
1. Introduction

The study of the stability of a fluid-fluid interface is
important in a number of scientific and technological
applications. In this paper we consider two immiscible
fluid layers separated by a horizontal planar interface
subject to a vertical temperature gradient. This problem
has been well studied both theoretically and experimen-
tally [1-6], and the effects of various driving forces on
the stability of the system have been taken into account.
Examples include the effects of buoyancy (natural or
Rayleigh-Benard convection [7]), the effects of bulk
density differences (Rayleigh-Taylor instabilities [8]),
and the effects of surface tension gradients along the
interface (Marangoni instabilities [1]).

One of the earliest papers on the two-layer problem
was by Zeren and Reynolds [9], who carried out
numerical calculations, a long wavelength analysis, and
experiments on the benzene-water system. Given the
limited computational resources at that time, Zeren and
Reynolds obtained reasonable numerical results. With
the increased computational power that is now avail-
able more accurate calculations may be performed,
including the possibility of oscillatory (in time) modes
that were ignored by Zeren and Reynolds. By using
modern programs for symbol manipulation, the long
wavelength analysis by Zeren and Reynolds can be
extended to higher order as well.

In this paper we examine the linear stability of hori-
zontal fluid bilayers, taking into account both buoyancy
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effects and thermocapillary effects in the presence of a
vertical temperature gradient. The problem depends on
a number of dimensionless parameters, including the
ratio of material properties in each layer, the Rayleigh
number (dimensionless temperature gradient), the
Marangoni number (dimensionless force due to surface
tension gradients), the Bond number (dimensionless
buoyancy force at the interface), and the Crispation
number (a measure of interface deformability). We find
that in some situations the onset of instability can be
due to a overstable mode that oscillates in time, with a
finite critical wavenumber. In other circumstances the
instability is stationary in time with a finite critical
wavenumber. The stationary instabilities can extend to
small wavenumbers, though the critical instability usu-
ally does not occur at zero wavenumber. To help under-
stand the mechanisms driving the instability we have
performed both long-wavelength and short-wavelength
analyses. The mechanism for the large wavelength
instability is complicated, and the detailed form of the
expansion is found to depend on the Crispation and
Bond numbers. The system allows a conventional
Rayleigh-Taylor instability if heavier fluid overlies
lighter fluid, and this case is included in the results as
well. In addition to the asymptotic analyses for large
and small wavenumbers, we have performed numerical
calculations using materials parameters for a benzene-
water system.

The paper is organized as follows. Governing equa-
tions are given in the next section. The numerical pro-
cedure is described briefly in Sec. 3. Linear stability
results for various cases are presented next, including a
comparison of the numerical results with large and
small wavenumber expansions. A discussion is present-
ed in Sec. 5, followed by conclusions in Sec. 6. An
appendix contains a summary of the expansion results.

2. Equations

We consider a semi-infinite horizontal bilayer sys-
tem, with vertical heating across the layers. The unper-
turbed upper layer (denoted by α) extends over the
interval 0 < z < Hα , and the unperturbed lower layer
(denoted by β) extends over the interval – Hβ < z < 0.
Without loss of generality we consider linear stability
results for a two-dimensional system. The horizontal
coordinate extends from – ∞ < x < ∞, and the velocity
u has components in the x and z directions denoted by
u and w, respectively.

2.1 Governing Equations in the Bulk

In each layer, we consider the Boussinesq equations

∇ ⋅ u = 0, (1)

ρ−ut + ρ−(u ⋅ ∇)u + ∇p = µ∇2u – ρgẑ , (2)

Tt + (u ⋅ ∇)T = κ∇2T. (3)

Here p is the pressure, µ is the dynamic viscosity, T
is the temperature, κ is the thermal diffusivity, g is the
gravitational acceleration, t is the time, and ẑ is the unit
vector in the z-direction (anti-parallel to gravity). We
assume µ and κ are uniform in each layer, and also
assume the density ρ is uniform in all terms except the
gravitational term, where the density is given by

ρ = ρ−(1 – η[T – TR]), (4)

in each layer. Here ρ− is the density in each layer at the
reference temperature TR, and the thermal expansion
coefficient η is assumed to be uniform in each layer.

