Available online at www.sciencedirect.com

ScienceDirect

The Journal of
Systems and
Software

ELSEVIER

The Journal of Systems and Software xxx (2007) XXX—XXX

www.elsevier.com/locate/jss

Understanding failure response in service discovery systems

C. Dabrowski *, K. Mills, S. Quirolgico

National Institute of Standards and Technology, Information Technology Laboratory, 100 Bureau Drive, Mailstop 8970,
Gaithersburg, MD 20899-8970, United States

Received 1 March 2006; received in revised form 21 November 2006; accepted 23 November 2006

Abstract

Service discovery systems enable distributed components to find each other without prior arrangement, to express capabilities and
needs, to aggregate into useful compositions, and to detect and adapt to changes. First-generation discovery systems can be categorized
based on one of three underlying architectures and on choice of behaviors for discovery, monitoring, and recovery. This paper reports a
series of investigations into the robustness of designs that underlie selected service discovery systems. The paper presents a set of exper-
imental methods for analysis of robustness in discovery systems under increasing failure intensity. These methods yield quantitative mea-
sures for effectiveness, responsiveness, and efficiency. Using these methods, we characterize robustness of alternate service discovery
architectures and discuss benefits and costs of various system configurations. Overall, we find that first-generation service discovery sys-
tems can be robust under difficult failure environments. This work contributes to better understanding of failure behavior in existing
discovery systems, allowing potential users to configure deployments to obtain the best achievable robustness at the least available cost.

The work also contributes to design improvements for next-generation service discovery systems.

Published by Elsevier Inc.

Keywords: Distributed systems; Robustness; Service discovery

1. Introduction

Various teams designed and implemented a first genera-
tion of (competing) service discovery systems that enable
distributed components to find each other without prior
arrangement, to express capabilities and needs, to compose
into collections, and to detect and adapt to changes. Each
specific design defines a system structure, along with proto-
cols for discovery, monitoring, and recovery. Some designs
assume a specific underlying communication technology,
some designs focus on one application domain, and some
designs were conceived to operate over Internet protocols
and to support many applications.

* Corresponding author. Tel.: +1 301 975 3249; fax: +1 301 948 6213.
E-mail address: cdabrowski@nist.gov (C. Dabrowski).

0164-1212/$ - see front matter Published by Elsevier Inc.
doi:10.1016/j.jss.2006.11.017

In this paper, we investigate the architectures and
behaviors underlying Jini Networking Technology'
(Arnold, 1999), Universal Plug and Play (UPnP) (Univer-
sal Plug and Play Device Architecture, 2000), and the Ser-
vice Location Protocol (SLP) (Guttman et al., 1999) when
subjected to various failures. Elsewhere (Dabrowski et al.,
2005), we present a generic model encompassing the
designs of these systems and we identify performance issues
that could arise. While this previous work considers system
behavior absent failures, here we explore the relative ability
of discovery systems to cope with different types and inten-
sities of failure.

We reported preliminary results in various conference
papers (Dabrowski and Mills, 2001; Dabrowski et al.,

! Certain commercial products or company names are identified in this
paper to describe our study adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor to imply that the products or names
identified are necessarily the best available for the purpose.

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

mailto:cdabrowski@nist.gov

2 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

2002a,b, 2003); however, this paper improves upon earlier
work in two ways. First, we extend the scope of our results
to cover three architectures (two-party, three-party, and
adaptive), three failure scenarios (configuration restora-
tion, service acquisition and maintenance, and consistency
maintenance), four failure types (power failure and restart,
node failure, communication failure, and message loss),
and a set of failure detection and recovery techniques at
three levels (transport protocols, discovery protocols, and
application logic). Second, we increase the amount of data
collected and analyzed to obtain better estimates for per-
formance metrics at high failure rates.

This paper contributes to the understanding of service
discovery systems. First, this paper characterizes robust-
ness of discovery systems under difficult failure environ-
ments. This paper further identifies and discusses the
most significant design and configuration decisions that
influence robustness. Second, this paper identifies specific
design and deployment decisions that could lead to dimin-
ished robustness. Third, this paper quantifies the relative
cost associated with specific decisions. Overall, the infor-
mation provided here should contribute to better under-
standing of failure behavior in existing discovery systems,
allowing potential users to configure deployments to obtain
the best achievable robustness at the least available cost.
Further, results and discussions presented here have con-
tributed to design improvements in the next generation of
discovery systems (Sundramoorthy, 2006; Sundramoorthy
et al., 2004).

This paper also contributes experimental methods to
study robustness in distributed systems. First, we introduce
and apply metrics to quantify relative robustness and cost
at the application level for various scenarios. Second, we
present a technique to decompose aggregate robustness
into detection and recovery latency. Using this technique,
we show how similar robustness can be achieved through
different behaviors arising from particular design choices.
Our methods can be adopted, adapted, or extended by
other researchers to investigate failure response in distrib-
uted systems — a topic due for increased study.

We begin (in Section 2) with a synopsis of existing work
comparing and contrasting service discovery systems. Most
previous work focuses on functional comparisons, on
means for translating among discovery systems, or on
improving existing designs. Our own related work
(Dabrowski et al., 2005; Bowers et al., 2003; Mills and
Dabrowski, 2003; Rose et al., 2003; Mills et al., 2004;
Tan and Mills, 2005) attempts to unify designs for several
existing discovery systems, and investigates performance
problems arising when such systems are deployed at large
scale.

In Section 3, we survey the design and function of ser-
vice discovery systems. We introduce a model to convey
concepts across selected systems. Using our model, we
describe how discovery operates under UPnP (a two-party
architecture, where clients issue multicast queries to find
services), Jini (a three-party architecture, where clients con-

sult a directory to find services), and SLP (which is a three-
party architecture that can adapt to become a two-party
architecture). We also describe two mechanisms (polling
and notification) used by discovery systems to maintain
consistent information among distributed replicas. The
architectures, discovery procedures, and consistency main-
tenance mechanisms described in Section 3 form the basis
for scenarios, experiments, and results recounted in later
sections.

In Section 4, we introduce selected types of failure that
can impede a distributed system and we discuss selected
techniques to detect and recover at three layers. At the low-
est layer, transport protocols may include detection and
recovery mechanisms (e.g., acknowledgments, retransmis-
sions, and exceptions). In the middle layer, discovery pro-
tocols typically include some detection and recovery
mechanisms (e.g., heartbeats and soft state). At the top
layer, applications may take recovery actions in reaction
to exceptions raised by transport protocols. Interactions
among these detection and recovery techniques can become
quite intricate and difficult to understand.

In Section 5, we describe our experiment methodology,
consisting of six steps: (1) constructing (simulation) models
reflecting structure, behavior, and deployments of selected
service discovery systems, (2) incorporating failure models
into the simulations (3) devising scenarios and related met-
rics to quantify robustness and cost, (4) simulating scenar-
ios for selected configurations over a range of failure rates,
(5) collecting, analyzing, and plotting data from simula-
tions, and (6) investigating unexpected results and anoma-
lies. In Section 6, we describe the design and results for our
experiments: (1) restart after power failure, (2) service
acquisition and maintenance impeded by node failures,
and consistency maintenance impeded by (3) communica-
tion failures and (4) message loss. We report results from
these four experiments, which encompass 30 configura-
tions. For each experiment, we explain the scenario and
failure model, define metrics, present results, outline find-
ings, and discuss unexpected outcomes. We close in Section
7 with a précis of our findings and contributions.

2. Related work

Emergence of various specifications for service discovery
systems, coupled with the anticipated importance of dis-
covery functionality in future distributed systems, has stim-
ulated significant interest in understanding similarities and
differences among competing designs. Most existing com-
parisons focus on architecture, features, and function. A
few comparisons also consider programming differences,
because most discovery systems are conceived as middle-
ware to support distributed applications. Bettstetter and
Renner (2000) compare SLP, Jini, UPnP, and Bluetooth
with respect to architecture, function, and features, and
consider underlying requirements for programming
languages, operating systems, and network protocols.
The comparison is expressed using concepts and termino-

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 3

logy specific to each discovery system, although the authors
do identify three common aspects (support for searching
on service attributes, inclusion of a directory, and use of
leasing) for comparison. Richard (2000) compares software
architectures, along with system features and functions, for
Jini, Bluetooth, Salutation, SLP, and UPnP. Elsewhere,
Richard (2002), expands his comparison to include pro-
gramming considerations by providing source code for cli-
ents and services in Jini, SLP, UPnP, and Bluetooth.
Pascoe (1999) outlines a brief architectural comparison of
Jini, UPnP, and Salutation, and Rekesh (1999) gives a sim-
ilar comparison that appears to be based on Pascoe’s work.
In a subsequent paper, Pascoe (2001) amplifies his architec-
tural comparison to include comparison of functions and
features. O’Driscoll (2000), when considering a wide range
of home networking technology, provides descriptions of
Bluetooth, HAVi (the Home Audio-Video interoperability
specification), UPnP, and Jini. Though giving no direct
comparison, O’Driscoll provides a summary of architec-
ture, function, and features from which readers may infer
a comparison. Olivier (2000) provides a detailed descrip-
tion of Jini, but also includes a brief description of UPnP
and a comparison between Jini and SLP. None of these
comparisons considers performance or robustness.

Limitations in existing comparisons motivated our own
work. Elsewhere (Dabrowski et al., 2005), we provide a
unified and general model for first-generation discovery
systems and then show how our model can be used to rep-
resent Jini, UPnP, and SLP. Our unified model, conceived
with neutral terminology, provides a basis for direct com-
parison among architectural, functional, and behavioral
elements of designs. Our model also reveals limitations
and open issues in existing designs and specifications, and
includes a set of service guarantees that we believe discov-
ery systems should attempt to satisfy. Further, we identify
selected performance issues that may arise when deploying
discovery systems at large scale, and we use our model to
outline algorithms that might improve performance. While
our previous work improves on existing comparisons, we
did not consider robustness under various types of failure.
The present paper extends our previous work by compar-
ing failure response in the major designs for first-genera-
tion discovery systems (as represented by Jini, UPnP, and
SLP).

As a natural extension to functional comparisons, some
researchers conceive protocol translators in order to
achieve interoperation among dissimilar service discovery
systems. For example, the Open Services Gateway Initia-
tive (OSGi) [see Bushmitch et al., 2004, and also chapter
17 in O’Driscoll, 2000] defines a layer of middleware to
bridge among Jini, UPnP, and Bluetooth. Miller and
Pascoe (1999) show how to map between the application-
level programming interfaces of Salutation and Bluetooth.
Allard et al. (2003) and Sameh and El-Kharboutly (2004)
describe different techniques to bridge between Jini and
UPnP, while Guttman and Kempf (1999) consider
techniques to bridge between Jini and SLP. Similarly,

Yu et al. (2003) define a software structure for middleware
that can bridge among a diverse set of service discovery
systems and distributed object systems. Ponnekanti and
Fox (2003) take a more general tact by defining a frame-
work that clients may use to find candidate services and
to automatically configure an appropriate set of proxies
and stubs to allow a client to invoke a selected service. Only
one (Sameh and El-Kharboutly, 2004) of these papers
investigates performance, and none considers the effects
of failures. While our paper does not consider translation
among discovery systems, researchers could use our
method to investigate and quantify robustness of various
designs for bridges and translators.

Beyond first-generation systems for discovery of services
operating in close proximity, researchers in industry and
academe are investigating how to build discovery systems
that scale over a wide area. An early proposal, known as
Universal Description, Discovery and Integration (UDDI,
2000), defines well-known, web-accessible repositories,
where service descriptions may be deposited so that clients
may query for services of interest. The UDDI approach
exhibits limited scalability because every service in a net-
work must deposit its description with a central directory,
or else with multiple replicas of a central directory. To
overcome such limitations, researchers continue to propose
a number of more flexible approaches. One early idea, E-
speak (Frolund, 2000), used an expanding-ring multicast
search to discover directories that are organized into a fed-
erated topology through which service descriptions perme-
ate over time. A similar idea is contained in JXTA (2004),
where a peer-to-peer system is used to disseminate copies of
service descriptions throughout a topology of caches, and
in Neuron (Hsiao and King, 2002), a self-organizing and
self-tuning topology of caches that can tolerate failures of
nodes and communication links. Other self-organizing
directories have also been proposed, including SRIRAM
(Verma, 2003), NeuroGrid (Joseph, 2002), and the Secure
Service Discovery Service (Czerwinski, 1999). A somewhat
different approach (Castro, 2002) forms a logical ring
(based on node addresses) that helps individual nodes to
bootstrap into various available overlay networks, each
of which advertises services. Grid researchers have also
proposed a design for wide-area service discovery (Iamn-
itchi and Foster, 2001), coupled with the ability to inject
and disseminate real-time status information (Czajkowski
et al., 2001). Most of these designs include provisions to
detect and recover from failures or to mitigate failures;
however, no comprehensive results exist that compare
robustness among various designs. While this paper inves-
tigates robustness only for local discovery, we suspect that
our method could be applied to quantify and compare
robustness among designs for wide-area discovery.

