
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 396 (2008) 223–246
www.elsevier.com/locate/tcs

Tight bounds for the multiplicative complexity of
symmetric functionsI

Joan Boyara, René Peraltab,∗

a Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
b Information Technology Laboratory, National Institute of Standards and Technology, USA

Received 31 May 2007; received in revised form 5 January 2008; accepted 17 January 2008

Communicated by F. Cucker

Abstract

The multiplicative complexity of a Boolean function f is defined as the minimum number of binary conjunction (AND) gates
required to construct a circuit representing f , when only exclusive-or, conjunction and negation gates may be used. This article
explores in detail the multiplicative complexity of symmetric Boolean functions. New techniques that allow such exploration are
introduced. They are powerful enough to give exact multiplicative complexities for several classes of symmetric functions. In
particular, the multiplicative complexity of computing the Hamming weight of n bits is shown to be exactly n − HN(n), where
HN(n) is the Hamming weight of the binary representation of n. We also show a close relationship between the complexities of
basic symmetric functions and the fractal known as Sierpinski’s gasket.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Circuit complexity; Multiplicative complexity; Symmetric functions; Multi-party computation; Cryptographic proofs

1. Introduction

Much research in circuit complexity is devoted to the following problem: Given a Boolean function and a supply
of gate types, construct a circuit which computes the function and is optimal according to some criteria. It seems to
be very difficult in general to obtain exact bounds for specific functions. The multiplicative complexity c∧(f) of a
Boolean function f is the number of conjunctions necessary and sufficient to implement a circuit which computes f
over the basis (∧, ⊕, 1) (alternatively, the number of multiplications necessary and sufficient to calculate a function
over G F2 via a straight-line program).

Our initial motivation for studying multiplicative complexity came from cryptography. Many cryptographic
protocols involve proving predicates about a string X that is available in committed form only, i.e. the bits of X

I A preliminary version of this work appeared in Mathematical Foundations of Computer Science (MFCS 2006), volume 4162 of Lecture Notes
in Computer Science, pages 179–189, Springer-Verlag, 2006.

∗ Corresponding author. Tel.: +1 (301) 975 8702.
E-mail address: peralta@nist.gov (R. Peralta).

0304-3975/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.01.030

Author's personal copy

224 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

are individually encrypted using a bit-commitment scheme satisfying standard cryptographic properties (see [2,5,
6]). In [4] a construction is given for a noninteractive cryptographic proof of an arbitrary predicate F on X . The
predicate F is defined by a verification circuit C containing AND, NOT, and XOR gates only. For example, X could
be a commitment to a bidding price in a sealed-bid auction. A predicate of interest in this scenario might include
F(X) =“X ≥ 100”, meaning that the offer is at least $100. The construction in [4] is called a discreet proof, and it
reveals no information about X other than what is inferable from the value of F(X). Discreet proofs are useful in a
wide variety of applications, e.g. electronic voting, online sealed-bid auctions, contract signing, telemedicine, etc. The
length of these discreet proofs is linear in the number of AND gates in C and is unaffected by the number of NOT or
XOR gates.

Perhaps even more important, though, are applications to the communication complexity of secure multi-party
computation. In general, for these protocols, multiplications require communication, but linear operations do not.
This holds for very different paradigms for building protocols, those based on secret sharing were introduced in [7,9]
and those based on threshold homomorphic encryption were introduced in [10]. For more recent results, see [14].

We focus on symmetric functions, which are functions dependent only on the Hamming weight
−→
H (x) of the input

x ∈ G Fn
2 . Obtaining tight bounds is important because symmetric functions can be building blocks for arithmetic

circuits, some of which involve recursive use of simple symmetric functions. Suboptimal implementations of the
latter, even by an additive constant factor, translate into multiplicative extra costs when building arithmetic circuits. In
cryptographic applications, whether or not a circuit is of practical use often depends on constant multiplicative factors
in the number of AND gates used.

The study of multiplicative complexity may prove useful in obtaining upper bounds on the computational
complexity of functions. If a function f has multiplicative complexity O(log(n)), then, for all x in the domain of
f , an element of the pre-image of y = f (x) can be found in polynomial time as follows: Guess the values of inputs
to the AND gates in a circuit for f , reducing the circuit to a collection of linear circuits. Then, find an x such that
y = f (x) using Gaussian elimination over G F2. Therefore, one-way functions, if they exist, have super-logarithmic
multiplicative complexity. On the other hand, low multiplicative complexity circuits may lead to better algorithms for
inverting functions of importance in cryptology. There is no known satisfactory classification of functions with low
multiplicative complexity. A step in this direction is the work of Fischer and Peralta [12]. They show that the number
of predicates on n bits which can be computed with only one AND the gate is exactly 2n(2n

−1)(2n
−2)/3 for n ≥ 2.

1.1. Previous work

Multiplicative complexity has been investigated previously by Aleksanyan [1], Schnorr [20], and Mirwald and
Schnorr [17]. Their work was exclusively concerned with quadratic Boolean forms. Multiplicative complexity has
more often been used to refer to more general algebraic computations. This subject has an extensive history (see, for
example, [3]), since multiplication is often the dominating operation in this context.

Very little is known about multiplicative complexity of specific functions. In this paper we concentrate on the
concrete (as opposed to asymptotic) multiplicative complexity of symmetric functions. In an earlier paper ([8]), we
showed the following asymptotic results:

• A general upper bound of n + 3
√

n for any symmetric function f . This establishes a separation between Boolean
and multiplicative complexity for symmetric functions. Paul [18] and Stockmeyer [21] have shown lower bounds
of the form 2.5n − O(1) for the Boolean complexity of infinite families of symmetric functions;

• Let Σ n
. be the set of symmetric predicates on n bits. We showed an upper bound of 2n − log2 n for the complexity

c∧(Σ n
.) of simultaneously computing all symmetric functions on n bits (the asymptotic result c∧(Σ n

.) = O(n) was
obtained earlier by Mihaı̆ljuk [16]).

1.2. Our results

Several new upper and lower bounds on the multiplicative complexity of symmetric functions are obtained. In
particular, it is shown that the multiplicative complexity of computing the Hamming weight is exactly n − HN(n),
where HN(n) is the Hamming weight of the binary representation of n. This is a rather surprising result, given the
sparsity of exact computational complexity bounds known. The construction also proves to be a powerful tool in
obtaining other exact results for symmetric functions.

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 225

A new technique, using a normal form for (⊕, 1, ∧) circuits and elementary linear algebra, is used to show that
any nonlinear symmetric function on n variables has multiplicative complexity at least

⌊ n
2

⌋
. Properties of binomial

coefficients are shown to yield the following lower bounds for the counting (exactly-k) and threshold-k functions on
n variables:

c∧(En
k) ≥ max{k − 1, n − k − 1, 2blog2 nc

− 2, ln,k − 1}

c∧(T n
k) ≥ max{k − 1, n − k, 2blog2 nc

− 1, ln−1,k−1}

where ln,k is the bitwise OR of n − k and k. Tighter bounds for several families of symmetric functions are obtained
by considering the multiplicative complexity of such functions when restricted to hyperplanes in G Fn

2 . In particular,
this technique yields the exact complexities of the elementary symmetric functions Σ n

2 ,Σ n
3 ,Σ n

n−1,Σ
n
n−2,Σ

n
n−3. Yet

another application of hyperplane restrictions yields new general lower bounds for infinite subclasses of symmetric
functions. Intriguingly, these subclasses are defined by fractals on the Cartesian plane.

More constructively, general techniques are developed for proving upper bounds for elementary symmetric
functions. These, plus Pascal’s triangle modulo 2 (known in the fractals literature as Sierpinski’s gasket, see Fig. 3)
are used to prove upper bounds for the counting functions, En

k (x), and the threshold functions, T n
k (x). These general

techniques are shown to give many tight results. In addition, a general upper bound on the threshold-k functions, T n
k ,

is found: c∧(T n
k) ≤ n − HN(n) +

⌈
log2(n + 1)

⌉
− 1 for all k ≥ 1.

The exact multiplicative complexities of the elementary symmetric functions, the counting functions, and the
threshold functions are determined for n ≤ 7. For elementary symmetric functions, the exact complexities are found
for the kth elementary symmetric function, Σ n

k , on n variables, for k = 2, 3, n − 3, n − 2, and n − 1.

2. Some simple observations and a normal form

Each Boolean function f on n variables has a unique representation as a multilinear (i.e. square-free) polynomial
over G F2. Since x i

= x over G F2, we assume throughout the following that all polynomials are multilinear. By the
“degree of f ”, we will mean the degree of its unique representing polynomial. It is known that a Boolean function of
degree d has multiplicative complexity at least d − 1 [20]. This we call the degree lower bound.

We say that a circuit is optimal for f if it has c∧(f) AND gates. Since y ∧ (x⊕1) = (y ∧ x)⊕y, optimal circuits
need not have more than one negation. If present, we may assume this negation is the last gate in the circuit. It is easy
to see that a Boolean function f (x) requires a negation if and only if f (0) = 1. This in turn is true if and only if
the polynomial of f has a constant term. Thus we may divide Boolean functions into “positive” functions (those for
which f (0) = 0) and “negative” functions. There is a bijection σ(f) = f ⊕1 between positive and negative functions.
The bijection preserves multiplicative complexity. Therefore we may restrict our study of multiplicative complexity
to functions over the basis (⊕, ∧). For technical reasons, and without affecting the multiplicative complexity of
functions, we will allow ⊕ gates to contain any number of inputs (at least one). AND gates, though, are restricted
to fan-in exactly 2.

A function f : G Fn
2 → G F2 is “linear” (sometimes called “affine”) if it is of the form a0 +

∑n
i=1 ai xi with each

ai ∈ G F2. That is, linear functions are precisely those functions having multiplicative complexity 0. We call a gate
internal if its output is not the output to the circuit. We say a circuit is in Layered Normal Form (LNF) if

• all inputs go only to ⊕ gates;
• outputs of all internal ⊕ gates are inputs only to ∧ gates.

It is not hard to see that all positive functions have optimal circuits in Layered Normal Form.
Logical expressions over the basis (∧, ⊕) correspond to arithmetic expressions over G F2. We will use the latter

notation for the most part of this paper: a⊕b, a ∧ b, ā will be written a⊕b, ab, a⊕1, respectively.
The kth elementary symmetric function on n variables x1, x2, . . . , xn is defined by

Σ n
k (x1, x2, . . . , xn) =

⊕
S⊆{1,...,n},|S|=k

∏
i∈S

xi (1 ≤ k ≤ n).

For readability we will also use the alternative notations Σ n
k (x) or simply Σ n

k . It will prove convenient as well to define
Σ n

0 = 1.