2.2 Boundary Conditions
The upper boundary at z = Hα and the lower bound-

ary at z = – Hβ are assumed to be isothermal with no-
slip boundary conditions. The temperature is continu-
ous across the interface,

T = 0, (5)

where T = Tα – Tβ denotes the temperature jump
across the interface. The tangential velocity is assumed
to satisfy the no-slip condition

u ⋅ t̂ = 0, (6)

where t̂ is any unit vector tangent to the interface. The
stress boundary condition is

ρ−u(u ⋅ n̂ – υn = T ⋅ n̂ – γK n̂ + ∇s γ, (7)

where n̂ is a unit normal vector to the interface, T j k =
– pδj k + µ(∂uj /∂x k + ∂u k /∂x j) is the stress tensor, γ is
the surface tension, K is the curvature, υn is the normal
velocity of the interface, and ∇s is the surface gradient.
Here our sign convention is that the curvature K is
defined to be positive for a spherical inclusion of β
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phase. For example, in two dimensions with an inter-
face z = h(x, t), the curvature is K = – hxx /[1 + hx

2]3/2, the
interface velocity is υn = ht /[1 + hx

2]1/2, and the surface
gradient of the temperature-dependent surface energy
γ = γ(T) is given by

(8)

where γT = dγ/dT and t̂ is the unit tangent vector to the
interface in the direction of increasing x. Here hxx indi-
cates the second derivative of h, etc.

The interface is a material surface, so that we have

(9)

(10)

Under these conditions the left hand side of Eq. (7)
vanishes. The continuity of heat flux gives

(11)

where k is the thermal conductivity and ∂T/∂n =

erature field in each layer.

2.3 Base State
We linearize about a quiescent base state (also indi-

cated by bars). The thermal field is

(12)

in the α layer, and

(13)

in the β layer, where TE is the unperturbed interface
temperature. The temperature gradients in the base state
satisfy

(14)

The pressure field in the base state is hydrostatic,
with

(15)

2.4 Dimensionless Parameters and Governing
Equations

Following the treatment by Zeren and Reynolds [9],
we make the equations dimensionless based on a length
scale given by the total depth d = Hα + Hβ , a time
scale based on the thermal time d 2/κβ , a velocity scale
κβ /d, a temperature scale Gβ d, and a pressure scale
νβκβρ−β /d 2. These scales introduce the dimensionless
parameters

(16)

(17)

(18)

and the geometrical parameter = – Hβ /H α . Here
να = µα / ρ−α and νβ = µβ / ρ−β are the kinematic vis-
cosities in each layer, Pr is the Prandtl number, Ra is the
Rayleigh number, Cr is the Crispation number, Bo is
the Bond number, and Ma is the Marangoni number.
The minus sign in the definition of Ma is conventional,
since for most materials, as for the benzene-water
system, we have γT < 0.

We assume a horizontal wavenumber a and a tempo-
ral growth rate σ = σr + iσi . The perturbed quantities
(indicated by tildes) then satisfy

(19)

(20)

(21)

(22)

for z > 0, and

(23)

(24)

(25)

(26)

for z < 0.
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The boundary conditions at  z = 0 are

(27)

(28)

(29)

(30)

(31)
(32)

(33)

Critical conditions are often determined experimen-
tally by varying the temperature gradient across the
system. The temperature gradient Gβ appears in the
dimensionless parameters Ma and Ra. Zeren and
Reynolds [9] introduce the parameter

(34)

which is independent of the temperature gradient, and per-
form calculations by varying Ma for a fixed value of Γ.

