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Abstract

The partitioning of an adaptive grid for distribution over parallel processors is considered in the context of adaptive multilevel methods for
solving partial differential equations. A partitioning method based on the refinement-tree is presented. This method applies to most types of
grids in two and three dimensions. For triangular and tetrahedral grids, it is guaranteed to produce connected partitions; no other partitioning
method makes this guarantee. The method is related to the OCTREE method and space filling curves. Numerical results comparing it with
several popular partitioning methods show that it computes partitions in an amount of time similar to fast load balancing methods like recursive
coordinate bisection, and with mesh quality similar to slower, more optimal methods like the multilevel diffusive method in ParMETIS.
Published by Elsevier Inc.
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1. Introduction

An adaptive multigrid method solves an elliptic partial differ-
ential equation (PDE) by beginning with a very coarse grid and
cycling through phases of adaptive refinement/derefinement of
the grid and multigrid solution of the linear system of equa-
tions resulting from discretization of the PDE on the adaptive
grid. In a parallel adaptive multigrid method, the adaptive re-
finement phase can cause the load balance over the processors
to become unequal. If the load is too unbalanced, the grid must
be repartitioned and redistributed before continuing with the
solution phase.

An important part of a parallel adaptive multigrid method
is the method for determining this partition. In this context,
it must not only produce equal sized sets to balance the load
and minimize cut edges to reduce communication, but must
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also be very fast to not dominate the computation time of a
fast multigrid method, and must produce similar partitions on
a grid and a refinement/derefinement of that grid to reduce
redistribution costs.

In this paper we present the refinement-tree partitioning
method (REFTREE), a new method for partitioning grids that
were created by adaptive refinement. The method was devel-
oped as a k-way version of the recursive bisection refinement-
tree method [7] to reduce the amount of communication
overhead in a parallel implementation. It is also very similar
to the Octree partition method (OCTREE) [4] and is related to
space filling curve (SFC) methods [3,11,12,15]. The primary
difference between REFTREE and OCTREE is the generation
of the tree. In OCTREE the tree represents a geometric refine-
ment of a region covering the domain through local subdivision
of octants (or quadrants in two dimensions), while in REFTREE
the tree represents the refinement of some initial set of coarse
grid elements. The primary difference between REFTREE and
the traditional SFC methods is one of geometric vs. algebraic
orientation. In both algorithms, a SFC is used to create a linear
sequence of the elements. The sequence is then cut into seg-
ments, which become the partitions of the grid. SFC is more
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algebraic in that it performs computations on the coordinates
of the centroids of the elements to determine a SFC ordering.
In contrast, REFTREE uses geometric subdivision of an initial
set of elements to determine a SFC ordering, which is more
flexible for complicated geometries. Neither OCTREE nor SFC
can guarantee that the partitions will be connected. REFTREE
is guaranteed to produce connected partitions for triangular and
tetrahedral grids, and we have observed that it usually does for
other types of grids.

The rest of the paper is organized as follows. Section 2
defines what is meant by the refinement-tree of an adaptive
grid that was created by local refinement of an initial coarse
grid. Section 3 then describes how to order the nodes in the
refinement-tree such that a depth-first traversal of the tree in-
duces a SFC through the grid. Section 4 presents the refinement-
tree partitioning algorithm in both sequential and parallel form.
Section 5 contains numerical results comparing REFTREE to
several other partitioning methods.

2. Refinement-tree

In this section we define the refinement-tree of a locally
refined grid. The refinement-tree is a representation of the re-
finement process that created the grid. It contains all the infor-
mation about how an element was created by refinement, but
does not indicate the order in which elements were refined.