Author's personal copy

226 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

A classical result states that every symmetric function can be represented as a sum of elementary symmetric
functions (see [22]). Consider, for example, the MAJORITY function on three variables (i.e. the threshold function
T 3

2). We have

T 3
2 (x1, x2, x3) = Σ 3

2 (x1, x2, x3)

= x1x2⊕x1x3⊕x2x3

= x1(x2⊕x3)⊕x2x3

= (x1⊕x2)(x1⊕x3)⊕x1.

The last equality establishes c∧(T 3
2) = 1, and also serves to show that the algebraic manipulations necessary to obtain

optimal circuits may not be obvious.
The following lemmas appear in [8]:

Lemma 1. Represent the positive integer k as a sum of powers of 2: k = 2i0 + 2i1 + · · · + 2i j . Each i is a position of
a nonzero bit in the binary representation of k. Then for any n ≥ k,

Σ n
k = Σ n

2i0
Σ n

2i1
. . .Σ n

2i j
.

For example, Σ n
11 = Σ n

8 Σ n
2 Σ n

1 for n ≥ 11.

Lemma 2. Let y = yk yk−1 . . . y0 be the Hamming weight, in binary representation, of the n-bit string x. Then
yi = Σ n

2i (x) for i = 0, . . . , k.1

For example, the Hamming weight of a 10 bit string x is given by the 4 bit string

Σ 10
8 (x)Σ 10

4 (x)Σ 10
2 (x)Σ 10

1 (x).

Finally, we observe that if g : G Fk
2 → G F2 is derived from f : G Fn

2 → G F2 by fixing the values of n − k
variables of f , then c∧(g) ≤ c∧(f). We call g a restriction of f .

3. A tight lower bound on the multiplicative complexity of symmetric functions

In this section we prove a lower bound of
⌊ n

2

⌋
for nonlinear symmetric functions. This bound is met by infinitely

many functions. We go to some length to prove this tight bound in part because we expect symmetric functions
to be building blocks for arithmetic circuits, some of which involve recursive use of simple symmetric functions.
Suboptimal implementations of the latter, even by an additive constant factor, translate into multiplicative extra costs
when building arithmetic circuits. In cryptographic applications of this theory, whether or not a circuit is of practical
use often depends on constant multiplicative factors in the number of AND gates used.

Given a Boolean function f over G Fn
2 and a subset S of {x1, . . . , xn}, we denote by f S̄ the function obtained from

f by complementing the inputs in S. If f S̄ = f , we say S is complementable. We say S is “proper” if 0 < |S| < n.

Lemma 3. If a Boolean function f over G Fn
2 has multiplicative complexity less than

⌊
n−1

2

⌋
, then it has a proper

complementable set.

Proof. Consider an optimal LNF circuit for f . Since the circuit has at most
⌊

n−1
2

⌋
− 1 AND gates, the number of ⊕

gates is at most k = 2(
⌊

n−1
2

⌋
− 1) + 1 ≤ n − 2 (recall that a circuit in LNF form may have at most one ⊕ gate which

is not the input to an ∧ gate). Label these gates γ1, . . . , γk . Define an n × k matrix A = (ai j) over G F2 as follows:

ai j = 1 iff xi is an input to γ j .

Rows of the matrix correspond to inputs of the circuit. Columns correspond to ⊕ gates. Since rank(A) ≤ k ≤ n − 2,
there is a subset S (with 0 < |S| ≤ n − 1) of the rows whose sum over G Fk

2 is 0. Since in a LNF circuit all inputs go
only to ⊕ gates, and each ⊕ gate has an even number of inputs from S, S is a complementable set of inputs. �

1 See also [19].

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 227

A slightly stronger result can be obtained for even n. The proof is analogous to the proof of Lemma 3.

Lemma 4. If n is even and the Boolean function f over G Fn
2 has multiplicative complexity less than n

2 , then f has a
nonempty complementable set.

In the case of a symmetric function f , if a proper set S of cardinality k is complementable, then every set of
cardinality k is complementable. In particular the sets {x1, . . . , xk} and {x2, . . . , xk+1} are complementable. This
means {x1, xk+1} is also complementable, and therefore any two inputs are complementable. Thus if the Hamming
weights of x and y have the same parity, then f (x) = f (y). But this means f is linear. We have shown

Lemma 5. If a symmetric Boolean function f has a proper complementable set S, then f must be linear (i.e. c∧(f) =

0).

Lemmas 3 and 5 yield a general bound of
⌊

n−1
2

⌋
for nonlinear symmetric functions. We now marginally improve

this bound. This is of practical interest, and the techniques developed to prove this result are of use later in this paper.
Let bi be the value of f (x) when x has Hamming weight i . The bit string b0, . . . , bn is called the spectrum of f .

Suppose a nonlinear symmetric function f has a non-empty complementable set S. Then, by Lemma 5, S must be the
set of all inputs, i.e. f (x) = f (x̄) for all x. A symmetric function which has this property is called palindromic (since
its spectrum is a palindrome).

The notions of complementable set and palindromic function have duals which are also useful: given a Boolean
function f , we say a set of inputs S = {xi1 , . . . xik } is anti-complementable if, for all x, f S̄(x) = f (x)⊕1. Note that if
the set of all inputs is anti-complementable, then the function is self-dual [11]. A symmetric function f : G Fn

2 → G F2
is anti-palindromic if f (x) = f (x̄)⊕1 for all x. Note that f may be anti-palindromic only for odd n, and that linear
symmetric functions are either palindromic or anti-palindromic.

We leave to the reader the proof of the dual to Lemma 5:

Lemma 6. If a symmetric Boolean function f has a proper anti-complementable set S, then f must be linear
(i.e. c∧(f) = 0).

We can now show the following:

Theorem 1. If n is odd, f : G Fn
2 → G F2 is symmetric, and c∧(f) < n+1

2 , then f is either palindromic or anti-
palindromic.

Proof. We have already noted that if f is linear then it is palindromic or anti-palindromic. For nonlinear f , let
g : G Fn+1

2 → G F2 be defined by g(x1, . . . , xn+1) = f (x1, . . . , xn)⊕xn+1. Clearly, c∧(g) < n+1
2 . By Lemma 4, g

has a nonempty complementable set S. There are two cases to consider.

• S does not contain xn+1: then S is a complementable set for f . Since f is nonlinear, S cannot be a proper subset
of {x1, . . . , xn} (by Lemma 5). Thus S = {x1, . . . xn} and therefore f is palindromic.

• S contains xn+1: then f (x)⊕xn+1 = f S̄(x)⊕x̄n+1 = f S̄(x)⊕xn+1⊕1. Therefore, f (x) = f S̄(x)⊕1. Thus,
S−{xn+1} is an anti-complementable set for f . Since f is non-linear, Lemma 6 implies S−{xn+1} = {x1, . . . , xn}.
Therefore f is anti-palindromic. �

Theorem 1 is not vacuous. In particular Σ 4k+1
2 is palindromic with complexity 2k, and Σ 4k+3

2 is anti-palindromic
with complexity 2k + 1 (see Corollary 5).

We can now prove the main result of this section.

Theorem 2. Let f : G Fn
2 → G F2 be a nonlinear symmetric function. Then f has multiplicative complexity at least⌊ n

2

⌋
.

Proof. Since f is non-linear, by Lemma 5, f may not have a proper complementable set. For odd n, Lemma 3
gives the stated bound. Now suppose, for a contradiction, that n is even and c∧(f) < n

2 . Then f has a nonempty
complementable set S by Lemma 4. Therefore, by Lemma 5, S must be the set of all inputs to f , i.e. f (x) = f (x̄).
Let b0, . . . , bn be the palindrome defined by letting bi be the value of f (x) when x has Hamming weight i . Consider
the function g defined as a restriction of f by setting xn to zero. The function g is a symmetric function of n − 1

Author's personal copy

228 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

Fig. 1. Hyperplane restriction of a circuit in Layered Normal Form.

variables, and c∧(g) ≤ c∧(f) <
(n−1)+1

2 =
n
2 , so Theorem 1 implies that g is either palindromic or anti-palindromic.

First, assume that g is palindromic. Since f is palindromic, b0 = bn . Since g is palindromic b0 = bn−1. Thus,
bn−1 = bn . Similarly, b1 = bn−1 and b1 = bn−2, giving that b0 = b1 = bn−2 = bn−1 = bn . Continuing in this
manner, one sees that f is a constant function, contradicting the assumption that it is nonlinear. Assuming that g is
anti-palindromic, one sees similarly that bi 6= bi+1 for 0 ≤ i ≤ n − 1, so f is one of the two parity functions. This
again contradicts the assumption that it is non-linear. Thus, f must have multiplicative complexity at least

⌊ n
2

⌋
. �

This bound is tight: the multiplicative complexity of Σ n
2 (x) is

⌊ n
2

⌋
(see Theorem 9).

4. Hyperplane restrictions yield fractal lower bounds

In the following we investigate a new technique which uses the degree lower bound, but often achieves stronger
lower bounds than that given by the degree lower bound alone. A plane E in G Fn

2 can be specified by an equation⊕
i∈IE

xi = 0, where IE is a subset of {1, . . . , n}. For notational simplicity, if the index set is empty, we define⊕
i∈φxi = 0. Given a Boolean function f on n-bits, we denote the restriction of f to the plane E by f↓E . Letting

t = Max(IE), we view f↓E as a function on n − 1 variables obtained by substituting
⊕

i∈IE −{t}xi for xt in the
polynomial for f . There are many ways to obtain a circuit for f↓E from a circuit for f . For C in Layered Normal
Form, C↓E will denote the circuit constructed in the straightforward manner specified in Fig. 1. Note that C↓E is also
in Layered Normal Form.

We now proceed to prove lower bounds by choosing planes which will decrease the number of AND gates in a
circuit without decreasing the degree of the function which is computed. The degree lower bound is then applied to
the function resulting from the restriction.

Lemma 7. Suppose f is an n-variate function of degree k > 1. If c∧(f) = k − 1 + e, where e ≥ 0, then there exist
u ≤ e + 1 planes E1, E2, . . . , Eu such that the degree of (. . . ((p↓E1)↓E2) . . .)↓Eu is at most k − 1.

Proof. Consider an optimal circuit C for f in Layered Normal Form. An AND gate of minimal depth in this circuit
has two distinct linear inputs. Let one be

⊕
i∈IE

xi . Then the circuit C↓E contains at least one fewer AND gate than
does C . Repeating this at most e more times yields a circuit computing a function with at least e + 1 fewer AND gates
than C. This function has multiplicative complexity at most k − 2 and therefore has degree at most k − 1. �

For a symmetric function, Lemma 7 yields

Corollary 1. Suppose f is an n-variate symmetric function of degree k > 1. If c∧(f) = k −1, then deg(f↓E) ≤ k −1
for at least two distinct planes E1, E2 where E1 can be specified by xn =

⊕t1
i=1xi (t1 < n), and E2 can be specified

using an equation with at most n − 2 terms in the sum.