3. Numerical Implementation

We solve the eigenvalue problem that governs the
linear stability of the system by using two complemen-
tary procedures. In the first approach, the equations are
discretized using pseudo-spectral Chebyshev colloca-
tion, and the resulting generalized matrix eigenvalue
problem is solved using the package RGG from the
EISPACK software library [10]. For a discretization
with N degrees of freedom, this routine produces
approximations to the first N eigenvalues of the system.
The second approach is to use the two-point boundary
value solver BVSUP [11], coupled with the root finder
SNSQ [12], both from the SLATEC library [13], to
implement a method described by Keller [14] to solve
the eigenvalue problem. The BVSUP procedure pro-
vides a very accurate solution for a given eigenmode
provided a good enough initial estimate is available for
the root-finding procedure. The pseudospectral method
is efficient for small values of N, and is well-suited for
searching parameter space to detect real and complex
eigenvalues. Rather than performing fine grid calcula-
tions with the pseudospectral procedure, however, the
coarse grid results from the pseudospectral method are

often used as initial guesses for the BVSUP code.
Continuation from previous solutions also is used once
an eigenmode has been identified.

The BVSUP software works in a single domain, so
we have mapped the two layers to a common domain
by setting

(35)

so that 0 < z–< Hα in each layer. We then have

(36)

where = –Hβ /Hα . To simplify the treatment of the
problem, we also introduce an auxiliary ordinary differ-
ential equation in z– for the interface h~ , by setting

(37)

which allows us to avoid eliminating h~ as an unknown
from the interface boundary conditions.

4. Results

In this section we present numerical results for the
linear stability of the bilayer system. We provide a
comparison with previous results of Zeren and
Reynolds [9], who consider benzene overlying water.
We use the thermophysical parameters given in their
Table II for a temperature of 16 °C, and also consider
their case d*

b = Hβ /(Hα + Hβ) = 0.4. Zeren and Reynolds
consider both the case of heating from above (positive
Ma), where the main driving force is the Marangoni
effect and buoyancy effects are expected to be stabiliz-
ing, and the case of heating from below (negative Ma),
where both buoyancy effects and Marangoni effects
can produce instabilities.

If the system is heated from above, Zeren and
Reynolds compute a positive critical Marangoni num-
ber of 1486, with a critical wavenumber of a = 2.6; they
consider only stationary modes with σi = 0. For a = 2.6
we find Ma = 1468.4635, in fair agreement with their
results. We find a critical wavenumber to three digits of
a = 2.66, with Ma = 1466.8951. Ferm and Wollkind
[15] also obtained similar agreement in a comparison
with Zeren and Reynolds, although they chose different
thermophysical properties for the benzene-water
system.

Volume 112, Number 5, September-October 2007
Journal of Research of the National Institute of Standards and Technology

274

* ,T G h T hα β+ = +

0,u uα β− =

-1 * 2 -1 *( ) BoCr ( 1) Cr 2( ) ,z zp p h a hα β α βρ µ ω ω− − − + = −

* *( ) ( ) Ma( + ) 0,*
z z ia ia T G hα β α β αµ µ µ µ ω ω− + − − =

,hαω σ=

,hβω σ=
* .z zk T Tα β=

2Ra ,
Ma T

g dβρ η
γ

−
Γ = =

for 0 ,
/ for 0,

z z H
z

H z H H z
α

α β β

< <=  − − < <

/ for 0 ,
(1/ ) / for 0,

d d z z Hd
d d z H zdz

α

β

< <=  − < < l

0,dh
d z

=



Our computed neutral stability curves for this case
are shown in Fig. 1. As discussed by Zeren and
Reynolds, the critical mode is mainly driven by
Marangoni convection. We show the two stationary
modes that are given in the second figure of Zeren and
Reynolds; the convection pattern in these modes has a
single cell in each layer, with negligible surface defor-
mation. The convection is more concentrated near the
interface for the higher wavenumber mode. We also
find an oscillatory mode (σi ≠ 0) at intermediate wave-
numbers and Marangoni numbers. The oscillatory mode
has a minimum near a = 5.5, with Ma = 22379.593 and
σi = ± 165.1. The surface deflection for this mode is
negligible. The critical branch of the stationary mode
does not extend to very small wavenumbers, but
instead shows a large-Ma asymptote as the wave-
number tends to the value a = 0.12.

