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Abstract
A well-known test of consistency in the results from an interlaboratory evaluation is the Birge
test, named after its developer Raymond T Birge, a physicist. We show that the Birge test of
consistency may be interpreted as a classical test of the null hypothesis that the variances of
the results are less than or equal to their stated values against the alternative hypothesis that the
variances of the results are greater than their stated values. A modern protocol for hypothesis
testing is to calculate the classical p-value of the test statistic. Thep-value is the maximum
probability under the null hypothesis of realizing in conceptual replications a value of the test
statistic equal to or larger than the realized (observed) value of the test statistic. The null
hypothesis is rejected when the p-value is too small. We show that, interestingly, the classical
p-value of the Birge test statistic is equal to the Bayesian posterior probability of the null
hypothesis based on suitably chosen non-informative improper prior distributions for the
unknown statistical parameters. Thus the Birge test may be interpreted also as a Bayesian test
of the null hypothesis. The Birge test of consistency was developed for those interlaboratory
evaluations where the results are uncorrelated. We present a general test of consistency for
both correlated and uncorrelated results. Then we show that the classical p-value of the
general test statistic is equal to the Bayesian posterior probability of the null hypothesis based
on non-informative prior distributions. The general test makes it possible to check the
consistency of correlated results from interlaboratory evaluations. The Birge test is a special
case of the general test.

1. Introduction

Suppose n laboratories submit the following paired results
of measurement and standard uncertainties [x1, u(x1)], . . .,
[xn, u(xn)] for a common reference. Suppose the sampling
probability distributions of the results x1, . . ., xn are mutually
independent. Seventy-five years ago a physicist named
Raymond T Birge [1] proposed that to check for consistency
in the results x1, . . ., xn relative to the stated standard
uncertainties u(x1), . . ., u(xn), calculate the following test

statistic4 from the realized data [x1, u(x1)], . . ., [xn, u(xn)]:

R2 =
n∑

i=1

wi(xi − xW)2/(n − 1), (1)

4 In the Birge test statistic (1), x1, . . ., xn are random variables with sampling
distributions and the squared uncertainties u2(x1), . . ., u

2(xn) are regarded as
the known variances of the sampling distributions of x1, . . ., xn, respectively.
We use the same symbols x1, . . ., xn for the random variables as well as for
their realized values.
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where wi = 1/u2(xi) for i = 1, 2, . . ., n, and xW =∑
i wixi/

∑
i wi is the weighted mean of the results x1, . . ., xn.

If the calculated value of R2 is substantially larger than one or
equivalently the calculated value of (n − 1)R2 = ∑

i wi(xi −
xW)2 is substantially larger than (n−1), then declare the results
x1, . . ., xn to be inconsistent. A modern interpretation of the
original form of Birge test is discussed in appendix A.

We need the following notation. Symbol R2
0 denotes a

value of R2 calculated from the realized results x1, . . ., xn and
their associated variances u2(x1), . . ., u

2(xn). The symbol χ2
ν

denotes the chi-square probability distribution with degrees
of freedom ν as well as a random variable having the χ2

ν

distribution. The symbol χ2
ν [1−α] denotes the 100×(1−α)th

percentile value of χ2
ν distribution; that is, Pr{χ2

ν � χ2
ν [1 −

α]} = 1 − α, for 0 � α � 1. The percentiles of a chi-square
distribution can be found in published tables or determined
from statistical software.

In the Birge test statistic R2, the sampling distributions of
x1, . . ., xn are assumed to be independent and normal (Gaus-
sian) with known variances u2(x1), . . ., u

2(xn), respectively.
Based on this assumption, a traditional statistical protocol is
to compare the calculated value (n − 1)R2

0 with the 95th per-
centile χ2

(n−1)[0.95] of the chi-square distribution with degrees
of freedom n − 1. If the event {(n − 1)R2

0 > χ2
(n−1)[0.95]}

occurs, then the calculated value (n − 1)R2
0 is said, with 95%

confidence, to be significantly large. In this case the dispersion
of the results x1, . . ., xn appears larger than what can reason-
ably be expected from the stated variances u2(x1), . . ., u

2(xn)

with 95% confidence. Thus the results are declared to be in-
consistent with 95% confidence.

Inconsistency implies that either the expected values
E(x1), . . ., E(xn) are not equal or the stated variances
u2(x1), . . ., u

2(xn) are too small [2]. If the stated
variances u2(x1), . . ., u

2(xn) are believed to be reliable
then inconsistency would imply that the expected values
E(x1), . . ., E(xn) do not appear to be equal, the degree of trust
in this judgment is indicated by the confidence level.

In the next section, we present a definition of statistical
consistency in interlaboratory results motivated by the Birge
test. The Birge test applies to uncorrelated results; however,
the definition of consistency given in this paper applies to both
uncorrelated and correlated results. We show that the Birge
test may be interpreted as a classical (frequentist sampling
theory) test of the null hypothesis that the variances of the
results x1, . . ., xn are less than or equal to their stated values
u2(x1), . . ., u

2(xn) against the alternative hypothesis that the
variances of x1, . . ., xn are greater than u2(x1), . . ., u

2(xn). We
show that the traditional statistical protocol of the Birge test
of consistency is equivalent to checking whether the classical
p-value of (n−1)R2

0 is less than 0.05. The classical p-value is
the maximum probability under the null hypothesis of realizing
a value of (n − 1)R2 equal to or larger than (n − 1)R2

0 in
contemplated replications of the interlaboratory evaluation.