3. Modeling service discovery systems

Service discovery systems enable components in a net-
work to discover each other, and to determine if discovered

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

4 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

components meet specific requirements. Further, discovery
systems include consistency-maintenance mechanisms,
which can be used by applications to detect changes in
component availability and status, and to maintain, within
some time bounds, a consistent view of distributed compo-
nents. Many diverse industry activities explore different
approaches to meet such requirements, leading to a variety
of proposed designs (Salutation Architecture, 1999;
Arnold, 1999; Universal Plug and Play Device Architec-
ture, 2000; Guttman et al., 1999; Home Audio/Video Inter-
operability (HAVi) Architecture, 2001; Bluetooth System,
2001). Some groups approach the problem from a verti-
cally integrated perspective, coupled with a narrow appli-
cation focus. Other groups propose more widely
applicable solutions. For example, a team of researchers
and engineers at Sun Microsystems designed Jini Network-
ing Technology (Arnold, 1999), a discovery system atop
Java, which provides a base of portable software technol-
ogy. As another example, a group of engineers at Microsoft
and Intel conceived Universal Plug-and-Play (UPnP) (Uni-
versal Plug and Play Device Architecture, 2000) to extend
plug-and-play from single computers to distributed sys-
tems. Similarly, the efforts of Sun Microsystems and other
companies led to the Service Location Protocol (SLP)
(Guttman et al., 1999), aimed at providing service discov-
ery for the Internet.

While these designs appear quite different, the systems
share some common traits. First, they all assume availabil-
ity of the Internet protocols as a base. Second, they all pro-
vide general approaches to describe the capabilities and
status of services. Third, they all include mechanisms that
can be used to detect and recover from failures. Jini, UPnP,
and SLP differ in architecture, in approach to describing
services, and in assumptions about how to use transport
protocols. This interesting combination of similarities and
differences led us to base our comparative study on Jini,
UPnP, and SLP. Our main challenge was finding a means
to clearly understand and represent similarities and differ-
ences among the three systems. To address this challenge,
we developed a general model with common terminology
and then mapped concepts from each specific system into
our model.

3.1. A general model of service discovery systems

Our model provides a basis for comparative analysis of
various discovery systems by representing major architec-
tural components and concepts with a consistent and neu-
tral terminology (see first column in Table 1). The main
components in our model include: (1) service user, (2)
service manager, and (3) service cache manager. A service
user (SU) is a client in a service discovery system. A SU
is concerned with discovering services from components
within the distributed system, acquiring access to disco-
vered services, and using discovered services. A service
manager (SM) maintains a database of service descriptions,
each of which encodes the characteristics of a particular
service provider (i.c., the provider of the service). Each ser-
vice description (SD) contains the identity, type, and attri-
butes that characterize a service provider (SP). Each SD
also includes the addresses of software interfaces (e.g., an
application-programming interface or graphic user inter-
face) to access a service. A SU seeks SDs satisfying specific
requirements. A service cache manager (SCM) operates as
an intermediary, matching advertised SDs from SMs to
requirements provided by SUs. SCMs are optional compo-
nents supported by some, but not all, discovery systems.
Table 1 shows how these general concepts map to specific
concepts from Jini, UPnP, and SLP.

The behaviors by which (Jini, UPnP, and SLP) SUs dis-
cover and maintain consistency in relevant SDs depend in
part upon the system architecture and design and in part
on the transport protocols used. Transport protocols are
used for two kinds of message exchange: (1) multicast, in
which transmitted messages are conveyed to all receivers
that participate in a multicast group and (2) unicast, which
is point-to-point communication directly between a pair of
corresponding entities. Both Jini and UPnP use the User
Datagram Protocol (UDP) for exchanging multicast mes-
sages and use the Transmission Control Protocol (TCP)
for exchanging unicast messages. UPnP also uses UDP to
unicast answers to multicast queries. SLP uses UDP for
exchanging both multicast and unicast messages. The dif-
ferences in transport protocols become significant when
considering approaches to detect and recover from failures;

Table 1
Mapping concepts among selected service discovery systems
Generic model Jini
Service user Client
Service manager Service or device proxy
Service provider Service
Service description Service item
Identity Service ID
Type Service type
Attributes Attribute set

User interface
Program interface
Service cache manager

Service applet
Service proxy
Lookup service

Device/service description
Universal unique ID
Device/service type
Device/service schema
Presentation URL
Control/event URL

Not applicable

UPnP SLP

Control point User agent
Root device Service agent
Device or service Service

Service registration

Service URL

Service type

Service attributes

Template URL

Template URL

Directory service agent (optional)

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 5

therefore, we defer (until Section 4) a more detailed discus-
sion. Here, we focus on behavioral differences arising from
variations in architecture and design.

3.2. Modeling service discovery architectures and protocols

Our analysis of six distinct discovery systems revealed
that most designs use one of two architectures: two-party
or three-party. One discovery system we examined uses
both architectures together. A two-party architecture con-
sists of two major component types: SMs and SUs. Fig. 1
illustrates a two-party architecture (configured for UPnP).
Service discovery occurs through interactions between
these two component types; SUs discover SMs and then
query them for suitable SDs. A three-party architecture
adds a third component type, the SCM, which contains a
directory. Fig. 2 illustrates a three-party architecture (con-
figured for Jini). In a three-party architecture, both SMs
and SUs first discover SCMs to serve as intermediaries.
SMs deposit SDs with SCMs and SUs interact with SCMs
to obtain suitable SDs. A third architectural variant (sup-
ported by SLP) employs both the two-party and three-
party architecture and is capable of switching between
them, depending on circumstances. We call this an adaptive
architecture.

N
\ |/

UPNP Multicast Group

I‘I:

Service
Manager

Unicast Links

A
A

Service
User

HTTP/TCP and HTTP/UDP

Fig. 1. Two-party service discovery system deployed in a topology with
three service users (SUs) and three service managers (SMs).

Aggressive - Discovery m Multicast Group

r

Service
Manager
g 9 Remote Method Invocation
;
[
Service
|| Cache
. Unicast Links
| Service Manager
User A

g ><—
Lazy - Discovery Multicast Group

Fig. 2. Three-party service discovery system deployed in a topology with
three service users (SUs), three service manager (SMs), and three service
cache manager (SCMs).

3.2.1. Discovery in two-party architectures

Given a two-party architecture, we model the behavior
of participating SMs and SUs. Upon startup, each SU
and SM engages in a discovery process to locate other rel-
evant components within the network neighborhood. We
chose behaviors described in the specification for UPnP
(Universal Plug and Play Device Architecture, 2000).

In a lazy-discovery process, each SM periodically
announces existence of its SDs over a designated UPnP
multicast group. Upon receiving these announcements,
SUs with matching requirements use a HyperText Transfer
Protocol (HTTP)/TCP unicast link to request, directly
from the SM, copies of the SDs associated with relevant
SPs. The request is made using an HTTP GET request.
The SU stores SD copies in a local cache.

Alternatively, the SU may engage in an aggressive-dis-
covery process, where the SU transmits SD requirements,
as Msearch queries, on the UPnP multicast group. Any
SM holding a SD with matching requirements may use a
HTTP/UDP unicast link to respond (after a jitter delay)
directly to the SU. Whenever a SM responds to an
Msearch query (or announces itself), it repeats a
sequence of messages, with separate messages for distinct
devices and service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast
link to send an HTTP GET request for a copy of relevant
SDs, caching them locally.

In UPnP, multiple HTTP GET requests are required to
transfer the SD, because each SD consists of two parts.
To maintain a SD in its local cache, a SU expects to receive
periodic announcements from the relevant SM. In UPnP,
the SM announces the existence of SDs at a specified inter-
val, known as a Time-to-Live, or TTL (1800 s minimum
recommended). Each announcement specifies a TTL value.
If the SU does not receive an announcement from the SM
within the TTL (or a periodic SU Msearch does not suc-
ceed within that time), the SU may discard the discovered
SD.

3.2.2. Discovery in three-party architectures

Given a three-party architecture, we model the behavior
of participating SCMs, SMs, and SUs, which each engage
in a discovery process upon startup. We chose behaviors
described in the Jini specification (Arnold, 1999), where
SMs and SUs attempt to discover any intermediary SCMs
that exist in the network neighborhood.

Upon initiation, a Jini component enters aggressive dis-
covery, where it transmits probes on a designated aggres-
sive-discovery multicast group at a fixed interval (5 s
recommended) for a specified period (seven times recom-
mended), or until it has discovered a sufficient number of
SCMs. Upon cessation of aggressive discovery, a compo-
nent enters lazy discovery, where it listens on a designated
lazy-discovery multicast group for announcements sent at
intervals (120 s recommended) by SCMs. Our three-party
model implements both the aggressive and lazy forms of
Jini multicast discovery.

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

6 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

Once discovery occurs, a SM deposits a copy of the SD
for each of its services on the discovered SCM. The SCM
caches this deposited state, but only for a specified length
of time, or TTL. To maintain a SD on the SCM beyond
the TTL, a SM must refresh the SD. In this way, if the
SM fails, then the SCM can purge any SDs deposited by
the SM. SUs may query discovered SCMs for SDs of inter-
est. Alternatively, a SU may deposit a query with the SCM,
which will attempt to match SDs provided by SMs to spec-
ifications of the deposited query. The SCM forwards any
matching SDs on to the SU that deposited the relevant

query.

3.2.3. Discovery in adaptive architectures

An adaptive architecture requires SMs and SUs to ren-
dezvous through a SCM, but allows direct SM—-SU interac-
tion when no SCM is available. If SMs and SUs interact
directly and a SCM becomes available, then the architec-
ture requires SMs and SUs to resume interacting through
the SCM. We use the term mode switching to denote this
ability to change architectural configurations (i.e., to
switch between two- and three-party architectures). To
model an adaptive architecture, we chose behaviors from
the SLP specification (Guttman et al., 1999).

SLP systems are configured by default to operate in
three-party mode, switching to two-party mode when
SCMs are unavailable. Like Jini, three-party SLP discovery
requires that SMs and SUs first discover intermediary
SCMs. Upon initiation, a SLP SM or SU enters aggressive
discovery, where every 900 s it transmits six probes within a
fixed interval of 15s on a designated aggressive-discovery
multicast group. On the other hand, a SLP SCM and SM
component commences lazy discovery, where it emits
announcements on a designated lazy-discovery multicast
group at recommended intervals of 10,800 s (once every
3 h), which we lowered to 120 s in all experiments to pro-
vide more consistent behavior in the adaptive and three-
party architectures. When operating in three-party mode,
SLP SUs and SMs rendezvous through SCMs. After dis-
covery, SLP SMs employ procedures (similar to Jini) to
deposit SDs for relevant services on discovered SCMs for
a specified TTL, and then to refresh deposited SDs. To
make behavior as consistent as possible across our models,
we decided to use the same TTLs (on a per experiment
basis) for a SD to be cached by a SCM. We denote a spe-
cific choice of TTL when describing each experiment (see
Section 6). SUs query SCMs for SDs matching their
requirements. SCMs process queries, matching SDs against
SU requirements, and forward matches to SUs. SUs can
cache the response and contact the related SPs to obtain
use of the service.

When SLP SUs and SMs fail to detect SCMs, they
switch to two-party mode. In two-party mode, a SLP SU
both listens for lazy announcements from SMs and trans-
mits the aggressive-discovery six-message probe sequence
at 900 s intervals, while SMs listen for probes and respond
as appropriate. Upon receiving a lazy announcement or an

aggressive-probe response, a SLP SU (in two-party mode)
queries the SM for SDs matching its requirements. The SM
responds with matching SDs, which the SU caches locally.
In the meantime, SUs continue to search for a SCM, using
both lazy and aggressive discovery. Upon finding a SCM,
SLP requires the SU to switch to three-party mode and
to cease direct contact with SMs discovered in two-party
mode. All further contact with SMs must take place
through SCMs.

3.3. Modeling consistency maintenance mechanisms

Service discovery systems include consistency-mainte-
nance mechanisms to ensure that changes to critical infor-
mation about services can be propagated to interested
SUs. Critical information could include service availability
and capacity, and updates to descriptive information about
service capabilities. Discovery systems that we analyzed
provide one or both of two consistency-maintenance
mechanisms: polling and notification. We discuss each in
turn.