If the system is heated from below, Zeren and
Reynolds compute a negative critical Marangoni
number of Ma = – 6068, with a critical wavenumber of
a = 9. For a = 9.0 we find Ma = – 6014.4082. We show
our computed marginal stability curves for this case
in Fig. 2. We find that the critical mode is actually
oscillatory, with Ma = – 3146.7277 for a = 4.6 and
σi = ± 64.93. The surface deflection for this mode is
negligible. This mode exhibits a single convective cell
in the upper layer, and two vertically-stacked cells in
the lower layer of comparable strength. This mode
merges with another stationary branch that has a long-
wavelength asymptote; σi tends to zero on the oscilla-

tory branch as the modes merge. On the long-wavelength
branch, for a = 0.001 we find Ma ≈ – 19318.282.
Analytic results for long-wavelength modes are
described in the appendix; for this case the asymptotic
result is Ma = – 19318.06, in excellent agreement with
the numerical results.

There is a single convection cell in each layer for the
long wavelength mode, with a significant interface
deflection. Examination of the eigenmode shows that
there is down-flow in the layer beneath the elevated
portion of the perturbed interface. As discussed by
Scriven and Sternling [16] for the single layer case,
Marangoni modes and buoyant modes can be distin-
guished by the direction of the vertical flow in the layer
beneath an interface elevation: there is downflow
beneath elevations for Marangoni flow, and upflow
beneath elevations for buoyancy-driven flow. This is
consistent with the Zeren and Reynold’s interpretation
of the long-wavelength mode as driven by Marangoni
effects. The other two stationary modes in Fig. 2 with
minima near a = 10 have negligible surface deflection.
For both modes the lower layer is nearly isothermal
with a weak unicellular flow, and the upper layer
exhibits two vertically-stacked convective cells for the
mode with Ma ≈ – 6000, and three vertically-stacked
convective cells for the mode with Ma ≈ – 50,000.
There is in fact an entire family of additional stationary
buoyant modes, not shown in Fig. 2, with larger values
of | Ma |, each containing multiple vertically-stacked
cells in the two layers.
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Fig. 1. Marginal stability curves of Marangoni number Ma versus
wavenumber a for a system of benzene over water with heating from
above. Solid curves represent stationary modes with σi = 0, and the
dashed curve is an oscillatory mode with σi ≠ 0. The circles denote
the results of the large wavenumber expansion.

Fig. 2. Marginal stability curves for a system of benzene over water
with heating from below. Solid curves represent stationary modes
with σi = 0, and the dashed curve is an oscillatory mode with σi ≠ 0.
The circles denote the limiting value of the small wavenumber
expansion.



5. Discussion

For the case of heating from below, as shown in
Fig. 2 there is a small wavenumber instability that
asymptotically approaches a finite Marangoni number
as the wavenumber a tends to zero. To examine this
behavior in more detail, we have performed additional
calculations with Γ = 0, which eliminates the effects of
buoyancy. Results are shown in Fig. 3 for both heating
from below (Ma < 0) and for heating from above
(Ma > 0). Suppressing buoyancy eliminates the oscilla-
tory modes that prevail at intermediate wavenumbers for
Γ = 0.142. For heating from below with our parameter
values the stationary mode has a small-wavenumber
limiting behavior that is given approximately by the
expression

(38)

(see Eq. (51) in the appendix). Note that in this approxi-
mation there is a pole at a = 0.335. This is in approxi-
mate agreement with the vertical asymptote that is
obtained numerically for a = 0.268 for heating from
either above or below. In fact, plotting instead 1/Ma
versus a produces a single smooth curve crossing the
y-axis with 1/Ma = 0 at a wavenumber a = 0.268.

To help further understand the low wavenumber
instability that is observed numerically, we have also
performed numerical computations and asymptotic
expansions that illustrate the effects of the Bond
number Bo and the Crispation number Cr for this 

mode. In Fig. 4 the upper curve corresponds to the data
given in Table I. This curve asymptotically approaches
a small wavenumber limit for Ma = – 2.27 × 104. The
lower curve corresponds to setting Bo = 0. The sym-
bols on the curves correspond to numerical results, and
the curves themselves correspond to analytical results
from the small wavenumber approximation given in the
appendix. The small wavenumber results depend
strongly on both Bo and Cr. For the parameter values
given in Table I, we have Cr = 2.1724 × 10–6 and
Bo = 1.1905, giving

(39)

and for Cr = 2.1724 × 10–6 and Bo = 0,

(40)

For Cr = 0 and Bo = 1.1905, the resulting Marangoni
number is positive (corresponding to heating from
above). with

(41)

and numerical results for this case are shown in Fig. 5. 
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obtained with Bo = 0, and the dashed curve denotes the results of the
corresponding small wavenumber expansion.