Subsequently, we show that the classical p-value of
the Birge test statistic is equal to the Bayesian posterior
probability of the null hypothesis based on suitably chosen
non-informative prior distributions for the unknown statistical
parameters. The Birge test may therefore be interpreted also

as a Bayesian test of the null hypothesis. The Bayesian
interpretation makes it possible to use Bayesian statistics
for checking consistency in interlaboratory evaluations. The
use of Bayesian statistics is important in metrology because
the Guide to the Expression of Uncertainty in Measurement
(GUM) [3] agrees with Bayesian statistics [4].

In addition, we present a general test of consistency for
both uncorrelated and correlated results, of which the Birge
test is a special case. Then we show that the classical p-value
of the general test statistic is equal to the Bayesian posterior
probability of the null hypothesis based on non-informative
prior distributions. The general test makes it possible to check
consistency in correlated interlaboratory results.

2. Classical interpretation of the Birge test and its
generalized version

A definition of consistency in the results from an
interlaboratory evaluation, motivated by the Birge test, is as
follows.

Definition. The results x1, . . ., xn are said to be consistent
relative to their stated variances u2(x1), . . ., u

2(xn) and
covariances u(x1,x2), . . ., u(xn−1, xn) if their dispersion is not
greater than what can be expected from the following statistical
model:

xi = µ + ei, (2)

for i = 1, 2, . . ., n, where (i) µ is an unknown constant
statistical parameter; (ii) the errors e1, . . ., en are random
variables having sampling probability distributions with a
common expected value zero, variances σ 2

1 , . . ., σ 2
n , and

covariances σ1,2, . . ., σn−1,n; (iii) the variances σ 2
1 , . . ., σ 2

n

are known and equal to u2(x1), . . ., u
2(xn), respectively, all

assumed to be positive; (iv) the covariances σ1,2, . . ., σn−1,n

are either all zero or known and equal to certain stated
values u(x1,x2), . . ., u(xn−1, xn), respectively; and (v) the joint
distribution of e1, . . ., en is an n-variate normal distribution.

The statistical model (2) postulates that the random
variables x1, . . ., xn, have a joint n-variate normal sampling
distribution with a common unknown expected value µ,
known variances u2(x1), . . ., u

2(xn), and known covariances
u(x1, x2), . . ., u(xn−1, xn). Occasionally it is necessary to
check the consistency of correlated interlaboratory results.
Therefore, we have defined consistency for both uncorrelated
and correlated results. In the Birge test all covariances are
zero. We will refer to the statistical model (2) as a model of
consistency.

One-parameter statistical consistency model. In matrix
form, the statistical consistency model (2) is that the random
vector x = (x1, . . ., xn)

t has an n-variate normal distribution,
N(µ1, D), with expected value µ1 and variance–covariance
matrix (dispersion matrix) D, where 1 = (1, . . ., 1)t , the
variances u2(x1), . . ., u

2(xn) are diagonal elements of D,
and the covariances u(x1,x2), . . ., u(xn−1, xn) are off-diagonal
elements of D; that is

x ∼ N(µ1, D). (3)
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The superscript t introduced in the definitions of x and 1
indicates transpose of a vector or of a matrix. By the relational
symbol ∼ used in (3) we mean that the random vector x has
the probability distribution N(µ1, D). Using the notation
u(xi, xi) = u2(xi) for i = 1, 2, . . ., n, we can express the
variance–covariance matrix D as [u(xi, xj )].

Following [5], the dispersion matrix D in model (3)
is assumed to be known and positive definite. A square
matrix D is said to be positive definite if atDa � 0 for all
a = (a1, . . ., an)

t and atDa = 0 only if a = 0 [6]. If
D = Diag[u2(x1), . . ., u

2(xn)] then atDa = ∑
i a

2
i u

2(xi);
therefore, if the variances u2(x1), . . ., u

2(xn) are positive, then
the matrix D is positive definite. For typical covariances
between interlaboratory results, the variance–covariance
matrices are positive definite. If the dispersion matrix D is not
known then the problems of defining and assessing consistency
in interlaboratory results are considerably more difficult.

More general two-parameter statistical model. The only
unknown parameter in the statistical consistency model (3)
is µ. One way of interpreting the Birge test of consistency is
to consider the following more general statistical model: x has
the normal distribution, N(µ1, τ 2D), with expected value µ1
and dispersion matrix τ 2D, for some positive parameter τ 2;
that is

x ∼ N(µ1, τ 2D). (4)

Model (4) has two unknown parameters µ and τ 2. Model (4)
has the virtue that it can fit for some value of τ 2 any degree
of dispersion, large or small, between the results x1, . . ., xn.
This property of model (4) makes it suitable for statistical
interpretation of the Birge test of consistency. The statistical
consistency model (3) is a special case of (4) in which τ 2 is
assumed to be one.