Proof. The first plane is found by using the proof of Lemma 7 and relabelling the variables (since f is symmetric).
Since the two inputs to the AND gate used in the proof are different, at least one does not contain all n variables; this
gives the second plane. �

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 229

This technique of hyperplane restrictions yields lower bounds on multiplicative complexity which are better than
the straightforward degree lower bound for almost all symmetric functions. We next state some of these bounds. In
Section 7.1, the bound given by the following theorem is shown to be tight for Σ n

n−2 and Σ n
n−3:

Theorem 3. Let f be an n-variate symmetric polynomial of degree m with 1 < m < n − 1 and n > 3. Then
c∧(f) ≥ m.

Proof. We first show the bound for Σ n
m . By the degree lower bound, c∧(Σ n

m) ≥ m − 1. Suppose, for the sake of
contradiction, that c∧(Σ n

m) = m − 1. Note

Σ n
m = xnΣ n−1

m−1⊕Σ n−1
m .

By Corollary 1 there is some t < n such that the restriction

R =

(
t⊕

i=1

xi

)
(Σ n−1

m−1)⊕Σ n−1
m =

t⊕
i=1

(xiΣ n−1
m−1)⊕Σ n−1

m

has degree at most m − 1. This is clearly not the case for t = 0, so assume that t > 0.
Consider a term xi1 xi2 . . . xim in Σ n−1

m . For each variable xk in S = {x1, x2, . . . , xt }, which is equal to some variable
xi j in this term, there is exactly one term, y, in Σ n−1

m−1 such that xk y = xi1 xi2 . . . xim . Thus, before collapsing equal
terms, a term xi1 xi2 . . . xim will occur s+1 times in R, where s = |{xi1 , xi2 , . . . , xim }∩{x1, x2, . . . , xt }|. For the degree
of R to be at most m − 1, each term of degree m must occur an even number of times. This implies s must be odd. In
particular, |{x1, x2, . . . , xm} ∩ {x1, x2, . . . , xt }| = min{m, t} is odd. Since m < n − 1 the set {xn−1, x2, . . . , xm} has
cardinality m. Thus, if t < n − 1, then |{xn−1, x2, . . . , xm} ∩ {x1, x2, . . . , xt }| = min{m − 1, t − 1} is also odd. This
is clearly a contradiction, so t must be equal to n − 1. Therefore, the only plane that will reduce the degree of Σ n

m is
xn =

⊕n−1
i=1 xi . By Corollary 1, the restricted functions defined by at least two distinct planes will have degree at most

m − 1. This is a contradiction, so c∧(Σ n
m) ≥ m.

Finally, we note that the lower bound applies to any symmetric function on n variables with degree m, where
1 < m < n − 1, since, for such a function, the exclusive-or of all terms of degree m is Σ n

m . �

The proof of Theorem 3 involved removing only one AND gate. This idea can be extended using Lemma 7. In the
following, two AND gates are removed. We will need the following observation: for 1 ≤ i, j ≤ t − 1 and s < t , the
polynomial xiΣ t

s , has exactly
(t−1

s

)
terms of degree s + 1 and xi x jΣ t

s has
(t−2

s

)
terms of degree s + 2.

Theorem 4. Let f be a n−variate symmetric function of degree m. Suppose 1 < m ≤ n − 2 and n > 4. Then, if(n−4
m−2

)
is even,

(n−3
m−1

)
is even, and

(n−2
m

)
is odd, then c∧(f) ≥ m + 1.

Proof. As was noted in the proof of the previous theorem, it is enough to prove the bound for Σ n
m .

Suppose, for the sake of contradiction, that
(n−4

m−2

)
is even,

(n−3
m−1

)
is even,

(n−2
m

)
is odd, and c∧(Σ n

m) ≤ m. Note

Σ n
m = xn(xn−1Σ n−2

m−2⊕Σ n−2
m−1)⊕xn−1Σ n−2

m−1⊕Σ n−2
m .

Let E0 and E1 be the two planes promised by Lemma 7, and let E ′

0 be the restriction of E0 to E1. E ′

0 can be written
as xn =

⊕
i∈IE ′

0
xi and E1 as xn−1 =

⊕
j∈IE1

x j , where the sets IE ′

0
and IE1 only contain the first n − 2 variables.

Then, by Lemma 7, the polynomial⊕
i∈IE ′

0

xi

⊕

j∈IE1

x j

Σ n−2
m−2⊕Σ n−2

m−1

⊕

⊕
j∈IE1

x j

Σ n−2
m−1⊕Σ n−2

m

has degree at most m − 1. The terms of degree m are as follows:
- Those from (

⊕
i∈IE ′

0
xi)(

⊕
j∈IE1

x j)Σ n−2
m−2 where neither the xi nor the x j are in the term from Σ n−2

m−2. The number

of these is
(n−4

m−2

)
for each pair (i, j) with i 6= j .

- Those from (
⊕

i∈IE ′
0
xi)Σ n−2

m−1 where the xi is not in the term from Σ n−2
m−1. The number of these is

(n−3
m−1

)
for each i .

Author's personal copy

230 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

Fig. 2. Points (n,m) for which c∧(Σn
m) ≥ m + 1, m < n < 512.

- Those from (
⊕

j∈IE1
xi)Σ n−2

m−1 where the x j is not in the term from Σ n−2
m−1. The number of these is

(n−3
m−1

)
for

each j .
- Those from Σ n−2

m . The number of these is
(n−2

m

)
.

As in the previous proof, the number of terms of degree m must be even for the polynomial to have degree m − 1.
This cannot be the case if

(n−4
m−2

)
and

(n−3
m−1

)
are even, while

(n−2
m

)
is odd. This gives a contradiction and the result

follows. �

Theorem 4 gives the nontrivial lower bound c∧(Σ 8
4) ≥ 5.

Further use of these techniques yields the following theorem (the proof, which we omit, is analogous to the proof
of Theorem 4):

Theorem 5. Let f be a n−variate symmetric function of degree m, where 3 ≤ m ≤ n − 3 and n > 6. If
(n−6

m−3

)
,
(n−5

m−2

)
,

and
(n−4

m−1

)
are even, while

(n−3
m

)
is odd, then c∧(f) ≥ m + 2.

The set of points in the plane that satisfy the conditions of either Theorem 4 or Theorem 5 form fractals. Fig. 2
plots these points for Theorem 4. The hyperplane restriction technique is a general tool for relating combinatorial
constraints to multiplicative complexity. The combinatorial constraints thus derived seem to always yield fractals.
An interesting question is whether this is solely a result of the bounding technique or the exact complexity of the
elementary symmetric functions is in fact fractal in nature.

5. The exact multiplicative complexity of the Hamming weight function

The result of computing a symmetric function on some inputs is determined completely by the Hamming weight
of those inputs. In this section, we investigate the multiplicative complexity of computing the Hamming weight. Let
−→
H (x) denote the binary representation of the Hamming weight of a bit string x ∈ G Fn

2 .
−→
H (x) has fixed length⌈

log2(n + 1)
⌉

and may contain leading zeros. The function
−→
H () will be denoted by Hn when the parameter n needs

to be explicitly stated. Let HN(n) denote the Hamming weight of the binary representation of the integer n. We will
show

c∧(Hn) = n − HN(n).

It will prove useful to define the Hamming weight of the empty string λ to be 0, i.e.
−→
H (λ) = HN(0) = 0. We now

make some simple observations.

• If 0 ≤ i < 2k then HN(2k
+ i) = 1 + HN(i). (5.1)

• If 0 ≤ k then HN(2k
− 1) = k. (5.2)

• If 0 ≤ a, b, k and n = 2k
− 1 = a + b then

HN(n) = HN(a) + HN(b). (5.3)

•
−→
H (x) is the integer sum of the bits of x.

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 231

• For all n ≥ m > 0, there exists a circuit which adds an n-bit number to an m-bit number – plus an optional carry-in
bit c – using n AND gates. This is a standard addition circuit using a chain of full adders. A full adder computes the
two-bit sum w1w0 of three bits b1, b2, b3. Only one AND gate is needed because w0 = (b1 + b2 + b3) mod 2 and
w1 = ((b1 +b2)(b2 +b3)+b2) mod 2. We will refer to this circuit as the standard addition circuit (with carry-in c).

Denote by c∧(ADD(n, m)) the multiplicative complexity of adding an n-bit number to an m-bit number.
An immediate application of the degree lower bound is that c∧(ADD(n, m)) ≥ Max(n, m). This is because
c∧(ADD(n, m)) ≥ c∧(ADD(n, 1)), and the most significant bit of this sum is the product of all n +1 input variables.
We have already observed that c∧(ADD(n, m)) ≤ Max(n, m). Thus we have shown

Lemma 8. The multiplicative complexity of adding two integer inputs, of lengths n and m in radix-2 representation,
is Max(n, m).

We construct a circuit for Hn that uses n − HN(n) AND gates. Our construction is essentially a recursive version
of a construction that appeared in [8]. First we show a circuit for the case n = 2k

− 1.

Lemma 9. Let n = 2k
− 1 for k ≥ 0. Then c∧(Hn) ≤ n − HN(n) = 2k

− (k + 1).

Proof. The proof is by induction on k. The cases k = 0, 1 are easily verifiable. For k > 1, a string x of length 2k
− 1

can be split into two strings u, v, of length 2k−1
− 1 each, plus one string c of length 1. We recursively compute

−→
H (u) and

−→
H (v). Then we use the standard addition circuit with carry-in c to compute c +

−→
H (u) +

−→
H (v). The result

is
−→
H (x). By induction, and the fact that

−→
H (u),

−→
H (v) are of length k − 1, the number of multiplications used is

2(2k−1
− k) + k − 1 = 2k

− (k + 1). �

We now consider the general case

Theorem 6. c∧(Hn) ≤ n − HN(n), for all n ≥ 1.

Proof. We have already shown this for the cases n = 0, 1, 3, 7, 15, 31, We prove the remaining cases by induction
on n. Let x be a string of length 2k

+ i with k > 0 and 0 ≤ i < 2k
− 1. Assume the theorem holds for all values

0 ≤ n′ < 2k
+ i . As in Lemma 9 we split x into three strings u, v, c of lengths 2k

− 1, i , and 1 respectively (note that
v may be the empty string). We recursively compute

−→
H (u) and

−→
H (v). Then we compute the sum c +

−→
H (u) +

−→
H (v).

The result is
−→
H (x). By induction, using Lemma 9 and the fact that

−→
H (u),

−→
H (v) are of maximum length k, the number

of multiplications used is

2k
− (k + 1) + (i − HN(i)) + k = 2k

+ i − (1 + HN(i)) = (2k
+ i) − HN(2k

+ i).