Here the coefficients c1, c2, c4 , and c6 in these expres-
sions generally depend on the layer geometry and the
remaining material constants and are given in the
appendix; here we have evaluated these expressions for
the values given in Table I.

5.1 Large Wavenumbers
The temperature and flow field for the Marangoni

instability can be studied in the large wavenumber limit
that is summarized in the appendix. We ignore buoyan-
cy by setting Γ = 0, and also ignore interface deforma-
tion by setting Cr = 0, which the numerical results indi-
cate are good approximations in this case. In the large
wavenumber limit the flow is confined to the vicinity of
the interface and the effect of the upper and lower
boundaries at z = Hα and z = – Hβ is negligible. To help
visualize the flow we introduce a two-dimensional
streamfunction
of the temperature and streamfunction near the inter-

face are shown in Fig. 6. Here we have exaggerated the
size of the perturbation to emphasize the distortion
of the isotherms near the interface. To make the plots
easier to interpret we have assumed equal thermal con-
ductivities (k* = 1), which equalizes the unperturbed
temperature gradients in the two layers and facilitates
comparison of the perturbed temperature fields in each
layer. There is a temperature gradient along the inter-
face (at z = 0), and the streamlines of the flow are along
the interface. Over the single period of the flow shown
in Fig. 6, there are four convective cells near the inter-
face that alternately compress and expand the isotherms
near the interface. For our parameters with κ* < 1, the
Marangoni instability occurs for heating from above
(Ma > 0) in the large wavenumber limit. If κ* > 1 the
instabilities occur for heating from below (Ma < 0)
instead.

5.2 Rayleigh-Taylor Instability

The two-layer system can exhibit the classical
Rayleigh-Taylor instability if heavier fluid overlies
lighter fluid. In the simplest case the Rayleigh-Taylor
instability can be understood by a simple potential
energy argument that balances the increased surface
energy of a deformed interface y = h(x) against the
change in the gravitational potential energy of the
displaced fluid,

(42)

Volume 112, Number 5, September-October 2007
Journal of Research of the National Institute of Standards and Technology

277

Table I. Dimensionless parameters for the benzene (α layer) and
water (β layer) system at T = 16 °C, from Ref. [9]

ratio of densities ρ* = ρ–α /ρ–β 0.886
ratio of dynamic viscosities µ* = µα /µβ 0.605
ratio of thermal conductivities k* = kα /kβ 0.274
ratio of thermal diffusivities κ* = κα /κβ 0.730
ratio of thermal expansion coefficients η* = ηα /ηβ 7.06
Bond number over Crispation number Bo/Cr 5.48(105)
Inverse Bond number Bo–1 0.840
Prandtl number Pr 8
Rayleigh number over Marangoni number Γ 0.142
dimensionless thickness ratio Hα /Hβ 1.5

Fig. 5. Marginal stability curves for a system of benzene over water
with buoyancy suppressed (Γ = 0). The diamonds indicate computa-
tional results obtained with Cr = 0, and the solid curve denotes the
results of the corresponding small wavenumber expansion.

with and . Contoursx zw uψ ψ ψ= = −

Fig. 6. Streamfunction contours (light lines) and temperature con-
tours near the interface for the large wavenumber Marangoni insta-
bility with a = 1, k* = 1.0. and κ* = 0.5. The magnitude of the
perturbation is exaggerated to emphasize the deformation of the
temperature contours.

( ) = .xxg h hα βρ ρ γ− −



In terms of our dimensionless variables, this takes the
form

(43)

which can be seen as a factor in the normal stress
balance boundary condition (29).