Let � be a closed, connected, bounded region in Rd , d =
2, 3. For simplicity we assume that � is polygonal, but that is
not necessary if one uses elements with curved edges (faces),
or allows the grid to approximate �. We define a grid on �,
G = {Ei}Ni=1 to be a set of elements, Ei , such that Ei is a
polygon in Rd , Ĕi ∩ Ĕj = ∅, i �= j , and ∪Ei = �, where Ĕi

denotes the interior of Ei and ∅ is the empty set. If, in addition,
the intersection of any two elements is either empty, a common
vertex, a common side, or, in R3, a common face, then the grid
is said to be conforming. Typically in R2 an element is a trian-
gle or quadrilateral, and in R3 an element is a tetrahedron or
hexahedron, although other elements (for example, prisms) are
sometimes used. In practice one only uses conforming trian-
gular and tetrahedral grids, but allows quadrilateral and hexa-
hedral grids to be non-conforming (also referred to as “having
hanging nodes’’).

A locally refined grid is obtained from an initial grid G0 by
subdividing (or refining) some of the elements, and possibly
further subdividing some of the resulting elements, etc. An
element is normally refined into elements of the same type
(e.g. triangles are refined into triangles). Elements can also be
derefined by joining the resulting elements back together to
form the original element. Fig. 1 illustrates the most commonly
used methods of refining elements.

The refinement-tree of a locally refined grid, T (G) =
{V, {C(vi)}} consists of a set of nodes, V = {vi}Mi=0, and for
each vi ∈ V a set of children C(vi) ⊂ V . Each node vj ∈ V

is contained in exactly one set C(vi), except for v0 which is
called the root and not contained in any C(vi). If vj ∈ C(vi)

then vj is a child of vi and vi is the parent of vj . If C(vi) = ∅

Fig. 1. Element refinements: (a) triangle bisection; (b) triangle quadrisection;
(c) quadrilateral bisection; (d) quadrilateral quadrisection; (e) tetrahedron bi-
section; (f) tetrahedron octasection; (g) hexahedron bisection; (h) hexahedron
octasection.

then vi is called a leaf. An ancestor of vi is any node on the
(unique) path between vi and the root. The descendants of vi

are the nodes in the subtree rooted at vi . When depicted graph-
ically the nodes are drawn as circles and the children are drawn
below their parent and connected to the parent with an edge.

The refinement-tree corresponds to the grid as follows. The
root corresponds to �. The children of the root are in one-to-
one correspondence with the elements in the initial grid G0.
The children of any other node correspond to the elements that
were created when the corresponding element was refined. Note
that the leaves correspond to the elements of the grid G. Fig. 2
illustrates the correspondence between a locally refined grid
that was created by bisection of triangles and its refinement-tree.
The left side of the figure shows the sequence of refinements
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Fig. 2. Correspondence between grid refinement and the refinement-tree.

that created the grid, and the right side shows the refinement
tree. The numbers show the correspondence between elements
of the grid and nodes of the tree. Unlabeled elements have the
same number as in the grid above them. We will often refer to
the element or the corresponding node interchangeably.

In a distributed-memory parallel application the grid will be
distributed across the processors of a parallel computer. Con-
sequently, the refinement-tree will also be distributed. Fig. 3
illustrates the distribution of the refinement-tree of Fig. 2 over
two processors. The elements of the grid are drawn in red and

Fig. 3. A refinement-tree distributed over two processors.

green to show the two partitions which are assigned to pro-
cessors 1 and 2, respectively. The two trees show the local
refinement-tree for each processor, which represent the part of
the grid assigned to that processor. Clearly the local refinement-
tree must contain the leaves assigned to the processor (to rep-
resent the partition), and the ancestors of those leaves (to be a
tree). These nodes are colored red in the local refinement-tree
for processor 1 and green in the local refinement-tree for pro-
cessor 2. There is overlap between the local refinement-trees,
since some parents will have their children assigned to differ-
ent processors, and each of those processors must then contain
the parent in its local refinement-tree. The parallel REFTREE
algorithm of Section 4 requires slightly more overlap. It also
requires that any non-leaf node of the local refinement-tree has
all of its children of the global refinement-tree present. These
nodes are colored white in Fig. 3. Note that this requires all pro-
cessors to have a node corresponding to every element of the
initial grid, since they are all children of the root. This does not,
however, imply that every processor needs the full data struc-
ture for every element of the initial grid. A “light weight’’ sub-
stitute data structure can be used for initial elements assigned
to other processors. This defines a minimal local refinement-
tree; additional nodes can be included if desired. For exam-
ple, one may want to include additional nodes so that the local
refinement-tree corresponds to a conforming grid.