The last equality is due to observation (5.1). �

Suppose x is a bit of string of length 2k . By Lemma 2, the k + 1st bit of
−→
H (x) is Σ 2k

2k (x), which is a polynomial of
degree 2k . Thus, by the degree lower bound, it is not possible to compute the Hamming weight of a string of length
2k bits using less than 2k

− 1 multiplications. Since Theorem 6 gives a matching upper bound, we have

Corollary 2. c∧(H2k
) = 2k

− HN(2k) = 2k
− 1 for all k ≥ 0.

We proceed to show that the bound in Theorem 6 is tight, and hence the construction is optimal for all n.2 The
proof uses the known value of c∧(H2k

) to compute a lower bound on c∧(H2k
−i). For notational brevity, we will

denote c∧(Hn) by hn .

Theorem 7. c∧(Hn) = n − HN(n), for all n ≥ 1.

Proof. By Corollary 2, we only need to consider the cases where n is strictly between consecutive powers of 2, i.e.
2k−1 < n < 2k . Our proof is by induction on k with base k = 1. Let k > 1 and assume the theorem holds for all
n′

≤ 2k−1. Let n = 2k
− i for some integer 1 ≤ i < 2k−1. Then n + (i − 1) = 2k

− 1 implies, by observation (5.3),

2 This is quite surprising. In fact, we mistakenly stated in [8] that this bound was not tight.

Author's personal copy

232 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

that k − HN(i −1) = HN(n). We design a circuit for the Hamming weight of a string x of length 2k
= n + (i −1)+1

as follows. We split x into three strings u, v, c of lengths n, i − 1, and 1, respectively. We use optimal circuits to
compute

−→
H (u) and

−→
H (v). Note that the longest of these two strings is

−→
H (u), which has length k. Then we use

the standard addition circuit with carry-in c to compute c +
−→
H (u) +

−→
H (v). The result is

−→
H (x). By the inductive

hypothesis, the circuit for
−→
H (v) contains hi−1 = (i − 1) − HN(i − 1) multiplications. Thus the circuit for

−→
H (x)

contains hn + (i − 1) − HN(i − 1) + k multiplications. By Corollary 2, this quantity must be at least 2k
− 1, i.e.

hn + (i − 1) − HN(i − 1) + k ≥ 2k
− 1.

Substituting HN(n) for k − HN(i − 1), n for 2k
− i , and rearranging terms, we obtain hn ≥ n − HN(n). This proves

the theorem since the lower bound matches the upper bound of Theorem 6. �

6. Truncated Hamming weight

Lemmas 1 and 2 together imply that one can compute Σ n
k (x) by computing the low-order

⌈
log2(k + 1)

⌉
bits of the

Hamming weight of x and using AND gates to combine the appropriate resulting outputs, those corresponding to bits
where the binary representation of k has a one.

Let Hn
r be the function which computes the r low-order bits of the Hamming weight of a vector of length n ≥ 2r−1.

The complexity of this function is 0 when r = 1 and n − HN(n) when n ≤ 2r
− 1. In this section we show a recursive

construction for the case n ≥ 2r
− 1.

Lemma 10. For j ≥ r ≥ 1, we have

c∧(H2 j
−1

r) ≤

(
2r−1

− 1

2r−1

)
2 j

− r + 1.

Proof. The proof is by induction on j . If j < r , only j bits of the Hamming weight need actually be computed; the
high-order r − j bits will be zero.

The result clearly holds for j = 1. For the inductive step, we consider j > 1, n = 2 j
− 1, and the input bits

x1, . . . , xn . We split this input into three parts (x1, . . . , x(n−1)/2), (x(n+1)/2, . . . , xn−1), and the last bit xn . The total
Hamming weight of the input is the sum of the Hamming weights of all three parts. The r low order bits of the
Hamming weights of the first two parts are computed recursively. Then, the sum is computed using a chain of r − 1
full adders. A full adder is a circuit with three inputs a, b, c, and two outputs (a + b + c) and T 3

2 (a, b, c). Instead
of a full adder for the last bit, only (a + b + c) is computed, since the carry is unnecessary. Clearly, each of the
full adders requires exactly one AND gate. Let h(n, r) be the multiplicative complexity of our construction. Then
c∧(Hn

r) ≤ h(n, r).
We feed xn in as an external carry-bit to the chain of adders. The conjunctive complexity of our construction

satisfies the following recurrence equation:

h(2 j
− 1, r) = 2h(2 j−1

− 1, r) + (r − 1),

giving

h(2 j
− 1, r) ≤

(
2r−1

− 1

2r−1

)
2 j

− r + 1. �

We now obtain a similar result for arbitrary n.

Lemma 11. Let r ≥ 1 and γ = n mod 2r . Then,

c∧(Hn
r) ≤

(
2r−1

− 1

2r−1

)
(n − γ) + γ − HN(γ).

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 233

Proof. Note that if n ≤ 2r , then the result follows from Theorem 6, so assume n = 2r m + γ and 2r m =
∑b

i=1 2ui

with ui < ui+1 for 1 ≤ i ≤ b − 1. Then

n = γ +

b∑
i=1

2ui = γ + b +

b∑
i=1

(2ui − 1).

Thus we can split the string of n bits into b + 2 substrings of lengths γ, b, 2u1 − 1, . . . , 2ub − 1. Let c1, . . . , cb be
the bits of the string of length b. We calculate the Hamming weight of the string of length γ using γ − HN(γ) AND
gates. Call the resulting string v. Then, for each string of length 2ui − 1, we use the circuit of Lemma 10 to calculate
the low-order r bits of its Hamming weight. Call the resulting string si . Now, for i equal 1 through b, use r − 1 full
adders to compute the low-order r bits of v = v + si + ci . The last value of v is Hn

r .
The number of AND gates used is

γ − HN(γ) +

b∑
i=1

((
2r−1

− 1

2r−1

)
2ui − r + 1 + (r − 1)

)
,

which is

γ − HN(γ) +

(
2r−1

− 1

2r−1

) b∑
i=1

2ui

or

γ − HN(γ) +

(
2r−1

− 1

2r−1

)
(n − γ). �

7. Building blocks

We now discuss subclasses of symmetric functions. The idea is to bound, as tightly as possible, the multiplicative
complexity of classes of functions which can be used to construct arbitrary symmetric functions. We focus on three
classes of functions:

• The elementary symmetric functions Σ n
k (x).

• The “counting” function En
k (x), which is 1 if and only if the Hamming weight of x is k.

• The “threshold” function T n
k (x), which is 1 if and only if the Hamming weight of x is k or more.

It turns out Sierpinski’s gasket (Pascal’s Triangle modulo 2; see Fig. 3), from the fractals literature, is useful in this
context.

7.1. The elementary symmetric functions: Σ n
k

We first derive a general upper bound for the multiplicative complexity of Σ n
k . Let c∧(f1, . . . , fk) denote the

multiplicative complexity of simultaneously computing f1, . . . , fk . An immediate corollary of Lemmas 11 and 2 is
the following:

Corollary 3. Let r ≥ 1, n ≥ 2r−1, and γ = (n mod 2r). Then

c∧(Σ n
20 , . . . ,Σ n

2r−1) ≤

(
2r−1

− 1

2r−1

)
(n − γ) + γ − HN(γ).

By Lemmas 1 and 2, the value of Σ n
k (x) is simply the G F2 product of a subset of the low-order

⌈
log2(k + 1)

⌉
bits of

the Hamming weight of x. The number of terms in this product is HN(k). Therefore Corollary 3 yields the following
upper bound.

Theorem 8. Let n ≥ k ≥ 1, and r =
⌈

log2(k + 1)
⌉

. Let γ = (n mod 2r). Then,

c∧(Σ n
k) ≤

(
2r−1

− 1

2r−1

)
(n − γ) + γ − HN(γ) + HN(k) − 1.

Author's personal copy

234 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

Fig. 3. Sierpinski’s gasket.

Corollary 3 also yields the following:

Corollary 4. For n ≥ 4,

c∧(Σ n
4) ≤ c∧(Σ n

2 ,Σ n
4) ≤

3
4 n : n = 0 mod 4
3
4 (n − 1) : n = 1 mod 4
3
4

(
n −

2
3

)
: n = 2 mod 4

3
4

(
n −

5
3

)
: n = 3 mod 4

.

For example, Corollary 4 yields the result c∧(Σ 5
4) = 3, though this upper bound also follows from Theorem 6,

since Σ 5
4 (x) is the high-order bit of

−→
H (x). We now consider the complexity of Σ n

2 . Recall (Theorem 2) that any
nonlinear symmetric function has multiplicative complexity at least

⌊ n
2

⌋
. We also know Σ n

2 (x) is the second least

significant bit of
−→
H (x). This means we can use the truncated Hamming weight construction of Section 6, Lemma 11.

The reader can verify that this construction yields a circuit with
⌊ n

2

⌋
multiplications. We have shown

Theorem 9. The multiplicative complexity of Σ n
2 (x) is

⌊ n
2

⌋
.

We now describe a second optimal circuit for Σ n
2 . For i ≤ j , denote by f [i.. j] the function f evaluated on input

xi , xi+1, . . . x j . The following recurrence is easy to verify:

Σ n
2 [1..n] = Σ n−1

1 [1..n − 1] · Σ n−1
1 [2..n] ⊕ Σ n−2

1 [2..n − 1] ⊕ Σ n−2
2 [2..n − 1].

Thus for n ≥ 4, c∧(Σ n
2) ≤ c∧(Σ n−2

2) + 1. Since c∧(Σ 2
2) = c∧(Σ 3

2) = 1, the above recurrence implies c∧(Σ n
2) ≤

n
2 .

Since multiplicative complexities are integral, we have c∧(Σ n
2) ≤

⌊ n
2

⌋
.

Yet another optimal circuit for Σ n
2 can be constructed using the techniques of Aleksanyan [1] and of Mirwald and

Schnorr [17] (after noting that the rank of the n × n matrix Ī over G F2 is n − 1 for n odd and n for even n).
Theorems 1 and 9 predict that, for odd n, Σ n

2 is either palindromic or anti-palindromic. It is easy to verify

Corollary 5. Σ 4k+1
2 is palindromic and Σ 4k+3

2 is anti-palindromic.

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 235

We now turn our attention to Σ n
3 . By Lemma 1, Σ n

3 (x) = Σ n
2 (x) ·Σ n

1 (x). Thus, Theorem 9 implies the upper bound

c∧(Σ n
3) ≤

⌊n

2

⌋
+ 1.

However, this bound is not optimal. In fact, c∧(Σ 4
3) = 2, as can be verified from

Σ 4
3 (x) = (x1 ⊕ x2 ⊕ x3 ⊕ x4)((x1 ⊕ x2)(x1 ⊕ x3) ⊕ x1).