Estimation of the parameters of model (4). We show in
appendix B that the classical (frequentist sampling theory)
estimates of µ and τ 2 and their sampling distributions are as
follows.

(i) An unbiased estimate of the parameter µ is m = Btx,
where Bt = (1tD−11)−11tD−1.

(ii) The sampling distribution of m is normal with expected
value E(m) = µ and variance V (m) = τ 2 × (1tD−11)−1.

(iii) An unbiased estimate of the parameter τ 2 is Q2 =
xtC x/(n−1), where C = [D−1−D−11(1tD−11)−11tD−1].

(iv) The sampling distribution of Q2 is τ 2/(n − 1) times the
χ2

(n−1) distribution.
(v) The sampling distributions of the estimates m and Q2 are

independent.

The estimate m = (1tD−11)−11tD−1x is free of the value
of τ 2. Thus m is an estimate of µ in model (3) also. We
will use the symbol Q2

0 to denote a value of Q2 calculated
from the realized results x1, . . ., xn. A benefit of the statistical
independence of the estimates m and Q2 is indicated in
appendix F.

In model (4), the estimate m = Btx is the minimum
variance unbiased estimate of µ in the sense that it is unbiased
and it has the smallest variance among all unbiased estimates of

µ [8, section 5a.2]. The estimate Q2 = xtC x/(n−1) is also the
minimum variance unbiased estimate of τ 2 [8, section 5a.2].
Thus m and Q2 are statistically optimal classical (frequentist
sampling theory) estimates of µ and τ 2, respectively.

If the results x1, . . ., xn were mutually independent
then, as discussed in appendix B, we have the following
simplifications.

(i) The estimate m = Btx of µ reduces to the weighted mean
xW = ∑

i wixi/
∑

i wi .
(ii) The sampling distribution of xW is N(µ, τ 2/

∑
i wi).

(iii) The estimate Q2 = xtCx/(n − 1) of τ 2 reduces to the
Birge statistic R2 = ∑

i wi(xi − xW)2/(n − 1).
(iv) The sampling distribution of R2 is τ 2/(n − 1) times the

χ2
(n−1) distribution.

(v) The sampling distributions of the estimates xW and R2 are
independent.

Testing hypothesis of consistency. A test of consistency in the
results x1, . . ., xn relative to the variance–covariance matrix D
may be thought of as a test of the null hypothesis H0 : τ 2 � 1
against the alternative hypothesis H1 : τ 2 > 1 in model (4).
Since the variance–covariance matrix of x = (x1, . . ., xn)

t

in model (4) is τ 2D, the null hypothesis H0 is that the
variance–covariance matrix of x is less than or equal to D, and
the alternative hypothesis H1 is that the variance–covariance
matrix of x is greater than D. If the results x1, . . ., xn fit
the model (4) for an estimate Q2

0 of τ 2 that is greater than
1, then the dispersion of x1, . . ., xn is greater than what can
be expected from the smaller variance–covariance matrix D;
then the results x1, . . ., xn would be inconsistent relative to the
variance–covariance matrix D. If the results x1, . . ., xn fit the
model (4) for an estimate Q2

0 of τ 2 that is less than or equal
to 1, then the dispersion of x1, . . ., xn is in agreement with the
estimated variance–covariance matrix Q2

0D, which is less than
or equal to D. In this case either the dispersion of the results
x1, . . ., xn fits model (3) or it is less than the dispersion that
may be expected from model (3). In either case the hypothesis
of consistency relative to the variance–covariance matrix D
cannot be rejected.

Birge test of consistency for uncorrelated results. In this
subsection all covariances u(x1,x2), . . ., u(xn−1, xn) are zero.
Thus D is Diag[u2(x1), . . ., u

2(xn)], a known positive definite
matrix. In model (4), a statistically optimal classical
(frequentist sampling theory) estimate of τ 2 is R2 =∑

i wi(xi − xW)2/(n − 1). The sampling distribution of
(n − 1)R2 is known to be τ 2 times the chi-square distribution
with degrees of freedom n − 1. Therefore, a suitable test
statistic for testing the null hypothesis H0 : τ 2 � 1 against its
alternative hypothesis H1 : τ 2 > 1 is (n − 1)R2. Small values
of (n − 1)R2 favour the null hypothesis, H0 : τ 2 � 1, and
large values of (n − 1)R2 favour the alternative hypothesis,
H1 : τ 2 > 1.

A traditional statistical protocol to test the null hypothesis
H0 : τ 2 � 1 against the alternative hypothesis H1 : τ 2 > 1
is to compare the calculated value (n − 1)R2

0 with the 95th
percentile χ2

(n−1)[0.95]. If the event

(n − 1)R2
0 > χ2

(n−1)[0.95] (5)
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occurs then the hypothesis H0 : τ 2 � 1 is rejected and the
results x1, . . ., xn are declared to be inconsistent with at least
95% confidence; that is, the probability of committing a Type I
error is 0.05 or less. Thus the Birge test as described in section 1
may be interpreted as a classical test of the null hypothesis
H0 : τ 2 � 1 versus the alternative hypothesis H1 : τ 2 > 1 in
model (4).