3. Order of children

In the refinement-tree partitioning algorithm defined in Sec-
tion 4, we perform depth-first traversals of the refinement-tree.
In order for the algorithm to produce connected partitions it
is crucial that the traversal visit the children of a node in the
correct order. Thus C(vi) = {c1(vi), c2(vi), . . . , cmi

(vi)} is an
ordered set of children. Here mi = |C(vi)| is the number of
children of node vi .



Aut
ho

r's
   

pe
rs

on
al

   
co

py

420 W.F. Mitchell / J. Parallel Distrib. Comput. 67 (2007) 417 – 429

3.1. In-vertex and out-vertex

To facilitate the definition of the order of the children of a
node we designate two special vertices of an element as the in-
vertex and out-vertex. The in-vertex must not be the same as
the out-vertex.

In a depth-first traversal of the tree, the leaves of the
refinement-tree are visited in some order, or equivalently the
elements of G are visited in some order. The goal of the order-
ing of the children is to create a refinement-tree for which the
traversal will visit the elements in an order where each element
is connected to the preceding element. In other words, with
this ordering of the elements we can draw a connected curve
that passes through each element of G exactly once. If the grid
is conforming then two connected elements must share a com-
mon vertex, and the curve can be drawn through the vertex,
which can be designated as the out-vertex of the element that
is visited first and the in-vertex of the other element. Such a
sequence of connected elements and in/out-vertices is called a
through-vertex Hamiltonian path of G.

3.2. Elements of the initial grid

Consider first the ordering of the children of the root, i.e.
the elements of the initial grid G0. The following theorem is
proven in [10].

Theorem 1. Let G be a conforming triangular or tetrahedral
grid with at least two elements. If G contains no local cut
vertices and, for tetrahedra, no local cut edges, and contains
at least one interior vertex, then there exists a through-vertex
Hamiltonian path for G.

A local cut vertex is a point which, if removed, would cause
the grid to become disconnected locally. In other words, given
any two elements that contain that vertex, their intersection
is only that vertex. A local cut edge is defined similarly. An
interior vertex is a vertex that is not on the boundary of �.
For tetrahedral grids, the existence of an interior vertex is not
necessary.

It was also shown in [10] that it is not always possible to
find a path that passes through the element sides instead of
vertices. This implies that it is not always possible to find a
partitioning of the elements where every element shares a side
with another element in the same partition. However, Theorem
1 implies that we can always find connected partitions, even if
only connected by a single vertex.

Unfortunately, the same result does not hold for quadrilat-
erals and hexahedra. In fact, it is easy to construct examples
for which no through-vertex Hamiltonian path exists. However,
such a path often exists, and in most cases when it does not,
one can find a sequence of elements in which there are only a
few “discontinuities” where adjacent elements in the path are
not connected.

The proof of Theorem 1 in [10] is a constructive proof which
leads to an efficient algorithm for constructing a through-vertex
Hamiltonian path for triangular and tetrahedral grids. An algo-

rithm is also given for quadrilaterals and hexahedra. We do not
repeat those algorithms here, but refer to [10] for the details.
The results of these algorithms then provide the order of the
children of the root, and the assignment of the in-vertex and
out-vertex of the elements of G0. We comment that the algo-
rithms in [10] will produce a through-vertex Hamiltonian path
for G0, but tend to produce paths that are not compact, and
hence partitions with large boundaries. Therefore, some other
algorithm may be preferred for processing the initial grid G0.

3.3. Elements created by refinement

Next, consider the ordering of the children of the non-root
nodes. Here we seek a through-vertex Hamiltonian path through
the children that begins at the in-vertex of the parent and ends
at the out-vertex of the parent. This insures that if we have
a through-vertex Hamiltonian path in the grid before refining
the parent, then we still have one after refinement. In fact, the
segment of the path that passes through the parent is replaced by
a segment that passes through all the children in a continuous
manner.