Theorem 1 implies

Corollary 6. If n ≥ 3 is odd, then c∧(Σ n
3) ≥

n+1
2 .

Proof. The spectrum of Σ n
3 (x) is the bit sequence b0b1 . . . bn where bi = 0 for i < 3 and bi =

(i
3

)
mod 2 for

3 ≤ i ≤ n. The spectrum of Σ n
3 (x) starts with 000. If n is congruent to 1 modulo 4 the spectrum ends with 100. If n

is congruent to 3 modulo 4 the spectrum ends with 001. Thus Σ n
3 is neither palindromic nor anti-palindromic. �

Now, for n ≥ 3,

Σ n
3 = xnΣ n−1

2 ⊕ Σ n−1
3

= xnΣ n−1
2 ⊕ Σ n−1

1 Σ n−1
2

= Σ n
1 Σ n−1

2

implies the upper bound c∧(Σ n
3) ≤ 1 +

⌊
n−1

2

⌋
=
⌈ n

2

⌉
. For odd n, this upper bound matches the lower bound of

Corollary 6. Note also that Σ n−1
3 is a restriction of Σ n

3 (set xn = 0). Therefore c∧(Σ n−1
3) ≤ c∧(Σ n

3). For even n,

this implies the lower bound
⌈

n−1
2

⌉
=

n
2 ≤ c∧(Σ n

3), which matches the previous upper bound of
⌈ n

2

⌉
. Thus we have

shown

Theorem 10. c∧(Σ n
3) =

⌈ n
2

⌉
.

We now turn to Σ n
m , where m is larger.

Lemma 1 implies

Σ n
m = Σ n

1 Σ n
m−1 (m odd 1 ≤ m ≤ n).

A simple lemma follows:

Lemma 12. If m is odd and 1 ≤ m ≤ n, then

Σ n
m = Σ n−1

m−1Σ
n
1

and therefore c∧(Σ n
m) ≤ c∧(Σ n−1

m−1) + 1.

Proof.

Σ n
m = xnΣ n−1

m−1⊕Σ n−1
m

= xnΣ n−1
m−1⊕Σ n−1

m−1Σ
n−1
1

= Σ n−1
m−1(xn⊕Σ n−1

1)

= Σ n−1
m−1Σ

n
1 . �

We can apply Lemma 12 to show c∧(Σ 8
5) = 5 as follows. By Theorem 3, c∧(Σ 8

5) ≥ 5 and c∧(Σ 7
4) ≥ 4. Thus, by

Corollary 4, c∧(Σ 7
4) = 4. Therefore, c∧(Σ 8

5) = c∧(Σ 7
4 Σ 8

1) ≤ c∧(Σ 7
4) + 1 = 5.

In the following lemmas, we use our Hamming weight circuit construction to derive the exact multiplicative
complexities of Σ n

n−1,Σ
n
n−2, and Σ n

n−3. The proofs will rely heavily on Lemmas 1, 2 and 12. In particular, Lemmas 1

Author's personal copy

236 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

and 2 imply that only HN(m) − 1 additional AND gates are needed to compute Σ t
m from {Σ t

2i | 2i
≤ t}. We will

also rely on the following simple observations regarding the Hamming weight of binary representations on integers:

HN(n) − HN(n − 2) = 1 when (n ≡ 2 mod 4)

HN(n − 1) − HN(n − 4) = 2 when (n ≡ 0 mod 4)

HN(n) − HN(n − 3) = 2 when (n ≡ 3 mod 4)

The reader is also warned that the correctness of the algebraic manipulation we will be doing on elementary symmetric
functions is dependent on the number of variables. For example, by Lemma 1, Σ n

n−2 = Σ n
n−4Σ

n
2 is correct when

n ≡ 0 mod 4, but not when n ≡ 2 mod 4.

Lemma 13. c∧(Σ n
n−1) = n − 2.

Proof. The degree lower bound implies c∧(Σ n
n−1) ≥ n − 2. We will prove, by induction on n, that this is an upper

bound as well. The theorem is trivially true for n = 2. For n = 3, the claim follows from Σ 3
2 = (x1⊕x2)(x1⊕x3)⊕x1.

We will consider separately the cases n even and n odd. For even n we have

Σ n
n−1 = Σ n−1

n−2 Σ n
1 .

By induction c∧(Σ n
n−1) ≤ n − 3 + 1 = n − 2.

In the case of n odd we have

Σ n
n−1 = xnΣ n−1

n−2 ⊕Σ n−1
n−1

= xnΣ n−2
n−3 Σ n−1

1 ⊕xn−1Σ n−2
n−2

= Σ n−2
n−3 (xnΣ n−1

1 ⊕xn−1Σ n−2
1)

= Σ n−2
n−3 (xnΣ n−1

1 ⊕xn−1Σ n−1
1 ⊕xn−1)

= Σ n−2
n−3 ((xn⊕xn−1)Σ n−1

1 ⊕xn−1).

By induction c∧(Σ n
n−1) ≤ n − 4 + 2 = n − 2. �

Lemma 14. c∧(Σ n
n−2) = n − 2 for n > 3.

Proof. The lower bound follows from Theorem 3. For the upper bound, we first consider the case n ≡ 2 mod 4. In
this case the circuit for Σ n

n−2(x) can be constructed as follows:

• compute the Hamming weight of x. This uses n − HN(n) AND gates;
• use the values {Σ n

2i (x) | 2i
≤ n} to compute Σ n

n−2(x). This uses HN(n − 2) − 1 AND gates.

The number of AND gates of this circuit is

n − HN(n) + HN(n − 2) − 1 = n − (HN(n) − HN(n − 2)) − 1

= n − 2 (n ≡ 2 mod 4).

We now consider the case n ≡ 0 mod 4. In this case we have

Σ n
n−2 = xnΣ n−1

n−3 ⊕Σ n−1
n−2

= xnΣ n−1
n−4 Σ n−1

1 ⊕Σ n−1
n−2

= Σ n−1
n−4 (xnΣ n−1

1 ⊕Σ n−1
2).

We can therefore construct the circuit as follows:

• Compute the Hamming weight of (x1, . . . , xn−1). This uses n − 1 − HN(n − 1) AND gates.
• Use the values {Σ n−1

2i (x) | 2i
≤ n − 1} to compute Σ n−1

n−4 . This uses HN(n − 4) − 1 AND gates.

• Use two more AND gates to compute Σ n−1
n−4 (xnΣ n−1

1 ⊕Σ n−1
2).

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 237

The number of AND gates of this circuit is

n − 1 − HN(n − 1) + HN(n − 4) − 1 + 2 = n − (HN(n − 1) − HN(n − 4))

= n − 2 (n ≡ 0 mod 4).

Finally, if n is 1 or 3 modulo 4 then n − 2 is odd and n − 3 is either 0 or 2 modulo 4. Therefore

c∧(Σ n
n−2) = c∧(Σ n−1

n−3 Σ n
1) ≤ c∧(Σ n−1

n−3) + 1 ≤ n − 3 + 1 = n − 2. �

Lemma 15. c∧(Σ n
n−3) = n − 3 for n > 4.

Proof. The lower bound follows from Theorem 3. If n is even, then

c∧(Σ n
n−3) = c∧(Σ n−1

n−4 Σ n
1) ≤ c∧(Σ n−1

n−4) + 1

reduces the problem to the case of n odd.
If n ≡ 3 mod 4 then the Hamming weight circuit construction yields

c∧(Σ n
n−3) ≤ n − HN(n) + HN(n − 3) − 1 = n − (HN(n) + HN(n − 3)) − 1 = n − 3.

Finally, if n ≡ 1 mod 4,

Σ n
n−3 = xnΣ n−1

n−4 ⊕Σ n−1
n−3

= xnΣ n−2
n−5 Σ n−1

1 ⊕xn−1Σ n−2
n−4 ⊕Σ n−2

n−3

= Σ n−2
n−5 (xnΣ n−1

1 ⊕xn−1Σ n−2
1 ⊕Σ n−2

2)

= Σ n−2
n−5 (xnΣ n−1

1 ⊕xn−1Σ n−1
1 ⊕xn−1⊕Σ n−2

2)

= Σ n−2
n−5 ((xn⊕xn−1)Σ n−1

1 ⊕xn−1⊕Σ n−2
2).

Observe that Σ n−1
1 is linear and that a Hamming weight circuit construction for (x1, . . . , xn−2) yields Σ n−2

2 . Therefore

c∧(Σ n
n−3) ≤ (n − 2) − HN(n − 2) + HN(n − 5) − 1 + 2

= n − (HN(n − 2) − HN(n − 5)) − 1

= n − 3. �

7.2. The exactly-k, En
k (x), and threshold, T n

k (x), functions

In this section, general results for the exactly-k and threshold-k functions are proved, expressing these functions
in terms of the elementary symmetric functions and using these expressions to derive degree lower bounds. Exact
complexities are derived for certain infinite subclasses.

The degree of En
k = a0Σ n

0 ⊕ · · · ⊕ anΣ n
n is the largest i such that ai is nonzero. It is clear that ai = 0 for i < k. It

turns out there is a simple formula for the remaining ai .

Lemma 16. En
k =

⊕n
i=k aiΣ n

i , where ai =
(i

k

)
mod 2.

Proof. By induction on i . If x has Hamming weight k, then 1 = En
k (x) = akΣ n

k (x) since higher-degree terms are 0.
Thus 1 = akΣ n

k (x) = ak , which provides the basis for the induction. We use the identity
(i

k

)(l
i

)
=
(l

k

)(l−k
i−k

)
(equation

5.21 in [13]). Assume that ai =
(i

k

)
mod 2 for i = k, . . . , l − 1. (In the following all binomial coefficients are reduced

Author's personal copy

238 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

modulo 2.) Consider x with Hamming weight l > k. Then Σ n
i (x) =

(l
i

)
for k ≤ i ≤ l and Σ n

i (x) = 0 for i > l. Thus

0 = En
k (x)

= akΣ n
k (x) ⊕ · · · ⊕ alΣ n

l (x)

=

l−1⊕
i=k

(
i

k

)(
l

i

)
⊕ al (by the induction hypothesis)

=

l−1⊕
i=k

(
l

k

)(
l − k

i − k

)
⊕ al

=

(
l

k

) l−1⊕
i=k

(
l − k

i − k

)
⊕ al

=

(
l

k

) l−1−k⊕
i=0

(
l − k

i

)
⊕ al

=

(
l

k

)
(2l−k

− 1) ⊕ al

=

(
l

k

)
⊕ al (since arithmetic is modulo 2)

Thus al =
(l

k

)
mod 2, completing the induction step. �

Lemma 16 implies that we can use Sierpinski’s gasket (see Fig. 3) to compute the expansion of En
k . We have

replaced 0’s by blanks to highlight the fractal-like structure of the triangle. Rows and columns are numbered from
0 to 15. To use the figure, say, to compute E13

6 simply look at column 6 (the seventh actual column since column
0 is included), rows 6 to 13. The corresponding bit-array is 1 1 0 0 0 0 0 0. Therefore E13

6 = Σ 13
6 ⊕ Σ 13

7 . Now,
Σ 13

6 ⊕ Σ 13
7 = Σ 13

4 · Σ 13
2 · (1 ⊕ Σ 13

1). Thus c∧(E13
6) ≤ c∧(Σ 13

4 ,Σ 13
2) + 2. By Corollary 4, c∧(Σ 13

4 ,Σ 13
2) ≤ 9.