3.3.1. Polling

In polling, a SU periodically sends queries to obtain up-
to-date information about a SD that was previously dis-
covered, retrieved, and cached locally. In a two-party
architecture, the SU issues the query directly to the SM
from which the SD was obtained; thus, we model the UPnP
HTTP GET request mechanism to poll the SM to retrieve a
SD associated with a specific Uniform Resource Locator
(URL). In response, the SM provides a SD containing a list
of supported services, including relevant attributes.

Polling in a three-party architecture consists of two
independent processes. In one process, a SM sends a
request to propagate an updated SD to each SCM on
which the SD was originally cached. In Jini, this request
takes place through a ChangeService message, which
causes the SCM to update the cached SD. In SLP, the
SM re-registers the SD, which causes the SCM to replace
the previously deposited SD with the new version and an
updated TTL. In a second process, each SU polls relevant
SCMs by periodically issuing a query for a copy of SDs
that the SU has previously retrieved and cached. The
SCM replies with matching SDs. In Jini, the poll is imple-
mented with a FindService request and a MatchFound
reply; SLP polls (SCMs in three-party mode and SMs in
two-party mode) with SrvRgst and SrvReply messages,
respectively. We adopted a 180 s polling interval for all
architectures.

3.3.2. Notification

Notification requires that updates be transmitted to
interested parties immediately after they occur. We model
notification only for the two-party and three-party archi-
tectures (i.e., not for the adaptive architecture), because
the SLP specification that we used does not include
notification.

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 7

In two-party notification, a SM sends events to a SU
that indicates a SD has changed. To receive events about
a SD of interest, a SU must first register with the SM for
this purpose. We model this procedure using the UPnP
subscription mechanism, where the SU sends a Sub-
scribe request, and the SM responds by either accepting
or denying the request. The subscription, if accepted, is
retained for a TTL, which may be refreshed with subse-
quent Subscribe requests from the SU. In our experi-
ment, we chose 1800s as the TTL for subscriptions in
both (the two- and three-party) architectures.

Three-party notification requires a two-step procedure,
which we model as specified for Jini. First, SUs must regis-
ter with SCMs to receive notification about SDs of interest.
The SCM registers the notification request for a specified
TTL, which may be refreshed. Second, a SM issues a
ChangeService to propagate a SD update to all SCMs
on which the SM has previously deposited the SD. When
the SCM receives a ChangeService request from a SM
for a SD it has cached, the SCM issues a MatchFound
that propagates the updated SD to all SUs that have regis-
tered to receive such notifications.

4. Modeling failure detection and recovery techniques

Interactions among distributed components may be
impeded by failures; thus, such components must be pre-
pared to detect failures and take recovery actions. In this
section, we review the types of failure that can impede
interactions and then we describe selected failure detection
and recovery techniques. We explain how we incorporated
the techniques into our models.

4.1. Failure types

We classify failures into two general categories: process
failures and communication failures. Process failures can
be caused by cyber attacks, by programming errors, or by
hardware failures. We can subdivide process failures into
node and thread failures. During a catastrophic failure, pro-
cessing in a node ceases, and the node must reinitialize
before processing resumes. Some information maintained
by the node may persist across the failure, while other infor-
mation may be lost. The nature and condition of persistent
information could prove crucial to a node’s behavior after
processing resumes. Of course, the node might never reap-
pear. Thread failures, while less catastrophic, can be more
troublesome than node failures. A node might rely on cer-
tain long-running threads to react to events from other
nodes. Failure of selected threads can interfere with the
operation of the node, as well as other nodes. In some cases,
a node can appear to be present, while being effectively
inoperable. Since the effects of node and thread failure are
similar, we focus only on node failure in this study, allowing
the effects of thread failure to be inferred.

Communication failures can arise due to jamming, or
other interference, due to congestion, due to denial of ser-

vice attacks, due to physical severing of cables, due to
improperly configured or sabotaged routing tables, or
due to multi-path fading as nodes move across a terrain.
We subdivide communication failures into three classes:
interface failures, message loss, and path failures. A com-
munication interface in a node may fail fully (both transmit
and receive) or partially (either transmit or receive). All
outbound messages from an interface will be lost when
the transmitter fails, while all inbound messages will be lost
when the receiver fails. Message loss, a less severe failure,
implies that individual messages may be dropped, either
sporadically or in bursts. Path loss appears as a blocked
communication route between two nodes, or areas, in a
network. A path can be blocked in one or both directions.
Because effects of path failure are similar to interface fail-
ure, we studied only interface failure.

4.2. Failure detection and recovery techniques

In service discovery systems, failure detection and recov-
ery responsibilities are divided among three parties: (1)
transport protocols, (2) discovery protocols, and (3) appli-
cations. The transport protocols support the discovery pro-
tocols and the application, while the application also relies
on the discovery protocols. We first describe failure detec-
tion and recovery provided by transport protocols, such as
TCP and UDP. We then discuss heartbeats and soft state —
the main detection and recovery techniques implemented
by discovery protocols. Subsequently, we discuss remote
exceptions and retries, which are the main detection and
recovery techniques available to applications and selected
discovery processes. We describe how we model these
techniques.

4.2.1. Recovery by transport protocols

Discovery protocols and applications use recovery ser-
vices from three types of transport: (1) unreliable multicast
protocols, (2) unreliable unicast protocols, and (3) reliable
unicast protocols. We discuss each in turn.

4.2.1.1. Unreliable multicast protocols. Unreliable proto-
cols, whether multicast or unicast, neither recover nor sig-
nal lost messages; thus, neither source nor destination will
learn of a loss. Further, multicast protocols exchange mes-
sages along a tree of receivers. For this reason, a multicast
message might be received by some nodes, but not by
others. A failure near a multicast source prevents messages
from being received by any node in the multicast tree, while
a failure near a receiver prevents messages from being
received by only a single node in the tree. Of course, fail-
ures at intermediate points in the tree could result in mes-
sages being lost to subsets of receivers. All three systems we
studied (UPnP, Jini, and SLP) employ unreliable UDP
multicast protocols.

When simulating UDP transmission, our models discard
messages lost due to congestion and due to interface
failures. During interface failure, the models discard all

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

8 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

messages sent from a node with a failed transmitter, as well
as all messages inbound for a node with a failed receiver.
Neither sender nor receiver learns the fate of lost messages.
Since unreliable protocols provide no guarantees, recovery
must be provided by mechanisms at a higher layer.

4.2.1.2. Unreliable unicast protocols. Among the systems we
studied, both SLP and UPnP use an unreliable unicast pro-
tocol. SLP uses unicast UDP to transmit SrvRgst mes-
sages, used for queries, and to transmit SrvReg
messages for registrations and registration renewals. To
improve reliability, SLP employs two additional proce-
dures. First, SLP issues redundant SrvRgst messages;
each request is sent four times within a 15 s interval. Sec-
ond, SLP requires a waiting period (we used 15 s) to listen
for a corresponding SrvRply. If no SrvRply is received
within that time, then the message transmission is aban-
doned and a remote exception (REX) is declared so that
a higher layer entity can decide upon an appropriate recov-
ery action. Our SLP models incorporate this behavior.

UPnP uses unicast UDP to send responses to Msearch
queries. To improve the reliability of these responses,
UPnP requires that each UDP message be sent multiple
(n) times. In our model, we set n = 2.

4.2.1.3. Reliable unicast protocols. Reliable unicast proto-
cols include mechanisms that attempt to ensure message
delivery by detecting and re-transmitting lost messages.
Of course, the reliability schemes may eventually give up
if too many retransmissions are needed (which might indi-
cate node or interface failure). In such cases, the reliable
unicast protocol will signal to a higher layer that a message
was (probably) not delivered. For example, Jini uses
Remote Method Invocation (RMI) over TCP to invoke a
method on a remote object and to receive a response,
and UPnP uses TCP to submit HTTP requests and receive
HTTP responses. Either the RMI layer (in Jini) or the TCP
layer (in UPnP) can signal a remote exception (REX).

Our model unifies reliable unicast protocols into one set
of procedures that simulate TCP in two phases: connection
establishment and data transfer. The connection establish-
ment phase consists of exchanging connection request and
response messages. Both connection requests and responses
may involve multiple retries before a connection is estab-
lished. We simulate connection request retries with delays
of 65, 24s, and 24s, before signaling the connection
requester with a REX 24 s after the final retry (78 s after
the initial request).

Successful connection establishment initiates a data-
transfer phase, where the connection requester sends a data
request and may await a data response. The data request
and response may be subject to retransmissions. We com-
pute a retransmission timeout (RTO) that is roughly the
round-trip time, or RTT. We increase the RTO by 25%
with each successive retransmission. Retries in the data-
transfer phase continue until a time threshold (60 s) is
reached, after which the transmission attempt is aban-

doned. Failure of a data request causes a REX to be issued
to the requester. Failure of a data response causes a REX
to be issued to both the requester and responder. The
requester cannot determine whether a REX was caused
by failure to transmit the request or by failure to receive
a response. The responder has more information, as it does
not receive a REX when an inbound request fails, but does
receive a REX when its outbound response fails. In
essence, while reliable unicast protocols attempt to deliver
messages in the face of various communication failures,
ultimately the reliability mechanisms might prove insuffi-
cient, causing a higher-layer process to be notified of the
failure. In such cases, the higher-layer process is free to
determine an appropriate recovery strategy.

4.2.2. Recovery by discovery protocols

Components in a discovery system may also learn of
failure by listening for recurring messages sent by remote
components, much as a heartbeat is monitored to assess
patient health. For example, UPnP SMs periodically mul-
ticast lazy announcements advertising SDs. Similarly, Jini
and SLP SMs periodically refresh SD registrations on
SCMs by sending unicast messages, and then listening for
responses. Both lazy announcements and registration
refresh messages convey soft state (or information) — in this
case, the SD, which a receiver can cache for a period con-
sistent with the associated TTL. When subsequent heart-
beat messages fail to arrive within the TTL, a listener
may assume failure of the SM and thus discard cached
information about its related SD, effectively eliminating
knowledge about existence of the related service.

Our models use a form of soft state that allows SDs for
failed components to be discarded and then to be either
rediscovered or replaced. For example in our two-party
model, once a UPnP SU discards knowledge of a SM
and any associated SDs, the SU commences periodic mul-
ticast (Msearch) queries to search for a new instance of
the service. Once the SU regains a SD meeting its require-
ments, the related queries cease. SLP employs an analo-
gous procedure when operating in two-party mode.

The process is more complicated in three-party situa-
tions. Here, failure of refresh messages causes SCMs to dis-
card a service registration. A SU may monitor the status of
the SD by periodically polling the SCM. When poll
responses indicate the SD is no longer present on the
SCM, the SU may then discard its cached copy of the
SD. In Jini, SUs may also register with the SCM to be noti-
fied when the SCM discards the SD. When receiving such
notification, a SU discards its cached copy of the SD and
then attempts to find a replacement by querying the
SCM for another SD that satisfies its requirements. Mean-
while, a SM for a SD discarded by the SCM might recover
after failures are repaired. The SM may rediscover the
SCM through aggressive or lazy discovery, and then rereg-
ister the lost SD. The SU, if it has not found a replacement,
can then receive the original SD by querying the SCM (Jini
and SLP) or through notification (Jini).