In general, one can find a path through the children, if one
exists, by exhaustive search. Although the complexity of ex-
haustive search is exponential in the number of children, a re-
finement strategy typically produces a small number of children
so it is not prohibitive. On the other hand, it is more efficient to
use a set of templates for a given refinement strategy because
the number of cases that arise is small.

The templates for triangle bisection are given in Fig. 4. There
are three cases depending on the relationship between the vertex
opposite the side to be bisected and the in-vertex and out-vertex.
Fig. 4(a) shows the case where the vertex opposite the side to be
bisected is neither the in-vertex nor the out-vertex. The parent’s
in-vertex and out-vertex are labeled “I’’ and “O’’, respectively,
outside the parent element. The children’s in-vertices and out-
vertices are labeled inside the child elements. To identify the
order of the children, begin at the in-vertex of the parent and
traverse the children going through the out-vertex and in-vertex
of the next child. Fig. 4(b) shows the case where the out-vertex
is opposite the side to be bisected, and Fig. 4(c) shows the case
where the in-vertex is opposite the side to be bisected.

The templates for five of the other refinement strategies of
Fig. 1 are shown in Figs. 5–9. For triangle quadrisection and
tetrahedra octasection, there is only one template. There are two
cases for quadrilateral quadrisection, depending on whether the
out-vertex is adjacent to the in-vertex or is the opposite cor-
ner. There are four cases for tetrahedra bisection, depending
on whether or not each of the in-vertex and out-vertex is on
the edge to be bisected. And there are three cases for hexahe-
dron octasection, depending on whether the out-vertex shares
an edge with the in-vertex, shares a face but not an edge, or is
the opposite corner.

The assignment of in- and out-vertices to children does not
work for all refinement strategies. In particular it can fail for a
refinement strategy that produces a child that contains two ver-
tices that are not contained in any other child. If those vertices
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Fig. 4. The three templates for child order and in/out-vertices for refinement
by triangle bisection.
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Fig. 5. The template for child order and in/out-vertices for refinement by
triangle quadrisection.
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Fig. 6. The two templates for child order and in/out-vertices for refinement
by quadrilateral quadrisection.

happen to be the in-vertex and out-vertex of the parent, then it
will be impossible to start at the in-vertex, pass through all the
children, and end at the out-vertex without visiting the same
element twice. This is illustrated in Fig. 10 for bisected quadri-
laterals. It also occurs with bisected hexahedra. These are the
only two commonly used refinement strategies for which the
method fails, as far as the author knows.

Within an element, the traversal of the descendants is in a
hierarchical manner, and does not leave an element until all
the descendants have been visited. This leads to a SFC within
each of the initial elements. Many of these are well-known
SFCs [13]. For example, quadrilateral quadrisection leads to
the Hilbert SFC (HSFC) (Fig. 11), and triangle bisection leads
to the Sierpinski SFC (Fig.12).

The connectedness of the SFC within each element, together
with Theorem 1 and the connectedness of a through-vertex
Hamiltonian path, lead to the following result.

Theorem 2. Let a partition be the set of elements contained in
any segment of the ordered list of elements obtained by a depth-
first traversal of a refinement-tree with the children ordered by
the methods described in this section.

(1) If the grid is a triangular grid refined by bisection or quadri-
section, or a tetrahedral grid refined by bisection or octa-
section, then the partition is connected.

(2) If the grid is a quadrilateral grid refined by quadrisection
or a hexahedral grid refined by octasection, and a through-
vertex Hamiltonian path is found for the initial grid, then
the partition is connected.

4. Refinement-tree partitioning method

This section describes the refinement-tree (REFTREE) algo-
rithm. We first present it as a sequential algorithm, and then
present the parallel form.