Therefore c∧(E13
6) ≤ 11. This is quite remarkable given the general upper bound of 13 + 3

√
13 > 23 from [8] (or if

one considers that the associated polynomial has over 18 thousand multiplications).
A similar lemma holds for the threshold functions since T n

k can be expressed recursively using T n
k = xn En−1

k−1 ⊕

T n−1
k , which says that at least k out of x1, . . . , xn are ones if and only if at least k out of x1, . . . , xn−1 are ones or

(exclusive) xn is ones and exactly k − 1 out of x1, . . . , xn−1 are ones. This leads to the following characterization of
the expansion of T n

k based on Sierpinski’s gasket:

Lemma 17. T n
k =

⊕n
i=k biΣ n

i where bi =
(i−1

k−1

)
(mod 2).

Proof. Recall that all binomial coefficients below should be considered as being reduced modulo 2. Our proof is by
induction on n − k. The base case is

T n
n = Σ n

n =

n⊕
i=n

(
i − 1
n − 1

)
Σ n

i .

Using the expansion of En
k , the proof is straightforward:

T n
k = xn En−1

k−1 ⊕ T n−1
k

= xn

n−1⊕
i=k−1

(
i

k − 1

)
Σ n−1

i ⊕

n−1⊕
i=k

(
i − 1
k − 1

)
Σ n−1

i by induction

=

n−1⊕
i=k

(
i − 1
k − 1

)(
xnΣ n−1

i−1 ⊕ Σ n−1
i

)
⊕

(
n − 1
k − 1

)
xnΣ n−1

n−1

=

n⊕
i=k

(
i − 1
k − 1

)
Σ n

i . �

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 239

7.2.1. Lower bounds
Since En

k (x) = En
n−k(x̄) (1 ≤ k ≤ n), we have

c∧(En
k) = c∧(En

n−k) (0 ≤ k ≤ n). (7.1)

Then the degree lower bound yields c∧(En
k) ≥ max{k −1, n −k −1}. Similarly, since T n

k (x) = 1⊕ T n
n−k+1(x̄) (1 ≤

k ≤ n), we have

c∧(T n
k) = c∧(T n

n−k+1) (1 ≤ k ≤ n), (7.2)

and the degree lower bound yields c∧(T n
k) ≥ max{k − 1, n − k}. Since T n

n = Σ n
n , we have c∧(T n

1) = c∧(T n
n) =

c∧(Σ n
n) = n − 1.

As mentioned above, the degree of En
k (or T n

k) will be the largest value j such that the expansion of En
k (T n

k)
contains the term Σ n

j . In the case of En
k this will be the largest k ≤ j ≤ n such that the binomial coefficient a j =

(j
k

)
is odd, and the case of T n

k this will be the largest k ≤ j ≤ n such that b j =
(j−1

k−1

)
is odd. Thus, the degree of T n

k is

one more than the degree of En−1
k−1 . Given this relation, we will only consider the degree of En

k .

A theorem by Kummer [15] shows that the binomial coefficient
(j

k

)
is odd if and only if k v j , where the notation

k v j means that if the binary representations of k and j are ksks−1 . . . k1 and js js−1 . . . j1, respectively, then for
each i such that ki = 1, it also the case that ji = 1. Hence the degree of En

k is the largest k ≤ j ≤ n such that k v j .
For any n ≥ 2, the binary representation of j ′ = 2blog2 nc

− 1 consists entirely of ones, so if k ≤ j ′, then k v j ′, so
j ′ is a lower bound on the degree of En

k . In addition, the value ln,k calculated by performing the bitwise OR of n − k
and k will be at most n and will have the property that k v ln,k , so ln,k is also a lower bound on En

k . This gives the
following degree lower bounds on the multiplicative complexity of the exactly-k and threshold-k functions:

Theorem 11. c∧(En
k) ≥ max{k − 1, n − k − 1, 2blog2 nc

− 2, ln,k − 1} and c∧(T n
k) ≥ max{k − 1, n − k, 2blog2 nc

−

1, ln−1,k−1}, where ln,k is the number corresponding to the bitwise OR of the binary representations of n − k and k.

7.2.2. Upper bounds
We refer to a set of Boolean functions on n variables as a basis. We call a basis complete if any symmetric function

can be expressed as a linear combination of functions in the basis. Examples of complete bases are {Σ n
i | 0 ≤ i ≤ n},

and {En
i | 0 ≤ i ≤ n}. Define Aq

m =
⊕q

i=m Σ n
i for m ≤ q ≤ n.3 Then Σ n

n = An
n and Σ n

m = An
m⊕An

m+1 for m < n.
Therefore, the basis {An

i | 0 ≤ i ≤ n} is complete. We will prove upper bounds on the multiplicative complexity of
several classes of functions by constructing circuits for functions in the class Aq

i with 0 ≤ i ≤ q ≤ n.
Notice that the functions A0

0 = Σ n
0 = 1 and A1

0 = 1⊕Σ n
1 are linear. We next use the truncated Hamming weight

circuit of Section 6 to compute nonlinear functions of the form Aq
i .

Lemma 18. Let r ≥ 1 and 2r
− 1 ≤ n. Assume the values of Σ n

2i are known for i = 0, . . . , r − 1. Then A2r
−1

0 can be
computed using r − 1 additional AND gates.

Proof. The proof is by induction on r . The base case r = 1 follows from A1
0 = 1⊕Σ n

1 : For notational convenience,
let tr = 2r

− 1. Note tr satisfies the recursion tr = 2r−1
+ tr−1. By Lemma 1, and the fact that tr < 2(2r−1), we have

Atr
2r−1 = Atr−1

0 Σ n
2r−1 . Thus, for r > 1,

Atr
0 = Atr−1

0 ⊕Atr
2r−1 (since 2r−1

= tr−1 + 1)

= Atr−1
0 ⊕Atr−1

0 Σ n
2r−1

= Atr−1
0 (1⊕Σ n

2r−1).

By the induction hypothesis, this can be computed using 1 + (r − 2) = r − 1 additional AND gates. �

We note that the recursive construction in the proof of Lemma 18 also yields the following partial sums:

3 Note that, in the notation Aq
m , the parameter n is implicit.

Author's personal copy

240 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

Corollary 7. Let r ≥ 1 and 2r
− 1 ≤ n. Assume the values of Σ n

2i are known for i = 0, . . . , r − 1. Then the functions

A2s
−1

0 (0 ≤ s ≤ r) can be simultaneously computed using at most r − 1 additional AND gates.

We view the set of functions {A2s
−1

0 | 0 ≤ s ≤ r} ∪ {Σ n
2i | i = 0, . . . , r − 1} as a basis. The number of AND

gates sufficient to compute any linear combination of functions in this basis is no more than c∧(Hn
r)+ r − 1.4 We can

expand the basis as follows:

Corollary 8. Let r ≥ 0 and 2r
− 1 ≤ n. Assume the values of Σ n

2i are known for i = 0, . . . , r − 1. Then the basis

{A2s
−1

0 | 0 ≤ s ≤ r} ∪ {A2s
−1

m | 0 ≤ s ≤ r, m = 2q , q < s} ∪ {A2s
−1

m | 0 ≤ s ≤ r, m = 2q
+ 1, q < s} can be

computed using r − 1 additional AND gates.

Proof. Start with {A2s
−1

0 | 0 ≤ s ≤ r} from Corollary 7 and note

A2s
−1

2q = A2q
−1

0 ⊕A2s
−1

0

A2s
−1

2q+1 = A2s
−1

2q ⊕Σ n
2q . �

We illustrate the power of these techniques with an example. For n = 7 variables, the Hamming weight construction
yields the functions Σ 7

2i for i = 0, 1, 2. The cost of this construction is 4 AND gates. By Corollary 8, two additional

AND gates are enough to compute the functions A7
m =

⊕7
i=m Σ n

i for m ∈ {0, 1, 2, 3, 4, 5}. Two more AND gates are
sufficient to compute Σ 7

6 = Σ 7
4 Σ 7

2 and Σ 7
7 = Σ 7

6 Σ 7
1 . Since A7

6 = Σ 7
6 ⊕Σ 7

7 and A7
7 = Σ 7

7 , we have constructed the
complete basis {A7

i | 0 ≤ i ≤ 7} at a cost of (at most) 8 AND gates. This shows

Lemma 19. Any symmetric function on 7 inputs has multiplicative complexity at most 8.

We conclude this by pointing out one of several exact complexity results that can be derived using the above
techniques. This particular result will later be used for determining the exact complexity of the majority function
when the number of variables is a power of two.

Corollary 9. Let r ≥ 1, n = 2r
− 1, and m = 2r−1. Then c∧(En

m) = n − 1.

Proof. The case r = 1 follows from E1
1 = x1. We now consider the case r > 1. Note that, when m is a power

of 2, the binomial coefficients
(i

m

)
are odd for i = m, . . . , 2m − 1. Thus, by Lemma 16, we have E2r

−1
2r−1 = A2r

−1
2r−1 .

Thus the lower bound c∧(E2r
−1

2r−1) ≥ 2r
− 2 follows from the degree lower bound. For the upper bound, first compute

the Hamming weight of x1, . . . , xn using c∧(Hn) = n − HN(n) = (2r
− 1) − r AND gates. By Corollary 8,

r − 1 additional AND gates are sufficient to compute the basis {A2s
−1

m | 0 ≤ s ≤ r, m = 2q , q < s}. (The basis
{A2s

−1
m | 0 ≤ s ≤ r, m = 2q

+ 1, q < s} can also be computed with no additional AND gates, but it is not necessary
to do so for this proof.)

Thus a total of (2r
− 1) − r + r − 1 = 2r

− 2 = n − 1 AND gates are sufficient to compute E2r
−1

2r−1 = A2r
−1

2r−1 . �

7.3. Majority

The majority function, a special case of the threshold function, is of particular importance in applications of this
theory (e.g. electronic voting protocols). The threshold-k function and the exactly-k function are related by the identity
T n

m = xn En−1
m−1⊕T n−1

m . This will allow us to establish the exact complexity of the majority function when the number
of variables is a power of two.