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

Table 2

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 9

Summary of recovery mechanisms and key parameters

Responsible Recovery Two-party architecture (UPnP) Three-party architecture (Jini) Adaptive Architecture (SLP)
party mechanism
Transport Multicast No recovery No recovery No recovery
protocols UDP
Unicast Redundant transmission n = 2 Not applicable Redundant transmission n = 4
UDP No recovery No recovery
TCP Issue REX in 78 s Issue REX in 78 s Not applicable
Discovery Heartbeat SM sends n(3 + 2d + k) lazy SM registers SDs for TTL varied SM (in two-party mode only) sends lazy
protocols announcements of SDs at interval varied by experiment; SU registers announcements at 120 s interval
by experiment. SU caches SD for TTL notifications for TTL varied by (recommended 10800 s by SLP); SM
varied by experiment, (recommended experiment registers SDs for TTL varied by
1800 s for announcement interval and experiment
TTL by UPnP)
Soft-state After purging SD, SU issues aggressive ~ SU and SM issue seven probes (at SU and SM issue 6 probes within 15 s
recovery probe (UPnP Msearch) at interval 5's intervals) only during startup; duration during startup and at 900 s
(set to 120 's) SCM issues lazy announcements at interval; SCM sends lazy
interval (120 s) announcements at 120 s interval (SLP
recommends 10800 s)
Application Ignore SU: HTTP Get Poll SU: FindService Poll SU:SrvRgst Poll
REX SM: Notification SCM: Notification (Notification unsupported)
Retry after ~ SU: HTTP Get after discovery retry SM: depositing or refreshing SD SU:SrvRgst after discovery retry (180 s
REX (180 s with <3 retries); Registration on SCM retry; SU: registering and ~ with <3 retries); SM (three-party mode)
request and refresh retry (120 s) refreshing notification requests on depositing or refreshing SD on SCM
SCM retry (120's) retry (120 s)
Discard SU purges SD after failure to receive SU and SM purge SCM after Three-party mode: SU and SM purge
knowledge SM announcement within TTL or after period of continuous REX (varied =~ SCM after period of continuous REX

3 retries of HTTP Get

by experiment)

Two-party mode: SU purge SM after

period of continuous REX (varied by
experiment)

Table 2 summarizes the way in which we model heart-
beat and soft state for each of our models. The table indi-
cates values we adopted across all experiments (except as
otherwise indicated in the table and discussed in Section
6). In some cases, such as polling and retransmission inter-
vals, we chose relatively short latencies on the assumption
that applications would have some expectation of failure
and requirement to exhibit robustness. Wherever possible,
we based our choices on values recommended in protocol
specifications. In doing so, we chose the smallest value
from across all the specifications and, to establish consis-
tency, we used that value in all three architecture models.
This approach ensured that observed performance differ-
ences resulted only from differences in system architecture
and protocol.

4.2.3. Recovery by applications

When failure detection leads to a REX, discovery sys-
tems generally expect application software to initiate recov-
ery, guided by an application-level retry policy. In our
models, depending on the situation, we implement three
different policies: (1) ignore the REX, (2) retry the opera-
tion for some period, and (3) discard knowledge. The dis-
card strategy, employed following repeated failure of the
retry strategy, relies upon discovery mechanisms to recover
from failures that are more persistent. These strategies (dis-
cussed below) are summarized in Table 2.

4.2.3.1. Ignoring the remote exception. In general, our mod-
els ignore any REX received when responding to a request,
relying on the requester to retry. A SU can ignore a REX
received when issuing a poll (e.g.,, FindService,
SrvRgst, or HTTP GET) because the poll recurs at an
interval. A Jini SCM (three-party model) or UPnP SM
(two-party model) also ignores a REX received while
attempting to issue a notification. This behavior, which is
described in both the Jini and UPnP specifications, depends
upon TCP to provide reliability for notifications. Notifica-
tions include sequence numbers that allow a receiving node
to determine whether or not previous notifications were
missed.

4.2.3.2. Retrying the operation. In our models, we retry
selected operations in the face of a REX. The UPnP spec-
ification separates the operation of discovering a service
from obtaining a description of the service (Jini combines
these operations). Without a description, a service cannot
be used. For this reason, in the UPnP model, a SU must
issue a HTTP GET to obtain a description. If no description
arrives within 180 s, then our model retries the HTTP GET.
If unsuccessful after three attempts, the SU purges the
related SD and discards knowledge of the SM. Our three-
party models, based on Jini and SLP, also contain a retry
strategy, but associated with attempts to register or change
a SD with a SCM. In these cases, the SM retries a

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

10 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

ChangeService or ServiceRegistration 120s
after receiving a REX. Similarly, when a SU receives a
REX (from either a SM or SCM) in response to a request
to register for notification, the SU retries the registration in
120 s. These retries recur up to some time bound, after
which the SM discards knowledge of the SCM.

4.2.3.3. Discarding knowledge. Both the two-party and
three-party models include the possibility that an applica-
tion can discard knowledge of previously discovered nodes.
After discarding knowledge of a SM or SCM, all opera-
tions involving that node cease until it is rediscovered,
either through lazy or aggressive discovery.

In our UPnP model, SUs discard a SM (and any related
SDs) after failure to receive announcements from a SM
within a TTL or after three unsuccessful retries of a HTTP
GET. In our SLP model (two-party mode), SUs do not dis-
card SMs after failure to receive announcements. We took
this decision because the SLP specification does not require
SUs to discard a SM when missing a heartbeat.

In our three-party model (based on Jini), a SM or SU
deletes a SCM after a period (varied by experiment) of
receiving only REXs when attempting to communicate
with a SCM. We adopt this behavior because the Jini spec-
ification states that a discovering entity may discard a SCM
with which it cannot communicate. While the SLP specifi-
cation is silent on these issues, we implemented our SLP
model (in both two-party and three-party modes) so that
SUs discard SMs after a period (varied by experiment) of
continuous REXs. We took this decision to align this
behavior among all our models.

5. Experiment methodology

We adopted a common approach to modeling, to exper-
iment design, and to metrics for analysis. Aspects of the
approach seem suited to investigation of failure response
in other classes of distributed systems. Below, we discuss
our approach.

5.1. Model construction

We created simulation models for the three architectures
we found. Executable models enabled us to understand col-
lective behavior among distributed components. We based
the structure and behavior of our models (recall Section 3)
on specifications for UPnP (two-party architecture), Jini
(three-party architecture), and SLP (adaptive architecture).
Each model comprises a set of components (and relation-
ships among them), interactions (as messages received by
components), behavior (as actions taken in response to
messages, including generating new messages), and vari-
ables (to represent internal state of components). Compo-
nents communicate via a simulated transport service that
represents multicast UDP and unicast UDP and TCP (as
explained in Section 4.2.1). The transport service can be
impeded by simulated message loss and interface failures.

We used Rapide (Luckham, 1996), an architecture descrip-
tion language and accompanying toolset developed at
Stanford University, to implement models of Jini and
UPnP; for SLP we used SLX, a simulation system devel-
oped by Wolverine Software (Henriksen, 1997). We chose
to use two different simulation systems in order to establish
the generality of our approach. We note that the Rapide
system automatically records causal event traces and pro-
vides tools to visual and analyze those traces.

5.2. Experiment design

With simulation models in hand, we designed experi-
ments to investigate failure response for selected configura-
tions of components, where each configuration represents a
distinct combination of architecture (two-party, three-
party, or adaptive), number of deployed SCMs, and choice
of behaviors for discovery, consistency maintenance, and
recovery. We approached experiment design by focusing
on the types of failures (recall Section 4.1) that might inter-
fere with system operation. We decided to consider four
failure types: (1) power failure and restart, (2) node fail-
ures, (3) interface failures, and (4) message loss. For each
failure type, we constructed an application-level scenario
to exercise simulated topologies. Our scenarios include:
(1) recovering a previously discovered configuration (on
restart after power failure), (2) maintaining operational
capability in a distributed real-time control application
(impeded by failure of nodes hosting needed components),
and (3) maintaining consistency of distributed information
(when communication is impeded by interface failures or
message losses). For three scenarios (node failures, inter-
face failures, and message loss), we subjected each configu-
ration to increasing failure rates, while measuring system
response. To focus on fundamental differences in the
designs for discovery systems, we excluded a number of
possible application-level choices, such as local caching of
service descriptions and varying subscription lengths.

5.3. Metrics

To compare failure response among simulated configu-
rations, we defined metrics specific to each scenario.
Broadly these metrics fall into three categories: (1) effective-
ness, which is the ability of a distributed system to exhibit a
desired state, expressed as a probability that the state is
reached or a proportion of time a system is in the desired
state; (2) responsiveness, which is the time taken, or latency,
to reach the desired state; and (3) efficiency, which is the
amount of effort, measured by the number of messages,
required for a distributed system to complete a scenario.
For most combinations of configuration and scenario, we
conducted repeated simulations and then we plotted (on
the y-axis) performance on a metric against increasing fail-
ure rate (on the x-axis). The graphs also include a table that
summarizes performance by averaging a metric across all
failure rates; this summarization of the plotted curves gives

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

a quick comparison of relative performance. An exception
to this general approach to measurement occurs for the sce-
nario related to restart after power failure, where there is
no increasing failure rate. In this case, we simply provide
the average and variance of the latency before a configura-
tion is restored. In selected cases, we analyzed event traces
to understand how differences in architecture, topology,
and behavior contribute to differences in performance.

6. Experiments and results

In this section, we describe our scenarios and exhibit
results. For each scenario, we describe the related experi-
ment, delineate the failure model and recovery parameters,
define the metrics, display the results and discuss underly-
ing causes. We begin in Section 6.1 with the power-fail-
ure-and-restart scenario and then consider in Section 6.2
the distributed real-time control scenario impeded by node
failures. Subsequently (in Section 6.3), we discuss the con-
sistency maintenance scenario impeded by communication
failures of two types: interface failures and message losses.

6.1. Recovery after power failure

In this experiment, a distributed system establishes an
initial configuration in which pairs of SUs and SMs rendez-
vous, so that each SU obtains one required service. Subse-
quently, a power failure causes all nodes to crash. Upon
power restoration, each SU attempts to rediscover the pre-
viously acquired service. This experiment measures the
latency until the initial configuration is restored.

6.1.1. Experiment description

This experiment compares three system designs: a two-
party model (based on UPnP), a three-party model (based
on Jini), and an adaptive model (based on SLP). In the
two-party case, the topology (recall Fig. 1) consists of six
nodes: three SUs and three SMs. We partition the nodes
into three SU-SM pairs that attempt to rendezvous. In
the three-party cases (Jini and SLP), the topology (recall
Fig. 2) adds three SCMs for a total of nine nodes; however,
we use logical partitioning (Jini groups and SLP scopes) so
the each SU-SM pair must discover each other through a
different SCM; so that a previously discovered configura-
tion may not be rediscovered until all nodes have restarted.
We allow all SU-SM pairs to rendezvous, which establishes
an initial configuration, and then we simulate a power fail-
ure lasting 40 s. We restore power and wait for SUs to ren-
dezvous with the previously discovered SMs. Once the
initial configuration is restored, the scenario ends.

Each model includes parameters set to the values indi-
cated in Table 3. The first three rows in Table 3 show
parameters unique to specific discovery systems. These
parameters include the pattern for aggressive-discovery
probes and the interval for lazy-discovery announcements.
Jini and UPnP allow SUs to register for notifications; we
assume such registrations are lost on node failure. SLP

Table 3

Parameters for power failure and restart experiment

11

Parameter class

Parameter

Value

UPnP protocol
parameters

Jini protocol
parameters

SLP protocol
parameters

Common protocol
parameters

Delays used for all
models

Probe pattern

Announce interval
Notification requests
Polling interval

Probe pattern
Announce interval
Notification requests

Polling interval

Probe pattern
Announce interval
Notification requests
Polling interval

Registration TTL
Total registration
duration

Node restart delay

Transmission delay
Processing load delay
Per item processing

None used in
experiment

1800 s

Purge on SM failure
Not applicable

7 Probes 5 s apart
120 s

Purge on SCM
failure

Not applicable

4 Probes in 15 s
120 s

Not applicable
Ssor3ls

30s
100 s
2-15 s uniform

1-10 us uniform
10-100 us uniform
10 us (discovery

DBs)
100 us (SCM cache)

does not allow notifications and thus requires SUs to poll
SCMs to discover services. We instantiated the adaptive
architecture with two different polling intervals: 31 s as rec-
ommended for SLP and 5 s in order to gain early acquisi-
tion of services. The fourth row of Table 3 shows
parameters for which we selected common values across
all models. In particular, note that each node has a restart
delay, which in most cases is not defined in discovery spec-
ifications. Since the specification for Jini recommends a
random delay distributed uniformly between 2s and 15s
before commencing discovery operations, we decided to
assign this same strategy to all of our models in order to
eliminate this as a source of difference. The final row of
Table 3 lists common transmission and processing delays
that we used for each model.

6.1.2. Metrics

We defined two metrics to compare system performance:
restoration latency and efficiency. Restoration latency mea-
sures the elapsed time from restoration of power until the
initial configuration is reestablished. Since restoration
latency depends upon the starting time of the last system
component, we defined restart delay to measure the elapsed
time from restoration of power until the final system com-
ponent restarts. We defined efficiency as the total number
of messages during restoration latency.