In REFTREE, the nodes of the refinement-tree are weighted.
The weight assigned to a node should be related to the amount
of work associated with the corresponding element. For ex-
ample, elements containing a Dirichlet boundary may have a
smaller weight than elements in the interior of the domain. The
weights are not limited to leaf nodes; one may wish to apply
weights to interior nodes to, for example, represent the work
on a coarse grid of a multigrid solver. In the simplest weighting
scheme, the leaf nodes have weight 1.0 and the interior nodes
have weight 0.0. This results in a partitioning of the elements of
the final grid into equal sized sets (or differing by at most one
if the number of elements is not a multiple of the number of
partitions). For predictive load balancing (where the new parti-
tion is computed before the grid is refined), the error indicator
(used by an adaptive refinement method to determine which
elements get refined [6]) is a reasonable weight, since one ex-
pects the elements with larger error indicators to be refined
more times.

REFTREE consists of two phases. In the first phase, every
node is labeled with the sum of the weights in the subtree
rooted at that node. This is accomplished by a depth-first
traversal of the tree, and takes O(N) operations. In the second
phase, a truncated depth-first traversal of the tree is performed
to create the partitions. The desired size of each partition is
determined by dividing the summed weight at the root node
by the number of partitions, and the partitions are initialized
to be empty. During the traversal, the summed weights at the
nodes are examined relative to the size of the partition under
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Fig. 7. The four templates for child order and in/out-vertices for refinement by tetrahedra bisection.
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Fig. 8. The template for child order and in/out-vertices for refinement by
tetrahedra octasection.

construction. If it is small enough to be added to the partition
without exceeding the desired size, then it is added and the
subtree is not traversed. Otherwise, the children are visited and
the subtree will be split among two or more partitions. Fig. 13

illustrates this process for partitioning the grid of Fig. 2 into
two parts with equal number of elements. The leaves have
weight 1 and the interior nodes have weight 0. The color of
the elements in the sequence of grids shows the sets of ele-
ments that were added to a partition in each step. The numbers
in the nodes of the refinement-tree are the summed weights.
Fig. 14 gives the sequential algorithm, using the notation
of Section 2.

Most of the time the subtree will fit in the current partition,
so large portions of the grid are assigned to a partition at the
same time. Only when a partition is nearly full will the traversal
go deep into the tree to find a small enough subtree to fill out
the partition. If there are p partitions and the depth of the tree
is O(log N), one would expect the second phase to require
O(p log N) operations.

In a parallel implementation, the refinement-tree is dis-
tributed over the p processors, as described in Section 2.
Since the refinement-tree is distributed, the summation of the
weights must be done in a distributed manner. This can be
accomplished with two tree traversals and one all-to-all com-
munication step. In the first tree traversal, the weights are
summed for nodes that belong to this processor. Leaf nodes of
the local refinement-tree that are not leaf nodes of the global
refinement-tree, called pruning points, are given the weight 0.0,
but otherwise the summation occurs as usual. The processors
then exchange information to provide the summed weights for
the pruning points, by each processor sending what it has as
the summed weight for each node that is a pruning point on a
different processor. Note that a processor may receive contri-
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Fig. 9. The three templates for child order and in/out-vertices for refinement by hexahedra octasection.

I O

Fig. 10. Example that illustrates that the method can fail for bisected quadri-
laterals.

butions for a pruning point from more than one processor, and
the sum of these is the correct summed weight for that node.
Now with the summed weight available for the pruning points,
a second traversal is performed to obtain the correct summed
weights for the entire tree.

Each processor now has sufficient information to perform
the second phase of the REFTREE algorithm independently.
Without further communication, all processors will obtain the
same partition, except for details within parts of the grid that
the processor does not have. These details are not needed since
all the processor needs to know is the new assignment for the
elements it currently has so that it can send those elements to
the new owner during the redistribution of data.

For a grid with N elements, if each processor has O(N/p)

elements and O((N/p)r), r �1, “shadow’’ (or “ghost’’) ele-
ments, the expected number of operations on each processor
is O(N/p). Typically r = 1

2 for two-dimensional grids and
r = 2

3 for three-dimensional grids.

5. Numerical results

Numerical experiments were performed to demonstrate the
performance of the refinement-tree partitioning method and to
compare it to several other partitioning methods for dynamic
load balancing. Three example problems were used: (1) a prob-
lem that is commonly used for adaptive refinement demonstra-

Fig. 11. The Hilbert space filling curve.