The Birge test is the uniformly most powerful statistical
test of the null hypothesis H0 : τ 2 � 1 against the alternative
hypothesis H1 : τ 2 > 1 [9, Theorem 8.3.17, p 391]. This
means that the Birge test has a larger statistical power than
any other statistical test of H0 : τ 2 � 1 against H1 : τ 2 > 1
for every value of τ 2 > 1. The statistical power of a test of
hypothesis is one minus the probability of committing a Type II
error.

Classical p-value of the null hypothesis. A modern statistical
protocol to test the null hypothesis H0 : τ 2 � 1 against the
alternative hypothesis H1 : τ 2 > 1 is to determine the classical
p-value of (n − 1)R2

0 under the null hypothesis. The classical
p-value is the maximum probability under the null hypothesis
of realizing a value of (n−1)R2 equal to or larger than (n−1)R2

0
in contemplated replications of the interlaboratory evaluation
according to model (4) [9, section 8.3.4, p 397]. We use the
symbol pC for the p-value. As discussed in appendix C,

pC = Pr{χ2
(n−1) � (n − 1)R2

0}. (6)

If the p-value pC is very small then the computed value
(n − 1)R2

0 does not favour the null hypothesis H0 : τ 2 � 1.
In this case, the results are judged to be inconsistent relative
to the given variances. A traditional benchmark for assessing
the classical p-value is 0.05. As noted in appendix D, the
event {pC < 0.05} is equivalent to the event {(n − 1)R2

0 >

χ2
(n−1)[0.95]}. Therefore the traditional protocol of the Birge

test of consistency is equivalent to computing the p-value and
checking whether it is less than 0.05.

General test of consistency for both correlated and
uncorrelated results. In this subsection V = τ 2D, where
D = [u(xi, xj )], a known positive definite matrix.
A statistically optimal classical (frequentist sampling theory)
estimate of τ 2 is Q2 = xtCx/(n − 1), where C =
[D−1 − D−11(1tD−11)−11tD−1]. The sampling distribution of
(n − 1)Q2 is known to be τ 2 times the chi-square distribution
with degrees of freedom n − 1. Therefore, a suitable test
statistic for testing the consistency hypothesis H0 : τ 2 � 1
against its alternative H1 : τ 2 > 1 is (n − 1)Q2 = xtCx.
Small values of (n − 1)Q2 favour the consistency hypothesis,
H0 : τ 2 � 1, and large values of (n − 1)Q2 favour its
alternative, H1 : τ 2 > 1. The realized value of the test statistic
(n − 1)Q2 is denoted by (n − 1)Q2

0.
As discussed in appendix C, the classical p-value under

the null hypothesis of realizing a value of (n − 1)Q2 equal to
or larger than (n − 1)Q2

0 in contemplated replications of the
interlaboratory evaluation according to model (4) is

pC = Pr{χ2
(n−1) � (n − 1)Q2

0}. (7)

Thus a general test of consistency for both correlated and
uncorrelated interlaboratory results is to compute the p-value
from expression (7). If the p-value is very small then the
realized value (n−1)Q2

0 of the test statistic does not favour the
null hypothesis H0 : τ 2 � 1. In this case, the results x1, . . ., xn

are judged to be inconsistent relative to the given variance–
covariance matrix D = [u(xi, xj )]. A traditional benchmark
for assessing the classical p-value is 0.05. The corresponding
protocol is to declare the results to be inconsistent with a
confidence level of at least 95% if pC < 0.05.

The general test of consistency is the uniformly most
powerful statistical test of the null hypothesis H0 : τ 2 � 1
against the alternative hypothesis H1 : τ 2 > 1 [9, theorem
8.3.17, p 391]. When the results x1, . . ., xn are uncorrelated
and hence D = Diag[u2(x1), . . ., u

2(xn)] the general test of
consistency reduces to the Birge test of consistency discussed
in the previous subsection.

3. Bayesian interpretation of the Birge test and its
generalized version

With reference to model (4), Bayesian statistical inference
deals with state-of-knowledge probability density functions
(pdfs) about the statistical parameters µ and τ 2. A state-
of-knowledge pdf represents belief probabilities about the
possible values of a parameter based on all available
information. The realized results x1, . . ., xn and their
functions, such as m = Btx and Q2

0 = xtCx/(n − 1), are
regarded as given quantities (constants) in Bayesian statistics
(as well as in classical statistics).