Theorem 12. Let n = 2r and m = 2r−1
+ 1. Then c∧(T n

m) = n − 1.

4 Hn
r is defined in Section 6.

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 241

Proof. From Lemma 17, we have T n
m =

⊕n
i=m biΣ n

i where bi =
(i−1

m−1

)
(mod 2). Since bn =

(2r
−1

2r−1

)
(mod 2) = 1,

the degree of T n
m is n. By the degree lower bound, c∧(T n

m) ≥ n − 1. Similarly, T n−1
m =

⊕n−1
i=m biΣ n−1

i where

bi =
(i−1

m−1

)
(mod 2) =

(i−1
2r−1

)
(mod 2). In the binomial coefficients

(i−1
2r−1

)
, the value of i − 1 ranges between 2r−1

and 2r
− 2. As observed earlier, all these coefficients are odd. Thus T n−1

m =
⊕n−1

i=m Σ n−1
i = An−1

m .5 For an upper
bound we use the construction in the proof of Corollary 9. This construction computes En−1

m−1 at a cost of n − 2 AND
gates. The construction first builds a basis which contains An−1

m = T n−1
m . Therefore one additional AND gate is

enough to compute T n
m = xn En−1

m−1⊕T n−1
m . The total number of AND gates is n − 2 + 1 = n − 1. �

We now consider the general case. We will prove two upper bounds for the complexity of T 2m−1
m , i.e. majority of

n = 2m − 1 inputs. The first result is most interesting for small m, the second is asymptotically better.

Theorem 13. c∧(T 2m−1
m) ≤ 2dlog2 me

+ m −
⌈

log2 m
⌉

− 2 for all m ≥ 2.

Proof. Let r =
⌈

log2(2m − 1)
⌉

= 1 +
⌈

log2 m
⌉

. Let k be such that 2m − 1 + 2k = 2r
− 1. Notice that

m + k = 2r−1 and k < m. We create 2k additional inputs, half of them set to 0 and the other half to 1. This
converts the problem of computing T 2m−1

m to that of computing T 2m−1+2k
m+k on the enlarged set of inputs. Notice that

T 2m−1+2k
m+k = T 2r

−1
2r−1 = Σ 2r

−1
2r−1 .

The latter can be computed using our standard Hamming weight circuit using 2r
− 1 − r AND gates. The top

level of this circuit groups the inputs in sets of three and computes the majority of each group using one AND gate
per group (see the proofs of Lemma 9 and Theorem 6). In this case, however, 2k of the inputs have a fixed value. By
ordering the inputs in such a way that k groups of three have two fixed values, we decrease the number of AND gates
in the circuit by k. Thus, the complexity of this construction is 2r

− 1 − r − k = 2dlog2 me
+ m −

⌈
log2 m

⌉
− 2 AND

gates. �

The above construction is optimal for m = 2, 3, 4, but is asymptotically worse than the general upper bound of
n + 3

√
n for any symmetric function. The following construction does worse for small m, but gives an asymptotic

upper bound that is at most logarithmically higher than n.
Let s =

⌈
log2 m

⌉
. The key idea behind the above construction is to add some artificial inputs so that it is only

necessary to calculate the high-order bit of some Hamming weight. An alternative is to ignore the artificial zero
bits and simply add k = 2s

− m to the Hamming weight of x. Let
−→
H (x) = us . . . u0 and express k in binary as

ks . . . k0.6 Let the sum of us . . . u0 and ks . . . k0 be τ . Since m ≤ 2s and τ is an integer, τ is bounded above by
2m − 1 + 2s

− m = 2s
+ m − 1 < 2s+1. Thus we can write τ = ts . . . t0 and the value of T 2m−1

m (x) is simply ts . The
sum can be computed using s AND gates. The total cost of this construction is 2m − 1 − HN(2m − 1) +

⌈
log2 m

⌉
AND gates. In the special case that m is a power of 2, the value k will be zero, so no gates are necessary to add it to
the Hamming weight already computed. In this case, only 2m − 1 − HN(2m − 1) AND gates are needed.

This technique can clearly be generalized to any threshold function: Consider T n
m , let s =

⌈
log2(n + 1)

⌉
− 1 and

define r = |2s
− m|. First suppose that m ≤ 2s . Then, one can compute T n

m(x) as the high-order bit of
−→
H (x) + r ,

using n − HN(n) + s AND gates. On the other hand, if m > 2s , then n − m + 1 ≤ n − 2s
≤ 2s . Thus, one can use

the equality T n
m(x) = 1 ⊕ T n

n−m+1(x̄), which holds for 1 ≤ m ≤ n: Compute the Hamming weight of the complement
of x, add r = 2s

− n + m − 1 to the result, and return the complement of the high-order bit as the result. This gives
the following:

Theorem 14. c∧(T n
m) ≤ n − HN(n) +

⌈
log2(n + 1)

⌉
− 1 for all m ≥ 1.

As mentioned above, the result is not optimal for small n, but it is better than the known general upper bound for
symmetric functions.

5 The implicit set of variables in An−1
m is x1, . . . , xn−1.

6 Do not be distracted by the fact that one or more of the most significant bits in ks . . . k0 are zero. This is irrelevant for the argument.

Author's personal copy

242 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

8. Conclusion and open problems

In general, circuit complexity is very difficult. Multiplicative complexity is another approach to circuit complexity
which seems promising initially, given the number of functions for which the techniques presented here have given
the exact multiplicative complexities. The paper has presented lower bound techniques based on linear algebra,
the degrees of the polynomials representing the functions, and planar restrictions of functions. The upper bound
techniques have been based on computing the Hamming weight optimally and on derivations based on identities
involving the elementary symmetric functions.

Additional upper and lower bound techniques would be quite interesting, with constructive upper bounds being the
more interesting, given their applicability to designing efficient circuits.

Appendix A.1 contains tables showing the multiplicative complexity of the elementary symmetric, threshold-k,
and exactly-k functions for at most 8 variables. These tables leave two concrete open problems: Is c∧(Σ 8

4) equal to
5 or 6, and is c∧(E8

4) equal to 6 or 7? If c∧(Σ 8
4) = 6, then the multiplicative complexity of Σ n

m is not monotonic in
m. Thus, depending on the answer to the complexity of Σ 8

4 , there may or may not be an “easy” answer to the open
problem: Is the multiplicative complexity of Σ n

m monotonic in m? The monotonic function
⌊ n+m

2

⌋
− 1 fits all known

results for the multiplicative complexity of c∧(Σ n
m) for m ≥ 2. Thus, showing that c∧(Σ 8

4) = 6 would also break this
pattern. It is not obvious, however, how to compute Σ 8

4 without also computing the lower order bits of the Hamming
weight and thus using 6 AND gates.

Appendix A.2 contains a list of those bounds, formulas and identities used in this paper, which may be useful in
proving further results.

Acknowledgements

The very thorough review and useful suggestions of anonymous referees are gratefully acknowledged. The second
author would like to thank Michael Fischer for many interesting conversations on the subject of multiplicative
complexity. He would also like to thank the Department of Mathematics and Computer Science at the University
of Southern Denmark (formerly Odense University) for several invitations during which some of this work was done.

The first author was partially supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT), and by the Danish Natural Science Research Council (SNF). Part of
the second author’s work was done at the Computer Science Department, Yale University, before this author joined
NIST. While at Yale, this work was partially supported by NSF grant CCR-0081823.

Appendix. Tables

A.1. Results for Σ n
k , T n

k , En
k for n ≤ 8

The tools derived in this paper are sufficient to establish the exact multiplicative complexity of a large class of
symmetric functions. Tables A.1–A.3 show the multiplicative complexities of Σ n

k , T n
k and En

k for 3 ≤ n ≤ 8. Note
that we know the exact complexities of all the tabulated functions except for Σ 8

4 and E8
4 .

For the elementary symmetric functions, all the values of (n, k) in the table are such that k ∈ {0, 1, 2, 3, n − 3, n −

2, n − 1}, except for the pair (n = 8, k = 4), so the results all follow from the relevant theorems, showing the exact
multiplicative complexities of Σ n

2 ,Σ n
3 ,Σ n

n−3,Σ
n
n−2,Σ

n
n−1. The lower bound for Σ 8

4 follows from Theorem 4 and the
upper bound from Corollary 4.

The degrees of the exactly-k and threshold-k functions can be calculated using Lemmas 16 and 17, respectively.
Then, the lower bounds can be obtained from the degree lower bound or Theorem 3 combined with Lemma 16 or 17.
The upper bounds are described below.

For the threshold-k functions with n = 7, Theorem 14 gives an upper bound of 6 for all m. Theorem 13 gives the
exact upper bound for T 3

2 , T 5
3 , T 7

4 , and Theorem 12 gives the exact upper bound for T 8
5 . The upper bound for T 8

4 then
follows from c∧(T 8

4) = c∧(T 8
5) (see Eq. (7.2)).

The result that c∧(T 6
4) = 4 follows from T 6

4 = Σ 6
4 . Then, from Eq. (7.2), we know c∧(T 6

3) = c∧(T 6
4) = 4. Note

that T 6
3 = Σ 6

3 ⊕Σ 6
4 . If we tried to compute T 6

3 using the Hamming weight circuit, we would obtain Σ 6
4 ,Σ 6

2 ,Σ 6
1 at a

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 243

Table A.1
Complexity of Σn

i for 3 ≤ n ≤ 8

Σn
i i
n 2 3 4 5 6 7 8
3 1 2 – – – – –
4 2 2 3 – – – –
5 2 3 3 4 – – –
6 3 3 4 4 5 – –
7 3 4 4 5 5 6 –
8 4 4 5–6 5 6 6 7

Table A.2
Complexity of the threshold function T n

i for
3 ≤ n ≤ 8

T n
i i
n 1 2 3 4 5 6 7 8
3 2 1 2 – – – – –
4 3 3 3 3 – – – –
5 4 3 3 3 4 – – –
6 5 5 4 4 5 5 – –
7 6 5 6 4 6 5 6 –
8 7 7 7 7 7 7 7 7

Table A.3
Complexity of the counting function En

i for 3 ≤ n ≤ 8

En
i i
n 0 1 2 3 4 5 6 7 8
3 2 2 2 2 – – – – –
4 3 2 2 2 3 – – – –
5 4 4 3 3 4 4 – – –
6 5 4 5 3 5 4 5 – –
7 6 6 6 6 6 6 6 6 –
8 7 6 6 6 6–7 6 6 6 7

cost of 4 AND gates. It would then be impossible to obtain Σ 6
3 ⊕Σ 6

4 without using an extra AND gate. This example
shows that direct Hamming weight constructions do not always lead to optimal circuits.