Fig. 12. The Sierpinski space filling curve.

tions; (2) a two-dimensional problem on a more complicated
domain; and (3) a three-dimensional problem.

The computations for the two-dimensional problems were
performed on a cluster of 1.66 GHz AMD Athlon MP 2000 1

1 The mention of specific products, trademarks, or brand names is for
purposes of identification only. Such mention is not to be interpreted in any
way as an endorsement or certification of such products or brands by the
National Institute of Standards and Technology. All trademarks mentioned
herein belong to their respective owners.
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Fig. 13. Partitioning the grid and refinement-tree into two sets.

based PCs operating under the Red Hat 7.3 distribution of
Linux with kernel 2.2.20. Programs were compiled with Lahey
Fortran 95 version 6.1 and gcc 2.96. Message passing was per-
formed with the LAM 6.5.9 implementation of MPI. The com-
putations for the three-dimensional problem were performed
on a cluster of 2.4 GHz Xeon based PCs with Fedora Core 3,
Linux kernel 2.6.10, Lahey Fortran 95 version 6.2, gcc 3.4.3,
and LAM 7.1.1.

The two-dimensional problems were solved with PHAML
version 0.9.13 [8,9]. This is an adaptive multilevel program that
uses triangle bisection for refinement. The grid for the three-
dimensional problem was generated by hexahedron octasection
outside the context of a PDE solver. All partitions were com-
puted by Zoltan version 1.52 [1,2], which includes ParMETIS
version 3.1 [5,14].

The partitioning methods used in these computations are:

(1) refinement-tree (REFTREE)—the method described in this
paper;

(2) Hilbert space filling curve (HSFC)—a traditional SFC
method;

(3) OCTREE (OCTREE)—the OCTREE method;
(4) ParMETIS (ParMETIS)—a multilevel diffusive method

(ParMETIS_RepartLDiffusion) from the popular static
partitioning library;

(5) recursive coordinate bisection (RCB)—a method that re-
cursively bisects the region into two parts, with separators
parallel to the axes; and

(6) recursive inertial bisection (RIB)—a method that recur-
sively bisects the region into two parts, with separators or-
thogonal to the longest direction of the subregion.

Further details of the methods can be found in [2] and the ref-
erences therein. We comment on the expected performance of
two of the methods. First, this implementation of the OCTREE
method was intended for three-dimensional grids. It partitions
a two-dimensional grid by embedding it in three dimensions
and partitioning it as a three-dimensional grid. Consequently
we expect OCTREE to have a longer computation time than
would be possible with a two-dimensional implementation
(hence the timing results are not reliable), but to give the ex-
pected quality of partition (hence the quality results may be
compared with the other methods). Second, ParMETIS was
intended to be a near-optimal static partitioner for a large
number of processors. Consequently we expect ParMETIS
to have longer computation times but produce higher quality
partitions.

The first example is a problem that is often used to
demonstrate adaptive refinement. It is Laplace’s equation with
Dirichlet boundary conditions on an L shaped domain. There
is a singularity at the reentrant corner, which induces smaller
elements in that region. An adaptive grid for this problem
is shown in Fig. 15. Sample partitions for 16 processors are
shown in Fig. 16 for each of the methods.

The program begins with a grid containing six triangles and
refines it to approximately 16,000 nodes sequentially. It then
cycles through three phases: (1) partition the grid, (2) refine
to approximately double the number of nodes, and (3) solve
the linear system using two multigrid V-cycles. The program
terminates when there are approximately one million nodes.
Runs were made using from 2 to 32 processors (the number
of partitions equals the number of processors). Since parti-
tioning occurs before refinement, this is a predictive load bal-
ancing approach. The weights on the elements are the error
indicators used by the adaptive refinement algorithm, which
in this case is a simple hierarchical coefficient estimator [6].
The wall clock time for each partitioning phase was mea-
sured using the Fortran subroutine system_clock. The num-
ber of elements moved between processors was counted at the
end of each partitioning phase. The number of cut edges in
the dual graph of the grid (i.e., the number of adjacent ele-
ments assigned to different partitions) was counted after each
refinement phase.