Bayesian inference. A Bayesian analysis starts with a prior
distribution p(µ, τ 2) which represents a priori state of
knowledge about µ and τ 2 before the results x1, . . ., xn

are seen. An output of Bayesian analysis is a posterior
distribution p(µ, τ 2|x) which represents a posteriori state of
knowledge about µ and τ 2 conditional on the given results
x1, . . ., xn. The relationship between the results x1, . . ., xn and
the parameters µ and τ 2 is described by a likelihood function
l(µ, τ 2|x) conditional on the results x. A likelihood function
is the sampling pdf f (x|µ, τ 2) regarded as a function of the
parameters µ and τ 2 rather than of x. A sampling pdf is
a property of the data generation process with one or more
unknown parameters. The posterior distribution p(µ, τ 2|x) is
obtained using Bayes’s theorem [10, p 34] which states that the
posterior distribution p(µ, τ 2|x) is proportional to the product
of the likelihood function l(µ, τ 2|x) and the prior distribution
p(µ, τ 2). In symbols Bayes’s theorem states that

p(µ, τ 2|x) ∝ l(µ, τ 2|x) × p(µ, τ 2). (8)

A prior distribution need not be a proper probability
distribution. Prior distributions that are not probability
distributions are called improper distributions. A valid
posterior distribution is always a proper probability
distribution.
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Improper prior distributions. Absence of prior knowledge
(complete ignorance) is represented by using non-informative
prior distributions, which are improper distributions. Bayesian
inferences based on suitably chosen non-informative prior
distributions are often numerically similar or identical to
classical (frequentist sampling theory) inferences albeit with
Bayesian interpretation.

We will use non-informative improper prior distributions
for µ and τ 2. The choice of non-informative prior distributions
keeps the basis of statistical inference about µ and τ 2 identical
in the classical and the Bayesian analyses. Then Bayes’s
theorem yields a joint posterior distribution for µ and τ 2

conditional on the given results x1, . . ., xn. From the joint
posterior distribution for µ and τ 2, we will determine the
marginal posterior distribution for τ 2. We will then use the
posterior distribution for τ 2 to determine the probability of
the interval 0 < τ 2 � 1 corresponding to the null hypothesis
H0 : τ 2 � 1.

Bayesian posterior pdf for τ 2. The pdf of x according to
model (4) is

f (x|µ, τ 2) = (2π)−n/2(τ 2)−n/2|D|−1/2

× exp

{
− 1

2τ 2
(x − µ1)tD−1(x − µ1)

}
. (9)

As discussed in appendix E, the quadratic form in (9) can be
expressed as

(x − µ1)tD−1(x − µ1) = (n − 1)Q2
0 +

(m − µ)2

(1tD−11)−1
. (10)

Thus the likelihood function of µ and τ 2 conditional on the
results x is

l(µ, τ 2|x) ∝ (τ 2)−n/2

× exp

{
− 1

2τ 2

[
(n − 1)Q2

0 +
(m − µ)2

(1tD−11)−1

]}
. (11)

A suitably chosen non-informative improper prior distribution
for (µ, τ 2) is the product of improper prior distributions for
µ and τ 2 which are uniform in µ and in log τ 2, respectively.
Thus p(µ) ∝ 1, p(τ 2) ∝ 1/τ 2 [10, p 53], and

p(µ, τ 2) = p(µ) × p(τ 2) ∝ 1

τ 2
. (12)

According to Bayes’s theorem (8) the posterior distribution,
p(µ, τ 2|x), of µ and τ 2 given x is proportional to the product
of the likelihood function l(µ, τ 2|x) and the prior distribution
p(µ, τ 2). Thus,

p(µ, τ 2|x) ∝ (τ 2)−n/2−1

× exp

{
− 1

2τ 2

[
(n − 1)Q2

0 +
(µ − m)2

(1tD−11)−1

]}
. (13)

The Bayesian posterior pdf for τ 2 given x, p(τ 2|x), is obtained
by integrating out µ from the joint posterior distribution
p(µ, τ 2|x); thus p(τ 2|x) = ∫ p(µ, τ 2|x)dµ. As discussed
in appendix F, p(τ 2|x) is

p(τ 2|x) ∝ (τ 2)−(n−1)/2−1 exp

{
− (n − 1)Q2

0

2τ 2

}
. (14)

Bayesian interpretation of the general test of consistency.
Substituting (n − 1)Q2

0/τ
2 = ξ , by the change of variables

technique, the pdf of the distribution of ξ given x is

p(ξ |x) ∝ ξ (n−2)/2 exp

{
−ξ

2

}
. (15)

The expression (15) is the kernel of the pdf of a chi-square
distribution with degrees of freedom n−1 [11, p 52]; therefore,
ξ = (n − 1)Q2

0/τ
2 ∼ χ2

(n−1). Consequently, the Bayesian
posterior probability pB of the interval 0 < τ 2 � 1 is

pB = Pr{τ 2 � 1} = Pr

{
(n − 1)Q2

0

τ 2
� (n − 1)Q2

0

}

= Pr{χ2
(n−1) � (n − 1)Q2

0}. (16)

Thus a Bayesian interpretation of the general test of
consistency is to determine the posterior probability pB of the
null hypothesis H0 : τ 2 � 1 from (16). If pB is less than some
benchmark such as 0.05, then the hypothesis that τ 2 � 1 is
rejected and the results are declared to be inconsistent.

From (7) and (16), we note that the Bayesian posterior
probability pB and the classical p-value pC are identical. This
relation between the classical p-value and Bayesian posterior
probability is possible only when non-informative improper
prior distributions are used for the unknown parameters
[10, section 4.3]. This interpretation of the general test of
consistency as a Bayesian hypothesis testing method is based
on the methodology developed by Lindley [12].

