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Abstract— We study the complexity of accessing bits on a
Pure Pointer Machine (PPM) or a pointer machine without
arithmetic capabilities. In particular, we show that lower
bounds in access time for information retrieval on a PPM
arise from two independent factors: the complexity of in-
formation being stored and the amount of antisymmetry in
the information. This result contrasts with earlier work by
Ben-Amram and Galil that showed that for pointer machines
with arithmetic capabilities look-up time depends only on the
complexity of the information stored. We then demonstrate
the use of these bounds to show optimal look-up times for
comparing elements in partial and total orders on a PPM.
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1. Introduction
In this paper we study the complexity of accessing in-

formation on Pure Pointer Machines (PPM) [1] – pointer
machines with no arithmetic capabilities. Essentially, this
problem is to find the time needed to retrieve a bit for a
given set of indices.

This problem has been studied by Ben-Amram and Galil
[2] for a stronger class of pointer machines that do have
arithmetic capabilities. Their result showed that for these
models, lower bounds on retrieval of information depend
only on the complexity of information being stored. They
extended their result to show that this bound holds even if
we allow the data fields in the pointer machines to hold
infinite precision numbers.

Our investigation examines pointer machines that have no
data fields or arithmetic capabilities. We show that when
these capabilities are removed from the pointer machine
model, we see an additional restriction on look-up times
based on the limited number of fixed radius neighborhoods
we can construct.

The structure of this paper is to first introduce Pure Pointer
Machines. We then give a bound based strictly based on
the complexity of the information stored. We prove that
for a structure on a PPM with I indices and holding C
bits of information, where C is the Kolmogorov complexity
of the information being stored, then there exists a bit that
requires Ω(lg(C/I)) pointer dereferencings to retrieve. We
then apply this result to prove that to compare two elements
in an n element partial order on a PPM requires Θ(lg n)
time.

Finally, we show a bound that results from the amount of
antisymmetry in the information stored. We define a metric
on the information being stored. This metric ωL is the clique
number of a structure that we call the limiting graph. This
limiting graph is constructed from the information being
stored and from it we show a lower bound of Ω(lg lg ωL) for
accessing bits. This bound is independent of the complexity
of the information being stored. Lastly, we use this result
to show that to compare two elements in a n element total
order on a PPM requires Ω(lg lg n) steps.

2. Pure Pointer Machines
We first must define what model of computation we

are considering when we talk about pointer machines. The
term “pointer machine” has become overloaded throughout
the years, and Ben-Amram [3] gives a good overview of
several of the different definitions. The version of the pointer
machine we are investigating was defined by Robert Tarjan
in his paper [1] for establishing lower bounds for the Union
Find problem. As Ben-Amram points out, Tarjan’s versions
of pointer machines are actually classes of algorithms and
not true computational models.

Tarjan’s version of a pointer machine (PM) is defined as a
finite but expandable collection R of records, called global
memory, and a finite collection of registers. Each record is
uniquely identified by a label we call an address and is a
collection of k fields with each field being either a data
field or a pointer field. A pointer field can either specify a
record or contain a nil pointer that is a special label used
to designate an invalid address. All records are identical in
structure.

A program on a pointer machine is finite set of instructions
that allow copying of pointers between registers and/or
record pointer fields, copying and applying of operators
on data fields, creating of new records, and halting the
computation. The only control instruction is the conditional
jump based on a comparison on the values of two registers
or record fields. The only comparison test allowed between
pointer fields is testing for equality. No arithmetic operations
are allowed on pointers. Tarjan defined the set of pointer
machines that contain no data fields, only pointer fields, as
Pure Pointer Machines (PPM). A study of the differences
in computational power between types of pointer algorithms
was given by Cloteaux and Ranjan [4].

An assumption that is made throughout this paper is that
every PPM has records that contain exactly two pointer



fields. Justification for this assumption comes from Lugin-
buhl and Loiu (Lemma 5.4 [5]) who give a simple trans-
formation from any PPM whose records contain k pointer
fields to a PPM with records containing two fields that does
not asymptotically change the run time.