Fig. 17 shows the time for computing each partition by
REFTREE for 2, 4, 8, 16 and 32 processors. The O(N) growth
is clearly demonstrated independent of the number of proces-
sors. O(1/p) growth is observed for 2, 4 and 8 processors, but
the method slows down for 16 and 32 processors. This is pri-
marily due to increasing communication costs in the all-to-all
communication of the algorithm, which is not reflected in the
operation count of Section 4. Fig. 18 shows the execution time
of REFTREE with the communication time removed. Here we
observe the decrease in time as the number of processors is in-
creased. This indicates that the REFTREE method with all-to-
all communication may not be appropriate for large numbers of
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Fig. 14. The REFTREE algorithm.

processors. However, the time is still well below 10% of the to-
tal running time of the adaptive-refinement multigrid-solution
program, which was about 60 s.

Fig. 19 shows the time for computing each partition by
each method for 32 processors. As expected, OCTREE and
ParMETIS are the slowest methods. There is approximately a
factor of 10 difference between the fastest method, HSFC, and
the slowest. REFTREE is comparable to RIB and is in the mid-
dle of the pack, running 2–3 times slower than HSFC. Again
the time for any of the methods is well below the total running
time of the program.

Figs. 20 and 21 give an indication of the quality of the par-
titions as measured by the number of cut edges. Fig. 20 shows
the average number of cut edges per partition, and Fig. 21
shows the maximum number of cut edges over all partitions.
In general, the worst method is within a factor of 2 of the best
method. For the average number of cut edges, REFTREE is
generally the best method with ParMETIS coming in second.
For maximum number of cut edges they switch roles. HSFC,
which was the fastest method, generally produces the largest
number of cut edges. Fig. 15. The L shaped domain and an adaptive grid with 256 nodes.
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Fig. 16. Sample partitions for the L domain problem. (a) REFTREE, (b) HSFC, (c) OCTREE, (d) ParMETIS, (e) RCB, (f) RIB.

A second measure of partitioning quality is the number of
elements that are moved from one partition to another. Table 1
gives the total number of elements that were transferred be-
tween partitions during the load balancing of the grids with
about 250,000, 500,000 and 1,000,000 nodes. Here we see
ParMETIS is clearly superior to the other methods. REFTREE
is in the middle of the pack.

The second example solves Laplace’s equation on a more
complex domain. The domain and partitions for eight proces-
sors are shown in Fig. 22. This example illustrates that all
of the other methods can produce disconnected partitions. In

Fig. 22 REFTREE is the only method to produce connected
partitions.

The same experiment was run for this problem as for the
first example. The results are similar, and are summarized for
16 processors in Table 2. The amount of time used to com-
pute partitions is given in column 2. Again HSFC is the fastest,
ParMETIS and OCTREE the slowest, and the others are com-
parable. The quality of partitions as indicated by the maximum
number of cut edges is best for ParMETIS with REFTREE sec-
ond, and HSFC and OCTREE the worst. For the number of
elements moved while load balancing the grid with 1,000,000



Aut
ho

r's
   

pe
rs

on
al

   
co

py

W.F. Mitchell / J. Parallel Distrib. Comput. 67 (2007) 417–429 427

1 × 105 1 × 106

nodes

0.1

1

10

tim
e 

(s
.)

2 processors
4 processors
8 processors
16 processors
32 processors

Fig. 17. Time for REFTREE partition with L domain example.
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Fig. 18. Time for REFTREE partition with L domain example without time
spent on communication.
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Fig. 19. Time for each method to partition L domain example into 32
partitions.
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Fig. 20. Average number of cut edges for each method with 32 partitions of
the L domain.
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Fig. 21. Maximum number of cut edges for each method with 32 partitions
of the L domain.

