, the errors caused by this quantization process
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Fig. 2. RMS measurementerror for ramp quantization (gray
squares)is non-normallydistributed,andnnsmeasurementerror for
randomquantization(darkdiamonds)is normallydistributed.

vary with the value of 8. Since the value of 8 is a function
of the period of the signal being measured, the errors in
the rms measurement vary with the signal frequency. The
nns measurement errors can become large if the

quantization errors are correlated with the signal being
measured. Since this timebase increases the probability of

having correlated quantization errors relative to a random
error process, the probability of large measurement errors
is increased at select frequencies.

For purposes of this paper, the important features of the
timebase being described are first that the quantization
resolution of the timebase remains fixed for a range of

input signal frequencies, and second that the sampling
process is adjusted to the signal frequency. This type of
timebase process is hereafter referred to as a ramp
timebase. In examining the errors caused by this timebase
error process it is important to keep in mind the
differences in its behavior relative to the behavior for a

random timebase error process. First, for the ramp
timebase the quantization errors are not random. Rather
they are a function of the measurement and signal
parameters. Thus, averaging repeat measurements can not
reduce the size of these errors caused by this process.
They cause a bias in the measured values. Second, the
probability distribution of the errors in the measured
quantities is changed. These effects are examined using a
simulation model.

III. SIMULATION MODEL

A simulation model of the NIST WSV was developed to
examine the effects of timebase errors on the rms

measurement process. The simulations allowed either a
truly random timebase quantization or the nonrandom
ramp-dependent quantization patterns. The random time
base errors used a unifonnly distributed random timebase

t.

I
""

"

error of amplitude :to.5 tb(r). For both timebase error
types the resultant nns measurement errors were
detennined for a large number of input signal frequencies,
phases, and other parameters.

Figure 2 shows the cumulative normal distribution plots
of the rms measurement errors for both timebase error

types. For this plot the rms measurement errors are sorted,
the inverse normal probability of the sample number in
units of standard deviation are plotted on the vertical axis
and the rms error values are plotted on the horizontal axis.
Thus, if the errors are normally distributed this plot will
show a straight line. The plot for the random timebase
errors is a straight line showing that the errors in these
rms measurements are normally distributed. The line for
the ramp- timebase errors is not straight. The line deviates
significantly from a straight line before reaching :t2
standard deviations. Thus, about 5 percent of the errors
are significantly larger than would be expected from a
normally distributed random error mechanism.
Conversely, almost 95 percent have an error significantly
less than expected.

Since many of the errors for the ramp-quantization
timebase are less than expected, is there some way of
modifying the quantization error patterns to take
advantage of this and eliminate the large errors? The next
section shows how this can be done and how it should not
be done.

IV. MODIFIED RAMP QUANTIZATION

Looking at the timebase quantization errors associated
with the largest rms measurement errors shows that these
errors are associated with positively correlated
quantization errors. These result from the fractional
quantization factor 8 being close to 0 or I. A useful
quantity for understanding how this correlation affects the
measured rms values is the cumulative sum of the

quantization errors from the first sample to sample j,

CqO). This quantity is given by

C/j) = tq;
;=\

(2)

where q i is the timebase quantization error for time
sample i. This quantity plays an important role in the
modified quantization scheme that reduces this effect. The
ramp-quantization process holds the magnitude of each
quantization error q I to less than half the timebase
resolution, i.e., IqI I< 0.5 tb(r). If the quantization errors

were random the standard deviation of CqO) would be

proportional to JJ tb(r). Figure 3 shows a plot of CqOJ for

a frequency with large error where 8 is close to O.
Because the quantization errors are correlated, CqOJ
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Fig. 3. Example of quantization errors (dark diamonds) and
cumulative sum quantization errors (gray squares) showing
correlation of quantization errors and large cumulative sum values.
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Fig. 4. . RMS measurement error for ramp quantization plus random
dither of 0 .5 Isb amplitude gives normal distribution.

become large compared to tb(r) much more quickly than
would be expected in a random model.

One, not so good, way to break up this correlation is to
add a random dither to the ideal sample times before
quantizing them. Figure 4 shows the cumulative error
distribution for rms measurements taken with a uniformly
distributed random time dither of amplitude :to.5 tb(r)
added to each ideal sample time before being quantized.
The resultant distribution is now normal but at the

expense of being larger.

A better way of breaking up this correlation is to restrict
the size of the cumulative sum of quantization errors,
Cq(j). This can be accomplished by adding the cumulative
sum of previous errors, Cq(j-l), to the ideal sample time
before quantization. The value of Cq(O) is taken to be
zero. The new set of values for Cq(j) will be between

t+
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-
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Z

Fig. 5. Cumulative sum limited quantizer; the quantization error
from quantizer Q is fed back to an adder via a unit sample delay to
limit the cumulative sum of quantization errors.
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Fig. 6. RMS measurement error for CSL quantization is normally

distributed and much smaller than errors shown in figs. 2 and 4.