The upper bounds for some of the threshold-k and exactly-k functions for n = 8 were derived by first using four
AND gates to compute the Hamming weight of the first seven values x1, x2, . . . , x7. The three outputs from this
computation are Σ 7

4 , Σ 7
2 , and Σ 7

1 . One can use the following derivations to obtain circuits with low multiplicative
complexity.

T 8
6 = Σ 8

6 ⊕Σ 8
8 = x8(Σ 7

7 ⊕Σ 7
5)⊕Σ 7

6 = Σ 7
4 (x8(Σ 7

3 ⊕Σ 7
1)⊕Σ 7

2)

= Σ 7
4 (x8(Σ 7

2 Σ 7
1 ⊕Σ 7

1)⊕Σ 7
2)

T 8
7 = Σ 8

7 ⊕Σ 8
8 = x8(Σ 7

6 ⊕Σ 7
7)⊕Σ 7

7 = (Σ 7
4 Σ 7

2)(x8(1⊕Σ 7
1)⊕Σ 7

1)

E8
6 = Σ 8

6 ⊕Σ 8
7 = x8Σ 7

5 ⊕Σ 7
6 ⊕x8Σ 7

6 ⊕Σ 7
7 = Σ 7

4 (x8(Σ 7
1 ⊕Σ 7

2)⊕Σ 7
2 ⊕Σ 7

3)

= Σ 7
4 ((Σ 7

1 ⊕Σ 7
2)(x8⊕Σ 7

2))

E8
5 = Σ 8

5 ⊕Σ 8
7 = x8Σ 7

4 ⊕Σ 7
5 ⊕x8Σ 7

6 ⊕Σ 7
7 = x8(Σ 7

4 ⊕Σ 7
6)⊕Σ 7

1 (Σ 7
4 ⊕Σ 7

6)

= Σ 8
1 (Σ 7

4 ⊕Σ 7
4 Σ 7

2)

E8
4 = Σ 8

4 ⊕Σ 8
5 ⊕Σ 8

6 ⊕Σ 8
7 = x8(Σ 7

3 ⊕Σ 7
4 ⊕Σ 7

5 ⊕Σ 7
6)⊕(Σ 7

4 ⊕Σ 7
5 ⊕Σ 7

6 ⊕Σ 7
7)

= (x8⊕Σ 7
4)(Σ 7

3 ⊕Σ 7
4 ⊕Σ 7

5 ⊕Σ 7
6) = (x8⊕Σ 7

4)(Σ 7
2 Σ 7

1 ⊕Σ 7
4)(1⊕Σ 7

1 ⊕Σ 7
2).

Author's personal copy

244 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

The other upper bounds on threshold-k functions which are not straightforward, or do not follow from others by
the symmetry c∧(T n

k) = c∧(T n
n−k+1), can be verified using the following derivations:

T 7
5 = Σ 7

5 ⊕Σ 7
6 ⊕Σ 7

7 = Σ 7
4 (Σ 7

1 ⊕Σ 7
2 ⊕Σ 7

1 Σ 7
2)

T 6
5 = Σ 6

5 ⊕Σ 6
6 = Σ 6

4 (Σ 6
1 ⊕Σ 6

2)

T 7
6 = Σ 7

6

T 6
5 = Σ 6

5 ⊕Σ 6
6 = Σ 6

4 (Σ 6
1 ⊕Σ 6

2)

T 5
4 = Σ 5

4

T 4
3 = Σ 4

3 ⊕Σ 4
4 = x4(Σ 3

2 ⊕Σ 3
3)⊕Σ 3

3 = x4(Σ 3
2 ⊕Σ 3

2 Σ 3
1)⊕Σ 3

2 Σ 3
1

= Σ 3
2 (x4⊕x4Σ 3

1 ⊕Σ 3
1).

Finally, the remaining less trivial upper bounds on the exactly-k functions can be verified using the following:

E8
7 = Σ 8

7

E7
4 = Σ 7

4 ⊕Σ 7
5 ⊕Σ 7

6 ⊕Σ 7
7 = Σ 7

4 (1⊕Σ 7
1 ⊕Σ 7

2 ⊕Σ 7
1 Σ 7

2)

E7
5 = Σ 7

5 ⊕Σ 7
7 = Σ 7

5 (1⊕Σ 7
2)

E7
6 = Σ 7

6 ⊕Σ 7
7 = Σ 7

6 (1⊕Σ 7
1)

E6
3 = Σ 6

3

E6
4 = Σ 6

4 ⊕Σ 6
5 ⊕Σ 6

6 = Σ 6
4 (1⊕Σ 6

1 ⊕Σ 6
2)

E6
5 = Σ 6

5

E5
3 = Σ 5

3

E5
4 = Σ 5

4 ⊕Σ 5
5 = Σ 5

4 (1⊕Σ 5
1)

E4
2 = (T 3

2 ⊕x4)(1⊕Σ 4
1)

E4
3 = Σ 4

3

E3
2 = Σ 3

2 ⊕Σ 3
3 = Σ 3

2 (1⊕Σ 3
1).

A.2. Exact complexities, bounds and identities

In the following

• f refers to an arbitrary symmetric function on n variables;
• S refers to an arbitrary set of symmetric functions on n variables;
• Hn is the Hamming weight function on n variables;
• HN(n) is the Hamming weight of the binary representation of the integer n.
• δ(f) is the degree of f .

The following partial list of results is provided for easy reference.
Nontrivial exact complexities

c∧(Hn) = n − HN(n).

c∧(Σ n
2) =

⌊n

2

⌋
.

c∧(Σ n
3) =

⌈n

2

⌉
.

c∧(Σ n
n−1) = n − 2.

c∧(Σ n
n−2) = n − 2 for n > 3.

Author's personal copy

J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246 245

c∧(Σ n
n−3) = n − 3 for n > 4.

c∧(E2r
−1

2r−1) = 2r
− 2.

c∧(T 2r

2r−1+1) = 2r
− 1.

Bounds and identities

c∧(f) ≥ δ(f) if 1 < δ(f) < n − 1.

c∧(f) ≤ n + 3
√

n.

c∧(S) ≤ 2n − log2 n.

Σ n
k = Σ n

2i0
Σ n

2i1
. . .Σ n

2i j
(k = 2i0 + 2i1 + · · · + 2i j).

Σ n
2i (x) = the (i + 1)th l.s.b. of Hn(x).

Σ n
m = xnΣ n−1

m−1⊕Σ n−1
m for 1 < m ≤ n − 1.

Σ n
m = Σ n−1

m−1Σ
n
1 for m odd.

c∧(f) ≥

⌊n

2

⌋
if f is non-linear.

En
k =

n⊕
i=k

aiΣ n
i where ai =

(i
k

)
mod 2.

T n
k =

n⊕
i=k

biΣ n
i where bi =

(i−1
k−1

)
(mod 2).

Symmetries for equality and threshold functions

c∧(En
k) = c∧(En

n−k) (0 ≤ k ≤ n).

c∧(T n
k) = c∧(T n

n−k+1) (1 ≤ k ≤ n).

Let ln,k be the bitwise OR of n − k and k. Then

c∧(En
k) ≥ max{k − 1, n − k − 1, 2blog2 nc

− 2, ln,k − 1}; and

c∧(T n
k) ≥ max{k − 1, n − k, 2blog2 nc

− 1, ln−1,k−1}.

References
[1] A.A. Aleksanyan, On realization of quadratic Boolean functions by systems of linear equations, Cybernetics 25 (1) (1989) 9–17.
[2] G. Brassard, D. Chaum, C. Crépeau, Minimum disclosure proofs of knowledge, Journal of Computer and System Sciences 37 (1988) 156–189.
[3] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, in: Grundlehren der Mathematischen Wissenschaften, vol. 315,

Springer-Verlag, 1997.
[4] J. Boyar, I. Damgård, R. Peralta, Short non-interactive cryptographic proofs, Journal of Cryptology 13 (2000) 449–472.
[5] J. Boyar, M. Krentel, S. Kurtz, A discrete logarithm implementation of zero-knowledge blobs, Journal of Cryptology 2 (2) (1990) 63–76.
[6] J. Boyar, C. Lund, R. Peralta, On the communication complexity of zero-knowledge proofs, Journal of Cryptology 6 (2) (1993) 65–85.
[7] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant distributed computation, in:

Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, 1988, pp. 1–10.
[8] J. Boyar, R. Peralta, D. Pochuev, On the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1), Theoretical Computer

Science 235 (2000) 43–57.
[9] D. Chaum, C. Crépeau, I. Damgård, Multi-party unconditionally secure protocols, in: Proceedings of the 20th Annual ACM Symposium on

the Theory of Computing, 1988, pp. 11–19.
[10] R. Cramer, I. Damgård, J.B. Nielsen, Multiparty computation from threshold homomorphic encryption, in: Advances in Cryptology —

EUROCRYPT 2001, in: Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001, pp. 280–300.
[11] P. Dunne, The complexity of Boolean networks, Academic Press, 1988.
[12] M. Fischer, R. Peralta, Counting predicates of conjunctive complexity one, Technical Report YALEU/DCS/TR1222, Yale University,

December 2001.
[13] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, second edn, Addison-Wesley, 1994, p. 114.
[14] M. Hirt, J.B. Nielsen, Upper bounds on the communication complexity of optimally resistent cryptographic multiparty computation,

in: Advances in Cryptology — ASIACRYPT 2005, in: Lecture Notes in Computer Science, vol. 3788, Springer-Verlag, 2005, pp. 79–99.

Author's personal copy

246 J. Boyar, R. Peralta / Theoretical Computer Science 396 (2008) 223–246

[15] E.E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, Journal für die Riene und Angewandte Mathematik 44
(1852) 93–146.

[16] M.V. Mihaı̆ljuk, On the complexity of calculating the elementary symmetric functions over finite fields, Sov. Math. Dokl. 20 (1979) 170–174.
[17] R. Mirwald, C. Schnorr, The multiplicative complexity of quadratic Boolean forms, Theoretical Computer Science 102 (2) (1992) 307–328.
[18] W.J. Paul, A 2.5n lower bound on the combinational complexity of Boolean functions, in: Proceedings of the 7th Annual ACM Symposium

on the Theory of Computing, 1975, pp. 27–36.
[19] R. Rueppel, J. Massey, The knapsack as a nonlinear function, in: Abstracts of papers, IEEE Int. Symp. on Information Theory, 1985, p. 46.
[20] C.P. Schnorr, The multiplicative complexity of Boolean functions, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,

6th International Conference, in: Lecture Notes in Computer Science, vol. 357, 1989, pp. 45–58.
[21] L. Stockmeyer, On the combinational complexity of certain symmetric Boolean functions, Mathematical Systems Theory 10 (1977) 323–336.
[22] B.L. van der Waerden, Algebra. Frederick Ungar Publishing.