6.1.3. Results

Table 4 presents results, measured over 30 repetitions,
for four different configurations. The metrics reveal that
for most configurations, restart delay is the dominant

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

12 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

Table 4
Results for power failure and restart experiment

Model variant Restart delay (s)

Restoration latency (s)

Efficiency (number of messages)

Mean Variance Mean Variance Minimum Maximum
Two-party 13.07 2.97 15.04 2.97 49 67
Three-party 12.56 2.09 14.76 3.31 70 90
Adaptive (5 s polling interval) 13.13 1.57 16.2 4.25 55 77
Adaptive (31 s polling interval) 13.23 1.22 34.68 65.13 57 100

component of restoration latency; the previous configura-
tion is restored within about 2s after all nodes have
restarted. An exception arises when we configure the adap-
tive architecture with a 31 s polling interval. Here, the poll-
ing interval is the dominant component of restoration
latency. This occurs in cases where a related SCM and
SU both restart before the SM. Here the SU discovers
and queries the SCM for services before the SM can find
the SCM and register its service. In this situation, the SU
must wait for the 31 s polling interval to elapse for issuing
a second, successful query. Reducing the polling interval to
5 s brings restoration latency closer to that exhibited by the
other architectures.

Regarding efficiency, Table 4 shows that architectures
with more components exchange more messages during a
restoration scenario, but those architectures with the same
number of components tend to exchange more messages
when the scenario takes longer to complete. The three-
party architecture proves slightly less efficient than the
adaptive architecture because Jini incurs messages related
to registration, which SLP does not support.

One final point to note is the slightly better restoration
latency of the three-party, as compared with two-party,
architecture. This occurs because Jini delivers a service
description in one step, concomitant with discovery, while
UPnP requires a three-step process: discover the service,
get the first part of the service description, and then get
the second part of the service description. Should transmis-
sion delays increase, this factor would cause even greater
difference in restoration latency.

6.2. Service acquisition and maintenance impeded by node
failures

In this experiment, we investigate effectiveness and effi-
ciency of service discovery systems in detecting component
failure and locating replacements. We model a client for a
distributed real-time control application that must discover
two types of sensors and an actuator, then monitor sensor
readings and control a process. The client has access to a
population of sensors and actuators, each running on sep-
arate nodes that we allow to fail. The client, sensors, and
actuators are supported by a discovery system, represented
by configurations of the three architectural variants in our
models: two-party (UPnP), three-party (Jini), and adaptive
(SLP). Where applicable, the experiment topology may
include one or more SCMs, which we also allow to fail.

We compare configurations using functional effectiveness,
measured as the proportion of time that the client possesses
an operational set of sensors and actuators required to con-
trol the process. We also compare efficiency among config-
urations by the number of messages exchanged.

6.2.1. Experiment description

Our experiment models a topology that includes one
(client) SU and 12 SMs, composed of four instances each
of three service types: ‘“fast” sensor, “slow” sensor, and
actuator. Fig. 3 illustrates such a topology configured as
a two-party architecture and Fig. 4 shows the same topol-
ogy configured as a three-party architecture (including one
to three SCMs). We compare the performance of eight dif-

L
Fast

Sensor

SM |

=

Slow
Sensor
SM |
T

[€— | Actuator
sm (1

UPnP Multicast Group

Umcast Links

®<—>

HTTP/TCP and HTTP/UDP

Service
User

Fig. 3. Two-party service discovery system with one service user and 12
service managers.

Aggressive Discoverym Multicast Group

L] -
< Fast Optional SCMs
Sensor |
maE I :
. | Remote Method i
- Slow Invocation
> Sensor i
sMm |} i
= Service Cache |||
| Manager ||
< SCM L
| ActSu&tor Unicast Links () i
= A
h Service
User —
Lazy Discovery Multicast Group

Fig. 4. Three-party service discovery system with one service user, 12
service managers, and up to three service cache managers.

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 13

Table 5

Eight configurations compared in node-failure experiment
Configuration Architecture Behavior SCMs
A0 Two-party UPnP None
B1 Three-party Jini One
B2 Two
B3 Three
Co Adaptive SLP None
C1 One
C2 Two
C3 Three

ferent configurations, enumerated in Table 5. Here, one
configuration (AQ) uses a two-party (UPnP) architecture
and one (CO0) uses an adaptive (SLP) architecture limited
to two-party mode, three configurations (B1, B2, and B3)
use a three-party (Jini) architecture, and three configura-
tions (C1, C2, and C3) use an adaptive, three-party (SLP)
architecture.

To establish initial conditions, we exercise each configu-
ration until discovery completes and the SU acquires one
service of each of the three service types. We then fail nodes
according to the failure model described below. In order to
focus exclusively on failure detection and recovery
processes, we do not allow the SU to cache backup ser-
vices, so at any time the SU holds at most one SD for each
service type. After activation, a “fast” sensor transmits a
reading every two seconds and a “slow” sensor transmits
a reading every 30s. The SU invokes the actuator after
receiving an appropriate combination of readings from a
“fast” and “‘slow” sensor. We select actuation times ran-
domly from a uniform distribution with a mean of 60 s,
provided the SU receives the required sensor readings.
When the SU holds one SD for a service of each type
(“fast” sensor, “‘slow’” sensor, and actuator) and when each
of those services is operational, then the application is con-
sidered functional. If the SU lacks SDs for one or more ser-
vice type or if one or more of the SDs held by the SU
describes a service instance that is not operational, then
the application is considered non-functional. When non-
functional, the SU client must first detect what services
have failed and then initiate recovery procedures to dis-
cover replacements. During each experiment repetition,
we accumulate the periods when the client is non-func-
tional as well as the time required for failure detection
and recovery. We also record message counts of the under-
lying service discovery system for the experiment duration.

6.2.2. Failure model

During the experiment duration Tp, each SM node (and
SCM node in three-party configurations) fails randomly
and independently, although at least one service of each
type always remains active. We take this decision to pro-
vide a reasonable test of the service discovery system’s
capability to recover and restore the application to a func-
tional state. We let 1 be the node failure rate that varies

from 0% to 80% in 10% increments (though no failures
occur when 4 =0). The mean time to node failure is
tme = (1 — A) - Tp. Node failure times are randomly cho-
sen from a “stepped” normal distribution with three steps:
a 0.15 probability of failure before tyr — 0.2¢pf, a 0.7
probability of failure between fyp — 0.26mp and fyp +
0.2tmE, and a 0.15 probability of failure between g +
0.2tpmrE and 2fyp. Failure times are distributed uniformly
within each step. When a node fails, affected services
become unavailable for a time, selected from three failure
duration classes, each with a different probability and dura-
tion. Short failures occur with a probability of 0.1 for a
fixed (135 s) duration; intermediate failures occur with a
probability of 0.7 for a duration selected uniformly on
the interval [180, 300] s, long failures occur with a probabil-
ity of 0.2 selected uniformly on the interval [480, 600] s.

6.2.3. Failure recovery techniques

Table 6 gives common and configuration-specific
parameters for failure recovery techniques we used in this
experiment. We chose parameters that enable the SU to
respond quickly to failure of remote services and to find
replacements as soon as possible. We describe the recovery
techniques employed in our model: first at the discovery
level and then at the application level.

6.2.3.1. Discovery-level recovery. For the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy,
choosing a TTL of 600s for refreshing cached SDs. If
not refreshed within the TTL, the SU purges the SD and
commences periodic (120 s) Msearch queries to find a
replacement service. When we model SLP in two-party
mode, the SU both listens for lazy announcements (120 s)
from SMs and periodically issues multicast queries for
SMs (900 s) to find replacements. In three-party configura-
tions (both Jini and SLP), we model heartbeat monitoring
through service registration refreshes on SCMs, choosing a
refresh interval of 30 s for slow sensors and actuators and
300 s for fast sensors. If refreshes are missed, the SCM
purges the SD. In the three-party architecture, a SU that
discovers a SD through a SCM polls that SCM every
180 s to learn if the SD has been purged; if so, the SU
assumes failure of the related service and also purges the
SD. In both three-party and adaptive architectures, SUs
and SMs search for SCMs by listening for lazy announce-
ments (120 s).

6.2.3.2. Application-level recovery. Across all models, we
adopt an identical application-level recovery policy: upon
failure to receive a scheduled sensor reading (every 2 s for
fast sensors and 30 s for slow sensors) the SU immediately
purges the related SD and commences search for a replace-
ment. Similarly, failure to receive a response to an actuation
attempt within 20 s causes the SU to purge the related SD
and to commence search. A similar policy applies to detect-
ing failed SCMs. If a SM does not receive a response when
attempting to refresh a service registration, the SM assumes

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

14 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

Table 6
Recovery parameters for node-failure experiment
Configuration Parameter Value
Discovery-level Behavior for two-party UPnP configuration A0 Announce 600 s (lowered from recommended value)
recovery interval

SU purges SD
Msearch query
interval
Multicast query
interval

Refresh interval
SCM purges SD
SU-SCM query
interval

SU purges SD

Behavior for two-party SLP configuration B0

Behavior for three-party Jini and SLP
configurations B1, B2, B3, C1, C2, C3

Application-level All configurations Sensor interval

At TTL expiration (600 s)
120s

120 s
30 s for slow sensors and actuators 300 s for fast sensors
Immediately after a missed refresh

180 s

Immediately after learning SD is unavailable

2 s for fast sensors 30 s for slow sensors

recovery SU purges SD Immediately after missed sensor reading and after failing to
receive an actuation response within 20 s
SM or SU 20 s after failure to receive response to request
purges SCM
that the SCM has failed and begins searching for a replace- 1

ment. Similarly, if a SU does not receive a response to a
SCM query, the SU purges the SCM and begins to search.

6.2.4. Metrics

We define T\ as accumulated time during which a cli-
ent application is in a non-functional state. We compute
the proportion of Tp, that a client application is in a func-
tional state, or the client’s functional effectiveness, by the
ratio F = (Tp — T'ng)/Tp. We compute the average func-
tional effectiveness of a configuration at a particular failure
rate / for n experiment repetitions as

>iei{To); = (Tne),/(T),)

n

F, =

We measure Tr as follows. As indicated, a client that has
become non-functional first incurs a delay before detecting
the failure. We call this delay detection latency. After
detecting a non-functional state, the client may incur some
delay while restoring required services. We call this delay
recovery latency. Detection latency commences when a
SM fails but the SU holds a SD provided by the SM. Once
the SU discards the SD, or the SM recovers, detection
latency ends. Recovery latency begins after the SU purges
a SD for a failed service and commences search. Recovery
latency ends when the SU finds a SD matching its needs.
During periods when a client incurs either detection or
recovery latency or both (the states can overlap), the client
is non-functional, and we accumulate such periods in TNE.

6.2.5. Results

For each of the eight configurations in Table 5, we set
Tp = 1800 s and executed 60 repetitions for each failure
rate A. Fig. 5 shows average functional effectiveness F,
for each configuration as 4 increases. Fig. 5 also includes
a table that shows the summary statistic F gy, which is
F; averaged across all values of / for each configuration.

(]
(7]
(4]
]
2
5 cocs
@ ourati I3 B3C2
um_ 0.8 Configuration Ia__ . o1AD
- A0 0.911
g
H B1 0.804
‘g‘ B2 0.872 B2
S B3 0.916
(' 06._
] co 0.921 \A
> B1
§ [0.913
z c2 0.915
c3 0.918
0.4 T T T T
0 20 40 60 80

Failure Rate A (%)

Fig. 5. Comparing average functional effectiveness F; for different
configurations in response to increasing rate of node failures, where at
least one SM of each type is operational (60 repetitions per data point).
The table gives the Fy g, or functional effectiveness averaged across all
values of 4 for each configuration.

The results show that six of the eight configurations have
similar curves for F, and a Fy g of over 0.9. The three-
party configurations with one SCM (B1) and two SCMs
(B2) perform less well, because as A rises, the incidence of
failure of the single SCM in B1 and concurrent failure of
both SCMs in B2 increases. With no SCM to query for ser-
vices, the SU remains non-functional. Adding a third SCM
(B3) reduces the probability of concurrent SCM failure suf-
ficiently to raise F g to a level comparable with other con-
figurations. The adaptive architecture achieves a
comparable Fy g, even with two or fewer SCMs, because
when no SCMs can be found, the SU immediately switches
to two-party mode to discover the available SMs. In the
discussion below, we provide more detail on the effective-
ness of these configurations by considering their compara-
tive detection and recovery latencies.

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 15

N
\)
»©
\
QQ
2
S
[«]
o c3
2 B3 |
g
8 c2
B2
=
QW o1 —|
\QQ B
I — T S Pt A Jee—{] A0
r — co
Q+ - - -

0 20 40 60 80
Failure Rate A (%)

Fig. 6. Comparing message counts for different configurations in response
to increasing rate of node failures where at least one SM of each type is
operational (60 repetitions per data point).