:to.5 tb(r). Figure 5 shows a simple feedback computation
that performs this operation without the need to calculate
the cumulative sums. This quantization method is referred
to as the cumulative-sum-limited (CSL) quantization
scheme. The distribution of rms errors that results from

the use of the CSL quantization scheme is shown in fig. 6.
The rms errors are now normally distributed and have a
standard deviation of about 1/25 of the standard deviation
from the ramp timebase. The next section shows that this
improvement was realized in the NIST WSV.

During the simulations each of the parameters that affect
the rms error was varied to determine their effects. The

primary factors that determine the rms error caused by
timebase quantization are: the number of bits, b, used in
the timebase DAC; the number of samples, N, used in the
rms computation, the number of cycles, n, of the signal
that are sampled; the quantization error for the first
sample, f{); and the fraction of the DAC range that
represents one signal period. For the data given above and
in much of this paper, the parameters are often chos~n as
128 samples, over one cycle of the signal, with the
timebase DAC resolution set at 10 bits, the signal phase at
o degrees, the initial quantization value as zero, and the
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Figure 7. Predicted Ill1S error range for ramp quantization
(maximum-upper solid line, minimum-lower solid line) and
measurement Ill1Serror for ramp quantization (dark diamonds), and
for CSL quantization (gray squares).

fraction of the DAC range that represents one signal
period between 0.5' and 1.0. Based on a large number of
simulations, varying each of these factors over a wide
range, the rms error data were fitted to a functional
relation for each quantization method. The empirical
relation for the dependence of the rms error for the ramp-
quantization method is given as

rms _ 1.7x 2-b
rq - IN + 5 x 2 -2b

(3)

and for the modified CSL quantization is given as

5 3X 2 -b X 0.82. n 146 2-2b

N1.4 +. x .
(4)rmsCSLq

Note how the error with the CSL quantization, rmsCSLq,
drops much more rapidly as a function of the number of
samples, and has a dependence on the number of cycles of
the measured signal, which is not present in the ramp-
quantization timebase induced error.

The functional dependence of the rms error versus signal
phase is the same for both timebase quantization schemes.
When plotted versus signal phase angle at the start of the
sampling interval, the error is a sinewave with a period of
180 degrees. The amplitude of this sinewave is called the
phase maximum error, PME. This is the largest error
possible for a given frequency while varying the signal
phase relative to the sample interval and holding the other
measurement parameters constant. Because the period of
this phase dependent error is 180 degrees, the PME can be
determined by simulating or measuring the rms error for
two signal phases separated by 45 degrees and calculating
the root-sum-square of the two error values. The values of
PME versus frequency were simulated and compared to
PME values measured on the NIST WSV as.described in
the next section.

V. EXPERIMENTAL VERIFICATION

The validity of the simulation model and the value of the
CSL quantization scheme compared to the traditional
ramp-quantization scheme are shown with measurements
taken on the NIST WSV. The DAC resolution for the
WSV was reduced to 10 bits for this experiment to
accentuate the errors. With the traditional ramp-
quantization scheme, the rms errors become very large
around certain frequencies. One such peak occurs for
signal frequencies around 77 kHz. Figure 7 shows the
measured and simulated PME results for frequencies from
75 kHz to 80 kHz. The two solid lines show the results of
simulations of the rms error using the traditional ramp-
quantization scheme. The top line shows the largest
predicted PME for each frequency varying all the other
parameters. The lower line shows the smallest predicted
PME for each frequency. Thus, if the voltmeter performs
the same as the simulation model the measured PME's for

ramp quantization should fall between the two curves.
The series of points with diamonds shows the measured
PME for the NIST WSV using the traditional quantization
scheme. All values fall between the two curves predicted
by the simulation model.

The CSL quantization scheme was implemented on the
NIST WSV. This was done by a simple software change
to the sample time computation. The lower curve of
squares in fig. 7 shows the measured PME using the CSL
quantization scheme. These values are (as predicted by
the simulation) much lower and do not show the presence
of large deviations around certain frequencies.

VI. CONCLUSIONS

The unexpected effects of nonrandom timebase quantized
errors on the measurement accuracy of the NIST WSV
was modeled and verified. A new scheme for quantizing
the timebase, CSL quantization, was described that
decreases the quantization-related errors by a factor of 25.
The CSL quantization scheme was demonstrated on the
NIST WSV and the results showed that the instrument's
accuracy could be improved significantly using this easy-
to-implement procedure. In the present NIST WSV
design, the instrument's timebase related errors were
reduced to less than the noise level by using a higher
resolution newly designed timebase [12].
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