In the situation we have studied above, we have
lighter benzene overlying heavier water, so the
Rayleigh-Taylor instability does not occur. To study
this instability for our system with a minimal change in
notation, we temporarily choose to change the direction
of gravity while keeping benzene and water in the
original orientation, so that the water and benzene
are unstably stratified with respect to gravity. We take
Gβ < 0, so that buoyancy has a stabilizing effect on the
system; the resulting sign conventions produce Ma < 0,
Ra > 0, Γ < 0, and Bo < 0. In Fig. 7 we show the corre-
sponding numerical results for the Rayleigh-Taylor
instability. The dotted curve in Fig. 7 shows the curve
–Bo = a2/(1 – ρ*) that holds for Ra = Ma = 0. The solid
curve shows numerical results for Ra = 1.0 × 105 and
Ma = 0. The stabilizing effect of buoyancy is evident at
small wavenumbers, where the system is then stable if
| Bo | is sufficiently small. The marginal stability curve
asymptotes at small wavenumbers to the value

(44)

in our case, which follows from Eq. (45) in the appen-
dix. The dashed curve shows numerical results for
Ra = 0 and Ma = – 1.0 × 105. The destabilizing
Marangoni effect in this configuration is evident at
small wavenumbers. and there is a cut-off wavenumber
at a = 0.333 where Bo = 0; at lower wavenumbers this
mode merges into the Marangoni instability with posi-
tive Bond numbers. This value of the cut-off wavenum-
ber is too large to be quantitatively approximated by
the small wavenumber expansion given by Eq. (51) in
the appendix. For the benzene-water system with
Ra/Ma = – 0.142, numerical results are qualitatively
similar to those for the case with Ra = 0.

Our small wavenumber expansion of the instability,
as summarized in the appendix, corrects and extends a
similar analysis given by Zeren and Reynolds [9], who
note that at leading order in a only the interface posi-
tion and temperature field are perturbed, with no lead-
ing order velocity profiles. However, the asymptotic
values for the critical Marangoni number do depend on 

the viscosity of the fluid, so flow does have an effect on
the stability of the system, even at small wavenumbers.
The small wavenumber analysis proceeds by an expan-
sion in powers of a2, and the critical Marangoni number
is determined at a later point in the expansion where the
O(a2) flow perturbation is significant. We also note that
the expansion procedure is based on a limit of small but
non-zero wavenumbers. In the special one-dimensional
case a = 0 the perturbed interface is flat and mass con-
servation restricts its location to z = 0. In a sense this
represents a discontinuity in the problem in the limit
a → 0, since in the expansion procedure a shift in the
interface location is obtained at leading order. This is
somewhat analogous to the dependence of a perturbed
interface of the form z = H0 cos a x, which conserves
mass for a ≠ 0 (i.e., the average interface position is
zero), but represents a shifted flat interface at z = H0 for
a = 0. In general, for real experiments the smallest
allowable value of a will be limited by the finite later-
al extent of the system, but whether or not a perturba-
tion with a = 0 is physically relevant depends on the
specific problem under consideration.

6. Conclusions

We have performed linear stability calculations for
horizontal fluid bilayers, taking into account both
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Fig. 7. Marginal stability curves for a water-benzene system that
is unstably stratified with respect to gravity. The dotted curve
(Ma = Ra = 0) corresponds to the classical Rayleigh-Taylor instabil-
ity in the absence of buoyancy, given by – Bo = a2/(1 – ρ*). The solid
curve represents numerical results that include the effects of buoy-
ancy, with Ra = 1.0 × 105 and Ma = 0, and the circles are the small
wavenumber asymptotic results for this value of Ra. The dashed
curve represents numerical results that include the Marangoni effect,
with Ra = 0 and Ma = – 1.0 × 105.



buoyancy effects and thermocapillary effects. We con-
sider the case of a lighter layer overlying a heavier
layer, so that the base state is stably stratified in this
sense. We find that the system can be linearly unstable to
either heating from above (Ma > 0) or below (Ma < 0).

The mechanism for the large wavelength (small a)
instability is complicated (see Figs. 4 and 5). The
detailed form of the expansion, viz, the exponent n in
the leading order expansion Ma ∼ an depends on the
Crispation and Bond numbers.