Even though the Random Access Machine (RAM) is
the most commonly used model in the study of algorithm
complexity, the pointer machine has received attention as an
alternative model. This is shown by the number of lower
bound results using the model since Tarjan’s original paper
[6], [7], [8], [9], [10], [11], [12]. There are two reasons
for this increase in popularity. Because of its simplicity, the
pointer machine model is often more suitable for the analysis
of lower bounds of time complexity. Pure pointer machines
have the additional advantage of making explicit the time
costs for all arithmetic operations. This contrasts with the
RAM model that can hide the actual costs by allowing
operations on numbers up to lg n bits (where n is the input
size) in constant time.

3. Bounds Based on Information Com-
plexity

A fundamental difference between PMs and PPMs is how
they are able to address array representations. Since PPMs
have no intrinsic way to represent integers, any type of query
must be in terms of pointers to records rather than integers.
We think of the array as represented on a PPM by a structure
of records D. An n dimensional array access on a PPM
would be given by a query function Q : In → {0, 1} where
I ⊆ D. The set I is called an index set.

An assumption we make about index sets is that the
records in them are in some sort of total ordering. This
ordering allows us to iterate through the values stored in
the array. We make this assumption without affecting time
bounds on access times since if a query algorithm can run
in time t, putting the records of the index set in a linked list
does not affect the run time of the algorithm. The additional
links can simply be ignored.

From this formulation of the problem, we quickly see
that there must be queries for array structures on PPMs that
require nonconstant time. For instance, consider the problem
of trying to create a query algorithm to represent an arbitrary
two dimensional array. For a m×n array, we will use as our
index set I the union of two sets of records; the first one
M where |M | = m represents the first dimension of the
array and a second N where |N | = n represents the second
dimension. Thus a query would be of the form Q(i, j) where
i ∈ M and j ∈ N . To show that there is no constant time
algorithm for accessing information in a two dimensional
array, we can use a simple incompressibility argument.
Let us store a string S in our array whose Kolmogorov
complexity is m · n. If we are able to answer every query
in constant time starting from the set I , then the size of our

data structure is at most c(m+n) records for some constant
c.

The contradiction comes from the fact that we can encode
any structure on a PPM with r records with a 2r lg r
bit string. Every pointer field in a record can be encoded
with dlg re bits. By ordering the records, we represent
the structure uniquely with a string of length r · 2 · lgdre
bits. Thus for c(m + n) records, we can encode it with
O ((m + n) lg(m + n)) size string. For large enough m and
n we quickly get a contradiction in the minimal number of
bits needed to encode S.

More generally, we can extend this idea to show a
relationship exists between the complexity of the information
being stored and the size of the index set we use to retrieve
individual bits.

Theorem 3.1: Suppose on a PPM, we store a string S
whose Kolmogorov complexity is K(S). For the index set
I and the query function Q : In → {1, 0}, if K(S) >
|I| lgc |I| where c > 1 and |I| is large enough then
there exists a query that requires dereferencing Ω

(
lg K(S)

|I|

)
pointers.

Proof: Let us define d = (c− 1)/2c. Since c > 1 then
d > 0. For a contradiction, let us assume that the number
of records we need to dereference to retrieve any bit in S is
less than d lg K(S)

|I| for any size of |I|. From this assumption,
the number of records in the structure storing the string must
be less than

|I|2d lg
K(S)
|I| = K(S)d|I|1−d (1)

Using the string encoding in the example above, the num-
ber of bits needed to represent this structure is at most
K(S)d|I|1−d (d lg K(S) + (1− d) lg |I|).

For an algorithm of size A that can retrieve the bits of S
in order from the structure, there exists a constant C ≥ A
such that

K(S) ≤ K(S)d|I|1−d (d lg K(S) + (1− d) lg |I|) + C (2)

rearranging the terms we get(
K(S)
|I|

)1−d

≤ d lg K(S) + (1− d) lg |I|+ C (3)

which simplifies to(
K(S)
|I|

)1−d

− d lg
K(S)
|I|

≤ lg |I|+ C (4)

From K(S) ≥ |I| lgc |I|

lgc(1−d) |I| − cd lg lg |I| ≤ lg |I|+ C (5)

Since it is easy to show that c(1− d) > 1, then for |I| large
enough we get a contradiction. Thus a query must exist that
dereferences at least d lg K(S)

|I| records to return an answer.
�



For an example of how to apply this bound, consider the
problem of maintaining a partial order (PO) of n elements
on a PPM. In this case, the index set would be the set
of records that represent elements in the partial order. The
stored string holds bits that represent whether the ≤ relation
holds between elements a and b. In other words,

Q(a, b) =

{
1 if a ≤ b,
0 otherwise

(6)

Thus we get the following result.
Theorem 3.2: For the PO problem on a PPM, the time

needed to compare two elements out of n elements is
Ω(lg n).