The Birge test as a special case of the general test of
consistency. When the results x1, . . ., xn are independent and
hence D = Diag[u2(x1), . . ., u

2(xn)], the quadratic form Q2
0 =

xt C x/(n − 1), where C = [D−1 − D−11(1tD−11)−11tD−1],
reduces to the computed value of the Birge test statistic
R2

0 = ∑
i wi(xi − xW)2/(n − 1). Then the classical p-value

of the Birge test under the null hypothesis H0 : τ 2 � 1
is pC = Pr {χ2

(n−1) � (n − 1)R2
0} as given in (6). When

the results x1, . . ., xn are independent, the Bayesian posterior
probability of the null hypothesis τ 2 � 1 given in (16) reduces
to pB = Pr {χ2

(n−1) � (n − 1)R2
0}. Thus the classical p-value

pC of the Birge test and the corresponding Bayesian posterior
probability pB are identical.

4. Summary

The Birge test is a well known and widely used method to check
for the consistency in the interlaboratory results x1, . . ., xn

that are uncorrelated [5]. We interpreted the Birge test as a
classical test of the null hypothesis that the variances of the
results x1, . . ., xn are less than or equal to their stated values
u2(x1), . . ., u

2(xn) against the alternative hypothesis that the
variances of x1, . . ., xn are greater than u2(x1), . . ., u

2(xn).
A modern statistical protocol for hypothesis testing is to
calculate the classical p-value. The p-value is the maximum
probability under the null hypothesis of realizing in conceptual
replications a value of the test statistic equal to or larger than
its realized (observed) value. The null hypothesis is rejected
when the p-value is too small. We determined the p-value of
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the Birge test statistic. Then we showed that the classical p-
value is equal to the Bayesian posterior probability of the null
hypothesis based on non-informative prior distributions for the
unknown statistical parameters. The Bayesian interpretation
of the Birge test makes it possible to use Bayesian statistics
for checking the consistency in uncorrelated interlaboratory
results. This is important because the GUM agrees with
Bayesian statistics and it is an international standard for
expressing uncertainty.

Occasionally the interlaboratory results are correlated and
it is necessary to check their consistency. We presented a
general test of consistency for both uncorrelated and correlated
results. We showed that the classical p-value of the general
test statistic is equal to the Bayesian posterior probability of the
null hypothesis based on non-informative prior distributions.
The general test makes it possible to check the consistency of
correlated results from interlaboratory evaluations. The Birge
test is a special case of the general test of consistency.
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Appendix A. A modern interpretation of the original
form of Birge test

The least squares estimate of the common expected value µ

is the weighted mean xW in both the statistical model (4) as
well as its special case (3). In Birge’s [1] terminology, the
phrase ‘probable error based on internal consistency’ refers
to the theoretical variance of the least squares estimate xW

based on model (3) and the phrase ‘probable error based
on external consistency’ refers to the empirical (estimated)
variance of xW commensurate with the actual dispersion
of the realized results x1, . . ., xn. The internal consistency
variance (theoretical variance) of xW based on model (3) is
σ 2

I = 1/
∑

i wi . The external consistency variance (empirical
variance) of xW commensurate with the actual dispersion of
x1, . . ., xn is given by model (4) as σ 2

E = R2
0 × 1/

∑
i wi .

Birge argued that if the results x1, . . ., xn were consistent then
the ratio σ 2

E/σ 2
I = R2

0 of the external consistency variance σ 2
E

to the internal consistency variance σ 2
I would be one except

for statistical fluctuations. Therefore the values of the ratio
R2

0 = σ 2
E/σ 2

I that are substantially larger than one indicate that
the results are inconsistent.

Birge [1, p 219] had adopted the conservative policy of
using for the variance of xW the larger of the two expressions
σ 2

I = 1/
∑

i wi and σ 2
E = R2

0 ×1/
∑

i wi . If R2
0 is substantially

larger than one, then the results are inconsistent relative to
the variances u2(x1), . . ., u

2(xn) but consistent relative to the
larger variances R2

0u
2(x1), . . ., R

2
0u

2(xn); thus, σ 2
E = R2

0 ×
1/

∑
i wi = R2

0 × 1/
∑

i (1/u2(xi)) = 1/
∑

i (1/R2
0u

2(xi))

is an appropriate estimate of the variance of xW. If R2
0 is

substantially smaller than one, then Birge used the larger
variance σ 2

I = 1/
∑

i wi as the variance of xW corresponding
to the model of consistency (3). When R2

0 is close to one then
σ 2

I and σ 2
E are not very different.

An important reference for the Birge test is [2, p 429]. The
authors of [2] point out that if the value of R2

0 is substantially
less than one, then the stated variances u2(x1), . . ., u

2(xn) may
well be too large.