7. Appendix

Here we consider the limits of large and small wave-
numbers. We introduce the dimensionless layer widths
H–α = Hα /d = 1/(1 – ) and H–β = Hβ /d = – /(1 – ),
where d = Hα + Hβ and = – Hβ /Hα = – 2/3 in our
calculations.

7.1 Small Wavenumbers
By performing long-wavelength asymptotics for

Bo ≠ 0 and Cr ≠ 0 we find the leading order result

(45)

where

(46)

(47)

(48)

This expression is in good agreement with the
numerical results for small wavenumbers as shown in
Fig. 2. For Ra = 0, this expression agrees with that
given by Zeren and Reynolds [9] up to a difference in
sign; their expression also agrees with their numerical
results for Ra = 0 if the sign of their expression is
changed. For Ra ≠ 0 our expression gives results which
differ in both magnitude and sign from that given by
Zeren and Reynolds. We note that the leading order
result in Eq. (45) is proportional to Bo and inversely
proportional to Cr, so that the special cases Bo = 0 or
Cr = 0 require additional attention; we consider these
cases in more detail below for Ra = 0.

For the values given in Table I, we have

(49)

We note that in general cl is positive, but c2 can
change sign depending on the magnitude of µ*, H–

α , and
H–

β = 1 – H–
α . For a fixed layer geometry (given H–

α ),
large and small values of µ* thus produce a sign change
in the asymptotic value of Ma for small a and Γ = 0;
this corresponds to the dominant flow occurring prima-
rily in either the upper or lower layer as the correspon-
ding viscosity contrast is large. The expression (48) for
c5 is more complicated and also can have either sign,
depending on the parameter values.

7.1.1 Case for Ra = 0
If we set Ra = 0 the linear eigenfunctions for the

general problem can be written down explicitly, and the
dispersion relation for σ = 0 can be evaluated symboli-
cally in closed form, though the resulting expression is
lengthy and difficult to interpret. However, the result
can be expanded for small wavenumbers, and produces
expressions that are not too unwieldy.

The general expression for σ = 0 and Ra = 0 can be
found by expanding in the wavenumber a to give

(50)

The expression can be solved for Ma to give a ration-
al expression of the form

(51)

The constants cl and c2 are as given above, and the
additional constants c3, c4, and c6 are given by

(52)

(53)

(54)

We note that the dependence on the Bond number
Bo enters through the quantity [ρ* – 1]Bo – a2.
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For the values given in Table I, the additional constants
are given by

(55)

Note that if Cr = 0 in Eq. (51) the two-term approxima-
tion,

(56)

is independent of Bo. This is a result of the boundary
condition (29); for Cr = 0, the interface is rigid and the
Bond number has no effect on the system.

7.2 Large Wavenumbers
We next consider the limit of large wavenumbers for

a stationary mode. For our system the numerical results
suggest that buoyancy effects and interface deforma-
tion are unimportant in this limit, so we also consider
the formal limit of small Crispation number, Cr → 0,
along with Ra = 0. For Ra = 0, the governing equations
for the velocity field are decoupled from the thermal
field, which simplifies the analysis. For Cr → 0 the
dimensionless form of the normal momentum balance,

(57)

then reduces to

(58)
For Bo (ρ* – 1) – a2 ≠ 0, we conclude that the interface
deformation vanishes, h∼ = 0.

In the limit of large wavenumber the disturbances are
concentrated near the interface and the effects of the
outer boundaries are insignificant. The appropriate
solution can then be computed by applying decay con-
ditions in an unbounded domain as z → ± ∞. The verti-
cal components of the velocity field are given by

(59)The temperature fields are given by

(60)

(61)

The corresponding horizontal velocities and pressures
are

(62)

and

(63)

The interfacial boundary conditions are

(64)

(65)

(66)

The interface boundary conditions determine the re-
maining six constants Aα , Bα , Cα , Aβ , Bβ , and Cβ .

The velocity boundary conditions require Aα = Aβ = 0,
and Bα = Bβ , and the solution to the thermal problem
then gives

(67)

The remaining boundary condition gives the dispersion
relation,

(68)

For the values in Table I this gives Ma = 44.2 a2.
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