Proof: The amount of information needed to store an
arbitrary n element partial order was proved by Kleitman and
Rothschild [13] to be n2/4+o(n2). Since O(n2)/n = O(n),
then we can apply Theorem 3.1 that gives us a lower bound
for the PO problem of Ω(lg n). �

Using a balanced binary tree to store the information, we
see that this bound is optimal.

4. Bounds Arising from Antisymmetry
For many problems, the information bound from Theorem

3.1 does not apply. This occurs when the complexity of the
information is not large enough compared to the number of
indices. For example, consider the problem of implementing
the ≤ operation between n elements in a total order. The
amount of information needed to represent a total order of
n elements is lg n! = O(n lg n). Thus the ratio K(S)/|I| =
O(n lg n)/n = O(lg n) for all index sets does not allow
Theorem 3.1 to apply to it.

Studying the total order problem allows us to see a
fundamental difference in bounds between PMs and PPMs.
A PM is able to implement a total ordering with constant
time comparison by storing unique values in the data fields
of its records. However, for a PPM we will show that this
problem is not constant. The reason for this difference is that
there are a limited number of unique graph structures with
some fixed radius to encode information on a PPM. We show
this difference by extending an idea originally presented by
Ranjan, Pontelli, Gupta, and Longpré [12]; that is to look at
the number of different neighborhoods possible around the
elements in the index set and compare that to the number
that we need to answer a query.

To see this relationship, let us first give a definition. For a
query function Q : I2 → {0, 1}, we define its limiting graph
L(Q) = (V,E) in the following manner: the set of nodes V
are the index set I , i.e. V = I , and an edge (v1, v2) is in
edge set E if and only if v1, v2 ∈ I such that Q(v1, v2) 6=
Q(v2, v1). In other words, if we can swap the two indices in
an instance of Q and get a different answer, then those two
indices produce an edge in the limiting graph. We show that
there is a basic relation between the query time needed for

function Q on a PPM and the clique number ω of the limiting
graph of Q where ω(L(Q)) = d where d is the greatest
integer such that Kd ⊆ L(Q). This bound results from the
fact that we need to have enough unique neighborhoods to
distinguish every possible query between elements in the
maximum clique of the limiting graph.

To see this, let us first define what it means to be for two
neighborhood to be indistinguishable from each other. We
denote the c radius neighborhood centered on a record a as
Nc(a). The idea of examining the c radius neighborhoods
around each member of the index set is formalized with the
following definition.

Definition 4.1: We define the c-neighborhoods around
two records a and b as being indistinguishable to each other
if they have the following properties.

1) There exists a bijective mapping p from the records of
Nc(a) to the records of Nc(b).

2) The function p maps a to b (p(a) = b).
3) The mapping respects the labeling of the edges. In

other words, Nc(x) has an edge (x, y) labeled by l
if and only if Nc(y) has an edge (p(x), p(y)) labeled
by l. On a PPM, a label i corresponds to the pointer
being stored in the ith pointer field in a record.

4) If r ∈ Nc(x) ∩ Nc(y), then p(r) = r. This implies
that the records shared by both neighborhoods are in
the same position in both neighborhoods.

If two neighborhoods are not indistinguishable to each
other, then the neighborhoods are said to be distinguish-
able. From this definition, if we have two index records
a and b whose c neighborhoods Nc(a) and Nc(b) are
indistinguishable, then in c or less pointer dereferencings
Q(a, b) and Q(b, a) will always return the same answer. This
follows from the fact that the only comparison allowed on
a PPM is pointer equality. Because any common records
between the two indistinguishable neighborhoods are forced
to occupy the same relative position from the center, all
pointer comparisons will always return the same answer no
matter the order of the neighborhoods. Thus if Nc(a) and
Nc(b) are indistinguishable and Q(a, b) 6= Q(b, a) then the
algorithm cannot resolve the query in c or less steps. We
now show that these indistinguishable neighborhoods implies
lower bounds on functions Q in general with the following
result.