Appendix B. Estimates of µ and τ 2 and their
sampling distributions

We use the symbol V for the variance of x, assumed to
be positive definite. Thus x ∼ N(µ1, V). In model (4),
V = τ 2D, where D = [u(xi, xj )] and V−1 = (1/τ 2)D−1.
The generalized least squares estimate (GLSE) of µ in model
(4) is that value m of µ for which the quadratic form (x −
µ1)tV−1(x−µ1) is minimum [6, section 3.3]. Thus the GLSE
of µ is a solution of the normal equation (1tV−11)m= 1tV−1x,
which is m = (1tV−11)−11tV−1x [6, section 3.3]. Substituting
V−1 = (1/τ 2)D−1, we have m = (1tD−11)−11tD−1x. Let
Bt = (1tV−11)−11tV−1 = (1tD−11)−11tD−1, then m = Btx.
Since in model (4), x ∼ N(µ1, V), the distribution of the
GLSE m = Btx is normal with expected value µBt1 = µ and
variance V (m) = BtV B = (1tV−11)−1 = τ 2 × (1tD−11)−1.
Thus we have the following results.

Result 1. An unbiased estimate of µ in model (4) is m = Btx
where Bt = (1tV−11)−11tV−1 = (1tD−11)−11tD−1.

Result 2. The sampling distribution of m = Btx in model (4) is
normal with expected value µ and variance V (m) = Bt V B =
τ 2 × (1tD−11)−1.

Since m is GLSE, the minimum value of the quadratic
form (x − µ1)tV−1(x − µ1) is (x − m1)tV−1(x − m1).
Since (x − m1) = (x − 1m) = (x − 1Bt x) = [x −
1(1tV−11)−11tV−1x] = [I − 1(1tV−11)−11tV−1]x, we have
(x−m1)tV−1(x−m1) = xt[V−1−V−11(1tV−11)−11tV−1]x =
(1/τ 2)xt[D−1 − D−11(1tD−11)−11tD−1]x. Let A =
[V−1 − V−11(1tV−11)−11tV−1] and C = [D−1 −
D−11(1tD−11)−11tD−1], then A = (1/τ 2) × C and the
minimum value of (x−µ1)tV−1(x−µ1) is (x−m1)tV−1(x−
m1) = xtAx = (1/τ 2)xtCx. We use the symbol Q2 for
xtCx/(n − 1) and Q2

0 for its realized value.
Now we state three theorems about the distributions of

quadratic forms from [6, section 2.5].

Theorem 1. If the expected value and variance of x are
E(x) = µ and V (x) = V, then E(xtAx) = tr(AV) + µtAµ.

(The symbol tr(.) stands for the trace of a matrix which means
the sum of diagonal elements. This theorem does not require
x to have a normal distribution.)

Theorem 2. If x ∼ N(µ, V) then xtAx ∼ non-central chi-
square distribution with degrees of freedom equal to rank of
A and non-centrality parameter 1

2 µtAµ if and only if AV is
idempotent, that is A V A V = A V.

Theorem 3. If x ∼ N(µ, V) then xtAx and Btx are distributed
independently if and only if BtV A = 0t.
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If A = [V−1 − V−11(1tV−11)−11tV−1] then A V =
[I − V−11(1tV−11)−11t] and A V A V = A V, so A V is an
idempotent matrix. The rank of an idempotent matrix is
equal to its trace [7, p 134]. The trace of A V is tr(I −
V−11(1tV−11)−11t) = tr(I)− tr((1tV−11)−11tV−11) = n− 1;
therefore, its rank is also n − 1. Since V is positive definite
and hence non-singular, the rank of A V is the rank of A.
Thus the rank of A is n − 1. In addition, 1tA1 is zero; so
(µ1)tA(µ1) is zero. If Bt = (1tV−11)−11tV−1 and A = [V−1−
V−11(1tV−11)−11tV−1] then BtV A is zero. By applying the
three theorems from [6] with µ = µ1, V = τ 2D, A =
[V−1 − V−11(1tV−11)−11tV−1], and Bt = (1tV−11)−11tV−1

we get the following results.

Result 3. E[xtAx] = (1/τ 2)E[xtC x] = (n − 1)E(Q2)/τ 2 =
(n − 1); therefore, E(Q2) = τ 2. That is, Q2 = xtCx/(n −
1) is an unbiased estimate of τ 2, where C = [D−1 −
D−11(1tD−11)−11tD−1]. This particular result does not
require x to have a normal distribution.

Result 4. The sampling distribution of (x − m1)tV−1(x −
m1) = xtAx = (1/τ 2) × xtCx = (n − 1)Q2/τ 2 is χ2

(n−1)

(central chi-square distribution with degrees of freedom n−1).

Result 5. The sampling distributions of m = Btx, and
(x−m1)tV−1(x−m1) = xtAx = (1/τ 2)×xtCx are statistically
independent. It follows that the sampling distributions of the
estimates m = Btx and Q2 = xtCx/(n − 1) are independent.

If we substitute τ 2 = 1 in the above results, we get the
corresponding results for model (3).

If the results x1, . . ., xn are mutually independent then all
covariances u(xi, xj ), for i �= j and i, j = 1, 2, . . ., n, are zero
and V (x) = V = τ 2D, where D = Diag[u2(x1), . . ., u

2(xn)].
It follows that V−1 = (1/τ 2)D−1, where D−1 =
Diag[w1, . . ., wn] and wi = 1/u2(xi), for i = 1, 2, . . ., n.
Further, 1tD−11 = ∑

i wi, (1tD−11)−1 = 1/
∑

i wi , and
1tD−1x = xtD−11 = ∑

i wixi , and xtD−1x = ∑
i wix

2
i .