As revealed in Fig. 6, efficiency varies markedly among
the configurations. The two-party configurations A0 and
CO0 are notably more efficient than any three-party config-
uration. This occurs in part because more messages are
needed for SUs and SMs to rendezvous through SCMs.
These messages include heartbeats by the SCMs, registra-
tion and refresh of SDs by SMs, and polls of SCMs by
the SU. In the three-party and adaptive architectures, dif-
ferences in protocol also influenced efficiency. For equiva-
lent configurations, the three-party architecture (B1, B2,
and B3) proves more efficient than the adaptive architec-
ture (C1, C2, and C3). This occurs, because in the former,
Jini SCMs send lazy announcements at 120 s intervals,
while Jini SUs and SMs employ aggressive search only at
start-up. However, in the adaptive architecture, both SLP
SCMs and SMs announce every 120s, while SUs and
SMs repeat a six-probe aggressive search sequence at regu-
lar intervals (900 s). We believe that with equivalent under-
lying behaviors, adaptive and three-party architectures
would exhibit similar efficiency when configured with an
equal number of SCMs.

One additional point is worth noting. In the two-party
configurations (A0 and C0), the message-count curves have
increasing slope as A increases, because the SU must search
more frequently for replacement services. Note, however,
that three-party configurations have message-count curves
with decreasing slope as 4 increases. The rate of message
exchange decreases because SCMs fail more frequently
and remain down for longer periods as A rises, thus reduc-
ing the number of opportunities for SD refresh messages
and SCM heartbeats.

6.2.6. Discussion

While three-party configurations with three SCMs (B3
and C3) yield comparable functional effectiveness to two-
party configurations (A0 and CO0), our experiment reveals
quite different underlying causes. Fig. 7a—c display similar
non-functional time (7wg) under increasing failure rate

a
DETECTION LATENCY CONFIGURATION A0
[}
20.8
Q
c
)
©
J0.6
-
°
c
204
g NONFUNCTIONAL
&
E 0.24- RECOVERY LATENCY .
—o— - . et
_‘..--i--...‘....‘----i —a
0 20 40 60 80
Failure Rate (%)

1

b CONFIGURATION B3

RECOVERY LATENCY
/ /‘\\\

o
o

NONFUNCTIONAL
TIME

DETECTION LATENCY

Proportion of Latencies
o o
EN o
—

o
\S]
——

0 =" PR R R e e LR
0 20 40 60 80
Failure Rate (%)
c ! B CONFIGURATION C3
DETECTION LATENCY
208
o
c
2
S06
k]
§ 0.4
.g . NONFUNCTIONAL
& TIME
£02 A
RECOVERY LATENCY . .y .-=-=&"" -;-_'/_.
0 ; - : : ‘
0 20 40 60 80

Failure Rate (%)

Fig. 7. Detection and recovery latencies of various configurations as a
proportion of nonfunctional time (60 repetitions per data point).
Decomposition of nonfunctional time into detection and recovery latency
for configuration: (a) A0 (b) B3 and (c) C3.

for configurations A0, B3, and C3. The figures also decom-
pose Tnr into the proportions attributable to detection
latency and recovery latency. In the two-party configura-
tion, reported in Fig. 7a, about 90% of T accrues while
waiting to detect a failure; recovery occurs quickly. Analy-
sis of execution traces showed most failures were detected
through missed sensor readings or REXs received in
response to failed actuations. In the three-party configura-
tion, shown in Fig. 7b, the situation is different. Here, the
largest component of Tng is recovery latency. Execution
traces for the three-party architecture show incidence of
concurrent failure of all SCMs rising steadily with increas-
ing A. With no SCMs available, the SU is unable to find
replacements for failed services until a SCM (1) recovers,
(2) is discovered by the SU and SMs, (3) accepts registra-
tions from available SMs, and (4) responds to queries from

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

16 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

the SU. These factors dramatically increased the propor-
tion of TwF attributable to recovery latency. This trend is
more marked with fewer SCMs (not shown here). In the
adaptive configuration, as displayed in Fig. 7¢c, over 90%
of Tnr is again detection latency. Here, upon detecting fail-
ure, the SU switches to two-party mode when no SCMs
can be found; thus, avoiding the delay incurred in waiting
for a SCM to recover. Hence, the detection and recovery
behavior of the adaptive configuration appears quite simi-
lar to the two-party configuration, which is also reflected in
the similarity of Fig. 7a and c.

6.3. Consistency maintenance impeded by communication
failures

In this experiment, we investigate effectiveness and effi-
ciency of service discovery systems in maintaining consis-
tency of information replicated throughout a distributed
system. We model five clients (SUs) that each discover
the same service manager (SM) and obtain a copy of the
service description (SD) managed by the SM. Subse-
quently, the SM updates its local copy of the SD, creating
an inconsistency with the SDs replicated to the SUs. We
measure the probability that each SD will receive an
updated copy of the SD prior to a deadline, the latency
incurred in receiving the updated SD, and the number of
messages exchanged to convey the update. We consider
effects from two types of communication failure, interface
failures and message losses, which could impede dissemina-
tion of the updated SD. We also compare two alternate
consistency maintenance mechanisms: polling (recall Sec-
tion 3.3.1) and notification (recall Section 3.3.2), which
are supported by selected discovery systems.

6.3.1. Experiment description

We compare performance of nine configurations, as
enumerated in Table 7. One configuration (AOp) uses a
two-party (UPnP) architecture (see Fig. 8) with a polling
regime to maintain consistency. Another configuration
(AOn) combines the same architecture with notification.
Four configurations (Blp, Bln, B2p and B2n) use a three-
party (Jini) architecture (see Fig. 9) with one or two SCMs
and polling or notification. Three configurations (COp, Clp
and C2p) use an adaptive (SLP) architecture (with zero,

Table 7
Nine configurations compared in communication-failure experiments

N
N

UPnP Multicast Group

Unicast Links

A
A

Service
User

A

Service
Manager

HTTP/TCP and HTTP/UDP

Fig. 8. Two-party service discovery system deployed in a six-node
topology: five service users and one service.

Aggressive-Discovery m Multicast Group

» <

Optional, 2"SCM

Service
< Manager
sy Remote Method Invocation
PR PR AP
Service
< Cache
N Service Unicast Link Manager
User A
Lazy - Discovery Multicast Group

Fig. 9. Three-party service discovery system deployed in a seven- or eight-
node topology: five service users, a service manager, and one or two
service cache managers.

one, or two SCMs) and polling (SLP does not include a
notification mechanism).

To establish initial conditions, we set aside an interval,
up to time tq, for all SUs to discover the SM and obtain
the SM’s SD. We then activate interface failures or message
loss according to the appropriate failure model described
below. In addition, we establish a deadline p by which
the change must propagate to all SUs, and then choose a
time, randomly distributed on the uniform interval
[tq. tp/2], to introduce a change in the SD on the SM. Here,
we set 7g = 100 s and 7p = 5400 s. Each experiment aims to

Configuration Architecutre Behavior Consistency-maintenance mechanism

AOp Two-party UPnP Polling

AOn Two-party UPnP Notification (with notification registration on SM)

Blp Three-party (one SCM) Jini Polling (with service registration on SCM)

Bln Three-party (one SCM) Jini Notification (with service registration and notification registration on SCM)
B2p Three-party (two SCMs) Jini Polling (with service registration on SCM)

B2n Three-party (two SCMs) Jini Notification (with service registration and notification registration on SCM)
COp Adaptive (no SCMs) SLP Polling

Clp Adaptive (one SCM) SLP Polling (with service registration on SCM)

C2p Adaptive (two SCMs) SLP Polling (with service registration on SCM)

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 17

restore consistency between the changed SD held by the
SM and the cached copies of the SD held by the SUs.
We recorded the time of change to the SD on the SM,
the latency required to propagate the update to each SU
prior to tp (or failure to do so) and the number of messages
exchanged.

6.3.2. Failure models

We conducted separate experiments for interface failure
and message loss. Table 8§ summarizes relevant parameters
for each failure model.

6.3.2.1. Interface failure. In the interface-failure experi-
ment, we let 1 be the interface failure rate. During the
experiment, each node suffers an interface failure at a time,
randomly distributed on the uniform interval [fq,fp —
(tp - 4)]. When activating each interface failure, there is
an equal likelihood that the transmitter, receiver, or both
fail. Once activated, each failure remains in effect for the
duration of tp - 4, after that the failure is remedied. During
a failure interval, no messages are sent from a node with a
failed transmitter, and a node with a failed receiver does
not receive messages. For each configuration simulated,
we varied A from 0 to 90% in increments of 5%.

6.3.2.2. Message loss. In the message-loss experiment, we
let 2 be the message-loss rate. For each attempt to transmit
a message, whether on a reliable or unreliable channel, a
uniform random real number is selected from the unit
interval [0, 1]. If the number is less than 4, the message is
discarded. Loss of a message sent on a reliable channel

Table 8
Parameters for interface failure and message loss models

stimulates a retransmission after an appropriate timeout.
We varied 4 as in the interface-failure experiment.

6.3.3. Failure recovery techniques

We model recovery techniques at three levels: transport
protocols, discovery protocols, and application. Recovery
techniques for the transport protocols are described in Sec-
tion 4.2.1. Table 9 shows the recovery techniques and
related parameters we adopted for the discovery and appli-
cation levels.

6.3.3.1. Discovery-level recovery. In the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy
where SUs discarded SDs not refreshed within a TTL (of
1800 s). To enable rediscovery of SMs (and SCMs, where
applicable) we adopt a discovery behavior consistent with
the specific protocol (UPnP, Jini, or SLP) being modeled.
In all configurations (except AOp, which does not employ
registration), we chose the same TTL (of 1800s) after
which registrations would be discarded if not renewed.
For REXs received in response to registration or refresh
attempts, to ad-hoc queries, or to change-service opera-
tions, the retries occur at intervals of 120 s (but only up
to a maximum of 540 s). To comply with the Jini and UPnP
specifications, there are no retries after a REX when
attempting to issue notifications.

6.3.3.2. Application-level recovery. For configurations (AOp,
Blp, B2p, COp, Clp, and C2p) that use polling, we set the
polling interval to 180s. In (UPnP) configurations (AQp
and AOn), SUs discard a SD after (HTTP GET) queries

Failure Parameter Value

Failure incidence
Failure scope
Failure duration

Interface failure

Failure incidence
Failure scope
Failure duration

Message loss

Once per run for each node
Transmitter, reciever, or both with equal likelihood
5% increments of 5400 s from 0% to 90%

Each transmission may fail with probability equal to message loss rate from 0% to 90%
Individual message transmission
Individual message transmission

Table 9
Key model parameters for communication-failure experiments
Configuration Parameter Value
Discovery level recovery AOp and AOn (UPnP) Announce interval 1800 s
Msearch query interval 120's
SU purges SD At TTL expiration
Blp, Bln, B2p and B2n (Jini) Probe interval 5's (7 times)
Announce interval 120s
COp, Clp, and C2p (SLP) Probe interval Variable (4 probes in 15 s)
Announce interval 900 s
AOn, Blp, Bln, B2p, B2n, Clp and C2p Registration TTL 1800 s
AOn, Blp, Bln, B2p, B2n, COp, Clp and C2p Time to retry after REX 120's
Application-level recovery AOp, Blp, B2p, COp, Clp and C2p Polling interval 180 s

AOp, AOn, and COp
Blp, Bln, B2p, B2n, Clp and C2p

SU purges SD
SM or SU purges SCM

After 540 s with only REX
After 540 s with only REX

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

18 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

to the SM result in nothing but REXs for a total of 540 s.
In other configurations, SUs discard a SCM after receiving
nothing but REXs over 540 s while attempting to interact
with the SCM.

6.3.4. Metrics

We evaluate update effectiveness, responsiveness, and
efficiency. Update effectiveness measures the probability
that a change to a SD will propagate to a given SU before
the deadline 7. We let n be the number of repetitions of an
experiment, m be the number of SUs in a topology, and 7,
be the time that an updated SD is propagated to SU,
1 <j < m, in experiment repetition 7, 1 < i< n. Then, we
define update effectiveness for the failure rate 1 over n rep-
etitions as

Z?:IZ;W:IChgij
U,=—""="—"" "7
n-m
where
1 if £, < tp,
Chgij = Y .D
0 otherwise

defines whether a change in a SD was propagated to the jth
SU during the ith repetition (i.e., 1 if true, 0 if false).

Update responsiveness measures the latency in propa-
gating the SD update. We let 7, be the time the SD change
occurred on the SM in experiment repetition i. Update
responsiveness R is the median of all 1 — pj; at a particular
value of /1 where

— t;i —f
P 7
is the proportion of time required to propagate an update
to the jth SU in the ith repetition at 4.