Theorem 4.1: On a PPM, for the query function Q : I2 →
{0, 1} and its limiting graph L(Q), there exists a query that
requires dereferencing Ω (lg lg ω (L(Q))) pointers.

Proof: For a contradiction, we assume that every query
call Q(I2) can be resolved in less than b = 1

3 lg lg ω(L)
record inspections. We note that the number of records in a
b-neighborhood must be r ≤ 2(1/3) lg lg ω(L) = (lg ω(L))1/3.

The main idea of this proof is to show that there are a
limited number of distinguishable neighborhoods with radius
b. We then show that this number is less than ω(L(Q)),
thus forcing us to have a query where two index records



have indistinguishable b-neighborhoods, but give different
answers depending on the order of the records.

To show that we must have indistinguishable b-
neighborhoods, we use the Erdős-Rado sunflower lemma
[14]. This lemma states that if we have a collection of
nonempty sets S = {S1,S2, ...,SM} whose maximum
cardinality is m and where M = (p − 1)mm!, then there
must exist a set P ⊆ S (called a sunflower where each
member set is called a petal) with at least p members such
that each two members of Si,Sj ∈ P contains the same
common intersection Si∩Sj = C (called the core) for every
Si,Sj ∈ P where Si 6= Sj . At the same time, the noncore
elements are disjoint from all other sets in the sunflower,
(i.e. (Si − C) ∩ Sj = ∅ for all Si,Sj ∈ P where Si 6= Sj).

Consider the collection of the b neighborhoods around
a set of elements W = {w1, w2, ..., wq} that forms a
maximal clique in L(Q). Thus |W | = ω (L(Q)). For
the set of neighborhoods around the elements in W ,
{Nb(w1), Nb(w2), ..., Nb(wq)}, the sunflower lemma tells
us that this set must contain a sunflower with p = |W |1/2r

petals, since
(
|W |1/2r − 1

)r
r! ≤ |W |.

We want to show that the number of distinguishable
graphs with radius b in the sunflower is less than the number
of petals. We accomplish this by using a counting argument
originally from Ranjan et al. [12] that encodes each possible
b neighborhood in the sunflower as a string.

This encoding assumes that the core contains m elements.
To represent a neighborhood, we use a vertex list. Each
vertex is identified by an integer from 0 to m where 0
represents a vertex not in the core and the other integers
identify core elements. An additional bit marks the center
record for the neighborhood. The edges are a represented by
a list of size at most 2m that contains pairs of vertexes. Since
m < r, the total representation uses at most 2r·(2 lg r)+r <
5r lg r bits. Now we can compare the number of strings
versus the size of the petal set.

25r lg r < ω (L(Q))
1
2r (7)

or equivalently,

210r2 lg r < ω (L(Q)) (8)

taking the logarithm of both sides we get

10 · r2 lg r < lg ω (L(Q)) (9)

finally substituting for r we get

10
3
· (lg ω (L(Q)))

2
3 · lg lg ω (L(Q)) < lg ω (L(Q)) (10)

This is always true for |I| large enough, thus forcing the
existence of query where the indices have indistinguishable
b neighborhoods but the function gives different answers
depending on the order of the indices. To resolve this
contradiction, the bound must hold. �

Let us now reconsider the problem of lower bounds for
a total order (T O) on a PPM. Using this theorem, we have
a simple application to get a nontrivial lower bound for the
comparison operation in a total ordering.

Theorem 4.2: On a PPM, the time needed to compare two
elements in an n element total order is Ω(lg lg n).

Proof: This theorem follows immediately from the
antisymmetry property of total orderings. Because of this
property, the limiting graph ends up being the n clique. From
Theorem 4.1 the query time must be Ω(lg lg n). �

There are several efficient algorithms for the temporal
precedence problem [15], [12], [16], [17] that can be applied
to this problem, and show that the given lower bound is
optimal.

5. Conclusions
In this paper we have investigated the time needed for

information retrieval on a Pure Pointer Machine. We have
given two fundamental bounds, one based on the complexity
of information stored and the other based on the amount
of antisymmetry in the information. This contrasts with the
bound given by Ben-Amram and Galil for pointer machines
with arithmetic capability that depends only on the com-
plexity of the information. Finally, we showed how to use
these bounds to get optimal time bounds for the comparison
operator in total and partial orderings on PPMs.
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