Table 1
Number of elements transferred

Method 250 K 500 K 1 M

REFTREE 58,829 186,078 213,588
HSFC 128,719 205,851 362,722
OCTREE 36,796 89,504 135,243
ParMETIS 7307 9962 32,097
RCB 50,563 61,600 96,463
RIB 125,665 291,553 669,757

nodes, ParMETIS is best and REFTREE is in the middle of the
pack.

The third example examines the partitioning algorithms for
a three-dimensional hexahedral grid with refinement in a half
sphere of radius 1

4 centered at the center of the top of a cube.
This grid was not created in the context of solving a PDE, but
was artificially created by refining elements that have a corner
in the half sphere. A sample grid with 2164 elements is shown
in Fig. 23, and partitions for eight processors with each of the
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Fig. 22. Partition in eight sets for a complex domain. (a) REFTREE, (b) HSFC, (c) OCTREE, (d) ParMETIS, (e) RCB, (f) RIB.

Table 2
Results for 16 processors with the NIST domain

Method Time (s) Cuts Moved

REFTREE 4.80 2607 298,206
HSFC 2.45 5529 360,824
OCTREE 8.69 7016 464,946
ParMETIS 7.40 1788 154,424
RCB 4.61 3072 269,166
RIB 5.56 2828 510,559

methods is shown in Fig. 24. In these figures, the cube has
been cut down the middle and opened up to show the grid and
partitions in the interior of the cube.

For this example, the program begins with a grid consisting
of one cube and refines it once sequentially to a grid with
36 elements. It then alternately partitions and refines the grid.
When the program terminates there are 4,605,840 elements.
Runs were performed with 16 processors. The weights were
1.0 for leaf elements and 0.0 for non-leaf elements. The same
measurements were made as in the first example.

Table 3 summarizes the results for the three-dimensional ex-
ample. It reports the amount of time to partition the final grid,
the maximum number of cut edges in the final partition, and
the number of elements moved by the final partition. Again
HSFC is the fastest and OCTREE is the slowest. REFTREE
and ParMETIS are also much slower than the fastest meth-
ods. One of the reasons that REFTREE performs poorer on the
three-dimensional problem than it did on the two-dimensional
problems is that the determination of the child order is more
complicated with octasected hexahedra and takes a significant
portion of the time, while it is insignificant for bisected trian-

Fig. 23. An example grid for the three-dimensional domain.

gles. For number of cut edges, REFTREE is the best method,
with RCB and OCTREE fairly close. ParMETIS again has
the fewest elements moved, with RCB coming in second and
REFTREE nearly identical to RCB. HSFC moved the most.

6. Conclusion

This paper introduced the refinement-tree partitioning
method (REFTREE) for grids that were created by adaptive
refinement. It is closely related to the OCTREE method and
SFC methods. REFTREE uses a tree representation of the
refinement process with weights representing the amount of
work associated with each element. The method applies to
almost all types of elements and refinement strategies in two
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Fig. 24. Partition in eight sets for a three-dimensional domain. (a) REFTREE,
(b) HSFC, (c) OCTREE, (d) ParMETIS, (e) RCB, (f) RIB.

Table 3
Results for 16 processors with the three-dimensional example

Method Time (s) Cuts Moved

REFTREE 36.02 27,835 102,362
HSFC 3.82 48,019 1,772,104
OCTREE 45.10 31,171 151,455
ParMETIS 31.03 45,213 62,384
RCB 6.79 29,230 101,727
RIB 12.29 45,364 1,178,204

and three dimensions. For triangles and tetrahedra, it is guaran-
teed to produce connected partitions, which is not true of other
partitioning methods. For all other applicable element types
and refinement strategies it will produce connected partitions
if a path through the elements of the initial grid can be found.
When executed in parallel on p processors, the expected num-
ber of operations for partitioning into p sets is O(N/p) with
only one communication step. However, the communication
step involves all-to-all communication which can become

dominant for a large number of processors. Numerical results
were presented in two and three dimensions. These results
showed that in two dimensions REFTREE runs as quickly
as methods like recursive coordinate bisection and produces
high-quality partitions like multilevel diffusion. In three dimen-
sions, REFTREE was slower, but still produced high-quality
partitions.
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