Update efficiency measures the effort required to
(attempt to) maintain consistency. Analysis of our experi-
ment configurations revealed a minimum number of mes-
sages, x, that must be sent to propagate a change to all
SUs. This minimum (x = 7) occurred for the three-party
configuration with notification and one SCM (Bln)>. We
define update efficiency based on the ratio of x to the actual
number of messages observed. We let y be the number of
messages sent while attempting to propagate a change from
the SM to the SUs in a given repetition. Then, for » num-
ber of experiment repetitions, we define average update effi-
ciency at a particular failure rate 4 as

E, — Z:‘l:l(x/yi) .

n

6.3.5. Interface-failure results

For each configuration in Table 7, we executed n = 1000
repetitions at each interface-failure rate A. Fig. 10 shows
update effectiveness U, for the configurations as A

2 Recall that the two-party (UPnP) architecture requires a multiple-
message exchange to convey SDs.

18
0.951
» 0.9
3
S 0.851 [Configuration Uy o0
2 Aop 0.948
2 0.8 Aon 0.924
g 0.751 Bip 0.811
] Bin 0.817 Aon
B 07 B2p 0.858 Haop
> B2n 0.864
0.65 Cop 0.934
® Cop
0.61 Cip 0.887
C2p 0.901
0.55 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 10

Failure Rate A (%)

Fig. 10. Comparing update effectiveness (U;) for different configurations
in response to increasing rate of interface failures (1000 repetitions per
data point). The table gives Uy g9, or U; averaged across all values of / for
each configuration.

increases. The figure also includes a table with mean update
effectiveness Uy oo, which is U, averaged across all values of
A for each indicated configuration. Overall, these results
show that a two-party architecture, or an adaptive archi-
tecture that has a two-party mode, provides superior effec-
tiveness to a three-party architecture (at least given
topologies limited to one or two SCMs). This occurs
because each updated SD must propagate over only one
channel (SM to SU) in two-party cases, but over two chan-
nels (SM to SCM and SCM to SU) in three-party cases.
For both three-party and adaptive architectures, Ug o
improves with the number of SCMs due to the reduction
in the incidence of joint failure of both channels. We note
that polling yields better effectiveness than notification. For
example, when comparing three-party polling with one
SCM (Blp) against three-party notification with one
SCM (Bl1n), the advantage of polling appears as A exceeds
35% because when notifications fail, SD updates are prop-
agated by recovery mechanisms, which activate only after
some delay. On the other hand, polling persists with retries
after receiving a REX. We note that configurations using
notification also exhibit anomalous behavior when 4 is in
the range [5,25]%; we discuss the reasons for this below
in Section 6.3.7. B

Fig. 11 shows median update responsiveness R; for all
configurations as /A increases. Generally, the ranking of
architectures for responsiveness is similar to effectiveness.
Where employed, notification exhibits better responsive-
ness than polling, which incurs increased latency from the
180 s polling interval. Fig. 11 also shows a steep drop-off
in R; for all configurations as A increases beyond the
[20,30]% range, where failures prevent initial propagation
of the updated SD, forcing invocation of recovery actions
that cannot succeed until paths are restored. Thus, even
though some configurations achieved effectiveness of over
0.9 as A reaches 70% (see Fig. 10), responsiveness for all
configurations approaches zero. Three-party configura-

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 19

)
0 0.9
o
08
2
®
c0.7
o
Q =3
3 0.6 1 | Configuration Ro_so
19 05 Aop 0.522
% : A0n 0.548
'g_ 0.4 - Bip 0.425
S Bin 0.459
c 0.3 B2p 0479
% B2n 0.517
g 021 cop 0.522
ci 0502
0.1 Ld
C2p 0.527
T T

0 T T T T T
0 10 20 30 40 50 60 70 80
Failure Rate A (%)

Fig. 11. Comparing median update responsiveness (R;) for different
configurations in response to increasing rate of interface failures (1000
repetitions per data point). The table gives Ro_o, which is R,, averaged
across all values of /4 for each configuration.

tions experience longer delays at high values of A as paths
to SCMs become increasingly unavailable.

Fig. 12 shows average efficiency E; for experiment con-
figurations as / increases. The table included in Fig. 12
shows E_q, which is E; across all values of A for each indi-
cated configuration. Here, E; declines for all configurations
as A increases. This reflects a rising number of messages
generated when recovery strategies are invoked more fre-
quently as 4 rises. Configurations using more SCMs are less
efficient (but more effective) than similar configurations
with fewer SCMs. The adaptive architecture appears less
efficient than the three-party architecture with an equiva-
lent number of SCMs for the reasons described above in
Section 6.2.5. Again, we expect the use of equivalent under-
lying behaviors would yield comparable efficiencies.

091" Configuration, 11:0790
A0p 0.228
AOn 0179
Bip 0196
Bin 0.309
B2p 0.108

B2n

0 10 20 30 40 50 60 70 80
Failure Rate A (%)

Fig. 12. Comparing average update efficiency (E;) for different configu-
rations in response to increasing rate of interface failures (1000 repetitions
per data point). The table gives Ey_gy, which is E, averaged across all
values of 4 for each configuration.

Some other points seem worth noting. The three-party
configurations using notification (Bln and B2n) are more
efficient than similar configurations using polling (Blp
and B2p) because in Jini each SU poll to a SCM involves
a request followed by a reply, while a Jini SCM notification
is a single message. However, for 1<40%, two-party
(UPnP) notification (AOn) appears less efficient than two-
party polling (AOp). This occurs because when UPnP noti-
fications are lost, recovery strategies must often be used,
thus prolonging the time to propagate the updated SD
and increasing message counts.

6.3.6. Message-loss results

For each configuration in Table 7, we executed n = 200
repetitions at each message-loss rate A. Fig. 13 shows
update effectiveness U; for the configurations as 4
increases. Fig. 13 also includes a table that shows Uy_g
across all values of 4 for each indicated configuration.
Overall, these results show that most configurations pro-
vide an effectiveness of 0.95 or better until 4 exceeds 80%.
Overall, effectiveness under message loss conditions is
higher than under interface failure conditions. This is
because interfaces fail for protracted periods at higher
values of 4, increasing the probability that channels remain
blocked until 7p, so updates never get through. In contrast,
message loss affects only individual transmissions, allowing
recovery strategies more opportunities to propagate the
update before rp. Polling continues to yield better effective-
ness than notification. The two-party configuration with
polling (AOp) achieves a mean effectiveness of 0.99, due
to the combined advantages of using polling with just
two parties (which requires transiting one channel rather
than two). We note that the two-party configuration with
notification (AOn) and the three-party notification with
one SCM (Bl1n) exhibit anomalous behavior and reduced
effectiveness as A surpasses 20%; we discuss the reasons

0.954
0.9
3 0.85 [Configuration:
©0.85] A0
§ AOp 0.991 AOn A P
2 Aon 0.929
g 08 B1 0.950 \
= p - z} ‘
w0.754 Bin 0.886
[]
2
] B2p 0.975
3 0.7 |
2 B2n 0.948 I {1“Aon
0.65 Cop 0.944 :
clp 0.951
0.6 c2p 0.966 B2p
C2pCip
0.55 r . r r r r T T B2nCo

0 10 20 30 40 50 60 70 80 90 100
Failure Rate A (%)

Fig. 13. Comparing update effectiveness (U;) for different configurations
in response to increasing rate of message loss (200 repetitions per data
point). The table gives Uy_qo, or U, averaged across all values of A for each
configuration.

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

20 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

for this below in Section 6.3.7. Responsiveness (not shown
here) exhibits a steep decline after 4 > 80%, compared with
4> 30% for interface failure. The higher responsiveness
under message loss conditions occurs for the same reasons
as higher effectiveness. Under message loss, notification
also continues to provide better responsiveness than
polling.

Fig. 14 shows average efficiency E; for experiment con-
figurations as / increases and includes a table for Ey_g, for
each configuration. As in the case of effectiveness and
responsiveness, all configurations prove more efficient
under message loss conditions than under interface failure
for the reasons given above. The better efficiency is also
reflected in the overall more gradual decline in the message
loss efficiency curves. Otherwise, the general ordering of
efficiencies for the various configurations appears similar
under both interface failure and message loss. We note
the reduced efficiency of the two-party (UPnP) notification
(AOn) above 4 = 20% in comparison with two-party polling
(AOp). In AOn, efficiency suffers from cases where notifica-
tions are lost and recovery procedures are required to prop-
agate the update (taking more time and requiring more
messages). The combination of lost notifications and use
of recovery also causes a sharp decline in the efficiency of
the three-party notification with a single SCM (B1n), which
at low values of A, generates the fewest messages to propa-
gate updates. Another exception is the three-party configu-
ration using notification with two SCMs (B2n), which
exhibits increasing efficiency over the failure rate range
[5,351% and overtakes the three-party configuration using
polling with one SCM (Blp). This counterintuitive result
occurs because in some repetitions, lost messages cause
the SM or SUs to discover only one of the two SCMs; thus,
messages that would normally be duplicated to both SCMs
are not.

1 t g AOp 0.553
. " AOn 0.317
0.9 . Bip 0400

0 10 20 30 40 50 60 70 80
Failure Rate A (%)

Fig. 14. Comparing average update efficiency (E;) for different configu-
rations in response to increasing rate of message loss (200 repetitions per
data point). The table gives Eg_o9, which is E; averaged across all values of
A for each configuration.

6.3.7. Discussion

The notification mechanism included in UPnP and Jini
(and other distributed systems) proved unexpectedly inef-
fective at disseminating updates under certain conditions.
Foremost, under low interface-failure rates (in the range
[5,301%) our results exhibit saw-tooth phenomena for con-
figurations using notification. The dip is most pronounced
(nearly 15%) for the two-party (UPnP) configuration (A0n)
and less pronounced (around 5%) for the three-party (Jini)
configurations (Bln and B2n). In the two-party case, anal-
ysis of execution traces showed a large number of notifica-
tions were lost when either the SM transmitter was
inoperable (causing notifications to all SUs to be lost) or
when SU receivers were inoperable (causing lost notifica-
tions to individual SUs). Since neither UPnP nor Jini
require notification senders to retry after a REX, updated
information must be disseminated through a recovery
mechanism. At low failure rates, a notification can be lost
to an interface failure, which is repaired prior to the next
announcement or registration-refresh attempt. Under such
conditions, recovery mechanisms are not invoked and the
SU does not obtain an updated SD. Polling proves more
effective because the SU checks periodically (180 s inter-
vals) and persistently for updated information and retrieves
the SD when indicated.

A similar sequence of events occurs in the three-party
case, but the effects are more modest. The three-party con-
figurations require a SM to first propagate a change to a
SCM. Failure to propagate a change results in a REX that
causes the SM to retry the change for up to 540 s, during
which time the interface failure may be repaired. If still
unconfirmed after 540s, the SM purges the SCM and
initiates aggressive discovery. After rediscovering the
SCM, the SM propagates the change, and the SCM then
notifies registered SUs. Even with this redundancy, there
still is some chance that a SU receiver is blocked and thus
unable to receive notification. The redundancy does,
however, increase the probability that an updated SD
reaches a SU.

Notification (as specified for UPnP and Jini) also
appears less effective under message loss. Lack of applica-
tion-level retries to deliver notices leads to significant
decline in update effectiveness above A = 20%. This appears
for the relevant two-party (UPnP) configuration (AOn) and
three-party (Jini) configuration (Bln), both of which use
notification. Above A = 20%, the incidence of undelivered
notifications increases and, unless recovery is stimulated,
the updated SD is not disseminated. In configuration
AOn, as 1 exceeds 60 %, lost registration-refresh requests
trigger recovery procedures with increasing frequency,
which causes propagation of the updated SD when a regis-
tration is reestablished. This process slightly improves and
then maintains effectiveness within the failure rate range
[60, 801%, causing this curve to echo the saw-tooth feature
in the update effectiveness curve for AOn under interface
failure. Above Z = 80%, lost messages effectively close the
channel, and effectiveness collapses for all configurations.

(2007), doi:10.1016/j.js5.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx 21

For the three-party configuration (Bln), loss of change
requests (from the SM) as well as registration refreshes
(from the SM and SUs) also stimulate recovery procedures
that partly compensate for lost notifications. When a sec-
ond SCM is added (configuration B2n) update effectiveness
improves because the SM now has two paths through
which to disseminate updates to SUs.

7. Conclusions

Overall, we found designs for first-generation discovery
systems can be robust under difficult failure environments.
Across all experiments, most configurations exhibited an
effectiveness of better than 0.9 in obtaining services or
propagating updates for failure rates approaching (often
exceeding) 80%. Configurations proved ineffective only
when all essential nodes failed or were unreachable, or
when recovery actions were not activated (as occurred in
response to lost update notifications). Similarly, extensive
delays in propagating updates depended on the duration
of path outages.