Then the GLSE of µ reduces to m = Btx =
(1tD−11)−11tD−1x = ∑

i wixi/
∑

i wi = xW, the weighted
mean; the sampling distribution of xW is normal with expected
value µ and variance V (xW) = BtVB = τ 2 × (1tD−11)−1 =
τ 2 × [1/

∑
i wi] (see results 1 and 2).

If x1, . . ., xn are independent then Q2 (an unbiased
estimate of τ 2) reduces to Q2 = xtCx/(n − 1) =
[xtD−1x−xtD−11(1tD−11)−11tD−1x]/(n−1) = [

∑
i wix

2
i −

(
∑

i wixi)
2/(

∑
i wi)]/(n− 1) = ∑

i wi(xi − xW)2/(n− 1) =
R2, the Birge test statistic (see result 3). The sampling
distribution of (n − 1)Q2/τ 2 = (n − 1)R2/τ 2 is χ2

(n−1)

distribution (see result 4). Thus the sampling distribution
of R2 is τ 2/(n − 1) times the χ2

(n−1) distribution. The
sampling distributions of the estimates xW and R2 are mutually
independent (see result 5).

Appendix C. Classical p-value pC

With respect to the sampling distribution of x in model (4), the
probability that (n− 1)Q2 is equal to or larger than (n− 1)Q2

0

is Pr {(n − 1)Q2 � (n − 1)Q2
0} = Pr {(n − 1)Q2/τ 2 �

(n − 1)Q2
0/τ

2} = Pr {χ2
(n−1) � (n − 1)Q2

0/τ
2}.

If H0 : τ 2 � 1 were true, then Pr {χ2
(n−1) � (n −

1)Q2
0/τ

2} � Pr {χ2
(n−1) � (n − 1)Q2

0}.
Therefore, Pr {χ2

(n−1) � (n − 1)Q2
0} is the maximum

of Pr {χ2
(n−1) � (n − 1)Q2

0/τ
2} for τ 2 � 1. Thus the p-

value of the realized test statistic (n − 1) Q2
0 under the null

hypothesis H0 : τ 2 � 1 is pC = Pr {χ2
(n−1) � (n − 1)Q2

0}.
If the results x1, . . ., xn are mutually independent then D =
Diag[u2(x1), . . ., u

2(xn)] and Q2
0 reduces to R2

0 . In this case
the p-value reduces to pC = Pr {χ2

(n−1) � (n − 1)R2
0}.

Appendix D. Events {pC < 0.05} and
{(n − 1)R2

0 > χ2
(n−1)[0.95]} are equivalent

Event {pC < 0.05} ⇔ Pr{χ2
(n−1) � (n − 1)R2

0} < 0.05 ⇔
Pr {χ2

(n−1) < (n − 1)R2
0} � 0.95 ⇔ Event {(n − 1)R2

0 >

χ2
(n−1)[0.95]}.

Appendix E. Quadratic form (x − µ1)tD−1(x − µ1)

We can parse (x − µ1) as (x − µ1) = (x − m1) + (m − µ)1,
where m = (1tD−11)−11tD−1x. Then the quadratic form
(x − µ1)tD−1(x − µ1) can be parsed as

(x − µ1)tD−1(x − µ1) = (x − m1)tD−1(x − m1)

+(m − µ)1tD−11(m − µ).

The cross product term (m − µ)1tD−1(x − m1) = (m −
µ)(1tD−1x − 1tD−11m) is zero because 1tD−11m = 1tD−11
(1tD−11)−11tD−1x = 1tD−1x.

Since (x−m1) = (x−1m) = [x−1(1tD−11)−11tD−1x] =
[I − 1(1tD−11)−11tD−1]x, we have (x − m1)tD−1(x −
m1) = xtCx = (n − 1)Q2

0, where C = [D−1 −
D−11(1tD−11)−11tD−1]. Also we can express (m − µ)1tD−11
(m − µ) as (m − µ)2/(1tD−11)−1. Thus

(x − µ1)tD−1(x − µ1) = (n − 1)Q2
0 +

(m − µ)2

(1tD−11)−1
.

Appendix F. Bayesian posterior pdf p(τ 2|x) of τ 2

given x

Since the matrix D is known, from (13) the integral p(τ 2|x) =
∫ p(µ, τ 2|x)dµ is proportional to

(τ 2)−(n−1)/2−1exp

{
− (n − 1)Q2

0

2τ 2

}∫
[2πτ 2×(1tD−11)−1]−1/2

× exp

{
− (µ − m)2

2τ 2 × (1tD−11)−1

}
dµ.

The value of the integral in the above expression is one because
its integrand is the pdf of a normal distribution for µ with
expected value m and variance τ 2 × (1tD−11)−1. Thus the
Bayesian posterior pdf p(τ 2|x) is the part given in front of
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the above integral. The marginal pdf p(τ 2|x) integrates out so
easily from the joint pdf p(µ, τ 2|x) because (i) the estimates
m and Q2 are sufficient statistics [9, section 6.2] for µ and τ 2,
which is easy to see from the expressions (10) and (9), and
(ii) the sampling distributions of m and Q2 are independent.
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