For our scenarios and metrics, two-party configurations
(or three-party configurations that could adapt to two-
party mode) appeared more robust than three-party config-
urations (where robustness improved with the number of
replicated directories). Deploying three directory replicas
yielded robustness equal to two-party configurations. In
tradeoff, increasing the number of directory replicas lowers
system efficiency by increasing the number of messages
exchanged. In most cases, we found the adaptive architec-
ture with one directory achieved robustness comparable to
other configurations, while providing better efficiency than
configurations with replicated directories.

To disseminate updates, we found polling more effective
than notification. Our polling regime used persistent
retries, while our notification regime depended only on reli-
able transport protocols, falling back to alternate recovery
mechanisms when notifications could not be delivered. The
alternate recovery mechanisms were not always activated
at lower failure rates. This anomaly appeared in effective-
ness plots for configurations using notification. Notifica-
tion generally conveyed updates with less delay than
polling. In the two-party architecture, polling was more
effective, so scenarios tended to end earlier and require
fewer messages.

Beyond our methodology and comparisons, we identi-
fied and discussed the most significant design and configu-
ration decisions that influence robustness and efficiency in
first-generation discovery systems. We showed how avail-
able architectural alternatives, as well as choices for consis-
tency maintenance and recovery strategies, lead to
robustness-efficiency tradeoffs. We also showed how faulty
assumptions regarding recovery strategies could unexpect-
edly degrade robustness and efficiency. The information
provided should convey a better understanding of failure
behavior in existing discovery systems, allowing potential
users to configure deployments for high robustness at low

cost. The discussions presented here could also help to
improve designs for future discovery systems.

Acknowledgements

We received generous funding support from Susan Ze-
vin, as acting director of the NIST Information Technol-
ogy Laboratory, Douglas Maughan, as manager of the
Defense Advanced Research Projects Agency (DARPA)
Fault-Tolerant Networks Program, John Salasin, as man-
ager of the DARPA program in Dynamic Assembly for
System Adaptability, Dependability and Assurance, and
James Puffenbarger of the Advanced Research and Devel-
opment Activity (ARDA).

References

Allard, J., Chinta, V., Gundala, S., Richard, G., 2003. Jini Meets UPnP:
An Architecture for Jini/UPnP Interoperability. In: Proceedings of the
2003 International Symposium on Applications and the Internet
(SAINT 2003), Orlando, FL, (January), pp. 268-275.

Arnold, K. et al., 1999. The Jini Specification, Version 1.0. Addison-
Wesley.

Bettstetter, C., Renner, C., 2000. A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol. In:
Proceedings of the Sixth EUNICE Open European Summer School:
Innovative Internet Applications, Open EUNICE 2000, Twente,
Netherlands, September.

Specification of the Bluetooth System, Core, Version 1.1, vol. 1, the
Bluetooth SIG, Inc., 2001.

Bowers, K., Mills, K., Rose, S., 2003. Self-adaptive Leasing for Jini. In:
Proceedings of the IEEE International Conference on Pervasive
Computing and Communications (PerCom 2003), Fort Worth, TX,
(March), pp. 539-542.

Bushmitch, D., Lin, W., Bieszczad, A., Kaplan, A., Papageorgiou, V.,
Pakstas, A., 2004. A SIP-Based Device Communication Service for
OSGi Framework. In: Proceedings of the 2004 IEEE Consumer
Communications And Networking Conference, Las Vegas, NV,
(January), pp. 453-458.

Castro, M. et al., 2002. One Ring to Rule them All: Service Discovery and
Binding in Structured Peer-to-Peer Overlay Networks. In: The
Proceedings of the Tenth ACM SIGOPS European Workshop,
ACM, Saint-Emilion, France, (September).

Czajkowski, K., Fitzgerald, S., Foster, 1., Kesselman, C., 2001. Grid
Information Services for Distributed Resource Sharing. In: Proceed-
ings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10), San Francisco, CA, (August), pp.
181-194.

Czerwinski, S. et al., 1999. An Architecture for a Secure Service Discovery
Service, Proceedings of the Fifth Annual International Conference on
Mobile Computing and Networks (MobiCom ’99), Seattle, WA,
(August), pp. 24-35.

Dabrowski, C., Mills, K., 2001. Analyzing Properties and Behavior of
Service Discovery Protocols Using an Architecture-Based Approach.
In: Proceedings of Working Conference on Complex and Dynamic
Systems Architecture, Brisbane, Australia, December.

Dabrowski, C., Mills, K., Elder, J., 2002a. Understanding Consistency
Maintenance in Service Discovery Architectures During Communica-
tions Failure. In: Proceedings of the 3rd International Workshop on
Software Performance, Rome, Italy, (July), pp. 168-178.

Dabrowski, C., Mills, K., Elder, J., 2002b. Understanding Consistency
Maintenance in Service Discovery Architectures In Response to
Message Loss. In: Proceedings of the 4th International Workshop on
Active Middleware Services, Edinburgh, United Kingdom, (July), pp.
51-60.

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

22 C. Dabrowski et al. | The Journal of Systems and Software xxx (2007) xxx—xxx

Dabrowski, C., Mills, K., Rukhin, A., 2003. Performance of Service-
Discovery Architectures in Response to Node Failure. In: Proceedings
of the International Conference on Software Engineering Research
and Practice, Las Vegas, NV, (June), pp. 95-104.

Dabrowski, C., Mills, K., Quirolgico, S., 2005. A Model-based Analysis of
First-Generation Service Discovery Systems, Special Publication 500-
260, National Institute of Standards and Technology.

Frolund, S. et al., 2000. Building Dependable Internet Services with
E-speak, Hewlett Packard Laboratories Technical Report HPL-2000-
78.

Guttman, E., Kempf, J., 1999. Automatic Discovery of Thin Servers: SLP,
Jini and the SLP-Jini Bridge. In: Proceedings of the 25th Annual
Conference of the IEEE Industrial Electronics Society (IECON 99),
Volume 2, San Jose, CA, December, pp. 722-727.

Guttman, E., Perkins, C., Veizades, J., Day, M., 1999. Service Location
Protocol, Vol. 2, Internet Engineering Task Force (IETF), RFC 2608.

Henriksen, J., 1997. An Introduction to SLX™. In: Proceedings of the
1997 Winter Simulation Conference, ACM, Atlanta, GA, December,
pp- 559-566.

Specification of the Home Audio/Video Interoperability (HAVi) Archi-
tecture, Version 1.1, HAVi, Inc., 2001.

Hsiao, H., King, C., 2002. Neuron — A Wide-Area Service Discovery
Infrastructure. In: Proceedings of the International Conference on
Parallel Processing (ICPP °02), Vancouver, British Columbia,
(August), p. 455.

Tamnitchi, A., Foster, 1., 2001. On Fully Decentralized Resource Discov-
ery in Grid Environments. In: Proceedings of an IEEE International
workshop on Grid computing, Denver, CO, November.

Joseph, S., 2002. NeuroGrid: Semantically Routing Queries in Peer-to-
Peer Networks. In: Proceedings of the International Workshop on
Peer-to-Peer Computing, Pisa, Italy, May.

JXTA v2.0 Protocols Specification, Sun Microsystems, 2004. Available
from: <http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html>.

Luckham, D., 1996. Rapide: A Language and Toolset for Simulation of
Distributed Systems by Partial Ordering of Events. Available from:
<http://anna.stanford.edu/rapide>.

Miller, B., Pascoe, R., 1999. Mapping Salutation Architecture APIs to
Bluetooth Service Discovery Layer, Version 1.0, Bluetooth SIG white
paper, July.

Mills, K., Dabrowski, C., 2003. Adaptive Jitter Control for UPnP M-
Search. In: Proceedings of 2003 IEEE International Communications
Conference, Anchorage, AK, May.

Mills, K., Rose, S., Quirolgico, S., Britton, M., Tan, C., 2004. An
Autonomic Failure-Detection Algorithm. In: Proceedings of the 4th
International Workshop on Software Performance (WoSP 2004), San
Francisco, CA, January, 79.

O’Driscoll, G., 2000. Essential Guide to Home Networking Technologies.
Prentice-Hall Trading Company.

Olivier, B., 2000. Jini: a platform for building adaptive integrated learning
environments, Report from the Centre for Learning Technology
(CeLT), University of Wales Bangor, United Kingdom, December.

Pascoe, R., 1999. Salutation Architectures and the newly defined service
discovery protocols from Microsoft and Sun: How does the Salutation
Architecture stack up, Salutation Consortium white paper.

Pascoe, R., 2001. Building Networks on the Fly. IEEE Spectrum 38 (3),
61-65.

Ponnekanti, S., Fox, A., 2003. Application-Service Interoperation without
Standardized Service Interfaces. In: Proceedings of the IEEE Interna-
tional Conference on Pervasive Computing and Communications
(PerCom 2003), Fort Worth, TX, (March), pp. 30-39.

Rekesh, J., 1999. UPnP, Jini and Salutation — A look at some popular
coordination framework for future network devices, Technical Report,
California Software Lab.

Richard, G., 2000. Service Advertisement and Discovery: Enabling
Universal Device Cooperation. IEEE Internet Computing 4 (5), 18-26.

Richard, G., 2002. Service and Device Discovery: Protocols and
Programming. McGraw-Hill.

Rose, S., Bowers, K., Quirolgico, S., Mills, K., 2003. Improving Failure
Responsiveness in Jini Leasing. In: Proceedings of the Third DARPA
Information Survivability Conference and Exposition (DISCEX-III
2003), Volume 2, Washington, DC, (April), pp. 103-105.

Salutation Architecture Specification, Version 2.0c, Salutation Consor-
tium, June 1999.

Sameh, A., El-Kharboutly, R., 2004. Modeling Jini-UPnP Bridge using
Rapide ADL. In: Proceedings of the IEEE/ACS International Confer-
ence on Pervasive Services (ICPS’04), Beirut, Lebanon, (July), p. 237.

Sundramoorthy, V., Speelziek, M., van de Glind, G., Scholten, J., 2004.
Service Discovery with FRODO. In: 12th IEEE International Con-
ference on Network Protocols (ICNP), Berlin, Germany, (October),
pp. 24-27.

Sundramoorthy, V., 2006. At Home In Service Discovery, PhD disserta-
tion, University of Twente, Netherlands.

Tan, C., Mills, K., 2005. Performance Characterization of Distributed
Algorithms for Replica Selection in Distributed Object Systems,
Accepted for Fifth International Workshop on Software Performance
(WoSP 2005), Palma de Mallorca, Spain, July.

UDDI Technical White Paper, published by the members of uddi.org,
September 2000.

Universal Plug and Play Device Architecture (UPnP), Version 1.0,
Microsoft, Inc., 2000.

Verma, D. et al., 2003. SRIRAM: A scalable resilient autonomic mesh.
IBM Systems Journal 42 (1), 19-28.

Yu, M., Taleb-Bendiab, A., Reilly, D., Omar, W., 2003. Multi-Standard
Service Interoperation Protocol through Polyarchical Middleware. In:
Proceedings of the PostGraduate Networking Conference (PGNet),
Liverpool, United Kingdom, (June), pp. 143-148.

(2007), doi:10.1016/j.jss.2006.11.017

Please cite this article in press as: Dabrowski, C. et al., Understanding failure response in service discovery systems, J. Syst. Software

http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
http://anna.stanford.edu/rapide

	Understanding failure response in service discovery systems
	Introduction
	Related work
	Modeling service discovery systems
	A general model of service discovery systems
	Modeling service discovery architectures and protocols
	Discovery in two-party architectures
	Discovery in three-party architectures
	Discovery in adaptive architectures

	Modeling consistency maintenance mechanisms
	Polling
	Notification

	Modeling failure detection and recovery techniques
	Failure types
	Failure detection and recovery techniques
	Recovery by transport protocols
	Unreliable multicast protocols
	Unreliable unicast protocols
	Reliable unicast protocols

	Recovery by discovery protocols
	Recovery by applications
	Ignoring the remote exception
	Retrying the operation
	Discarding knowledge

	Experiment methodology
	Model construction
	Experiment design
	Metrics

	Experiments and results
	Recovery after power failure
	Experiment description
	Metrics
	Results

	Service acquisition and maintenance impeded by node failures
	Experiment description
	Failure model
	Failure recovery techniques
	Discovery-level recovery
	Application-level recovery

	Metrics
	Results
	Discussion

	Consistency maintenance impeded by communication failures
	Experiment description
	Failure models
	Interface failure
	Message loss

	Failure recovery techniques
	Discovery-level recovery
	Application-level recovery

	Metrics
	Interface-failure results
	Message-loss results
	Discussion

	Conclusions
	Acknowledgements
	References

