
184

Volume 28, Number 3, September 2007 Ada User Journal

SAMATE and Evaluating Static Analysis Tools

Paul E. Black

National Institute of Standards and Technology, 100 Bureau Drive Stop 8970, Gaithersburg, MD 20899; email:

paul.black@nist.gov

Abstract

We give some background on the Software Assurance
Metrics And Tool Evaluation (SAMATE) project and
our decision to work on static source code security
analyzers. We give our experience bringing
government, vendors, and users together to develop a
specification and tests to evaluate such analyzers. We
also present preliminary results of our study on
whether such tools reduce vulnerabilities in practice.

Keywords: software assurance, source code, static
analysis, tool testing.

1 Introduction

The Software Assurance Metrics And Tool Evaluation, or

SAMATE, project [11] at the US National Institute of

Standards and Technology (NIST) focuses on one aspect of

reliable software: software assurance, particularly security

assurance. That is, how can we gain assurance that software

is secure enough for its intended use? The SAMATE

project seeks to help develop standard evaluation measures

and methods for software assurance.

High levels of quality and security cannot be "tested into"

software. Such attributes must be built into software from

the beginning, starting with requirements and choice of

environment. Preventing flaws is far more cost-effective

and dependable than trying to remove them. But what if the

system being designed includes commercial, off-the-shelf

(COTS) packages? How can a contractor thoroughly audit

or check large packages from subcontractors? Legacy code

may need reviews before being used in a new environment

or for newly discovered threats. Also for quality assurance,

one needs to know what kinds of flaws a current

development process might leave or whether a new method

yields better quality software. In all these cases, one must

work with the code that is available.

Although SAMATE will eventually consider the impact of

using better programming languages, such as Ada1 or

Eiffel, advanced software development approaches, and

correct-by-construction techniques, we started with

software metrics and understanding tools for checking

software.

In the software realm, what can we do to increase software

assurance? We can enable tool improvement and encourage

1 Any commercial product mentioned is for information only. It does not

imply recommendation or endorsement by NIST nor does it imply that the

products mentioned are necessarily the best available for the purpose.

wider use of tools. We will simultaneously urge use of

better environments, practices, and languages.

Some questions quickly spring to mind. If a tool gives no

outstanding alarms for a system, how secure is the system,

really? Is the new version of a tool better (pick your own

definition) than the preceding version? How much better?

Which tools find what flaws? To answer these questions,

we must back up and try to make a comprehensive list of

flaws that might occur and have a taxonomy of software

security assurance tools and techniques which might be

investigated.

Both tasks have proved far harder than first thought. The

effort to list flaws led to Mitre's Common Weakness

Enumeration (CWE) [5] effort. Although not complete, the

SAMATE web site has the latest version of the taxonomy

of software security assurance tools and techniques [14].

For clarity we quote some definitions from our Source

Code Security Analysis Tool Functional Specification

Version 1.0 [13]. It defines a vulnerability as "a property of

system security requirements, design, implementation, or

operation that could be accidentally triggered or

intentionally exploited and result in a security failure. … If

there was a security failure, there must have been a

vulnerability." It continues, "a vulnerability is the result of

one or more weaknesses in requirements, design,

implementation, or operation." We use the term "weakness"

to emphasize that without the entire context, one cannot

truly conclude that a problem may occur. Some other code

or part of the system may prevent the weakness from being

exploited.

Why we started with static source code analyzers

Higher level representations, such as requirements or use

cases, are better places to prevent flaws. But we did not

find any area mature enough for standardization. Also

roughly half of all security weaknesses are introduced

during coding [7], so improvement after high level design

may be helpful. Unlike binary or byte code, source code is

largely human-readable. Also there are many tools that

work with source code. For these reasons, source code

seems a good place to begin.

Testing and static analysis complement each other. Static

analysis is less feasible without source code. It may be

impossible, say, in testing embedded systems or remote

testing of Internet services. On the other hand, one cannot

test an incomplete program, while static analysis might be

feasible. More importantly, testing is unlikely to uncover

very special cases, for instance, granting access when the

user name is "matahari".

P. E. Black 185

Ada User Journal Volume 28, Number 3, September 2007

We started with static source code security analysis tools

since they have a potential of higher assurance. Chess and

McGraw [3] give an excellent short introduction to the use

of static analysis for software assurance. Note that when we

use the term "tool", we are actually referring to a set of

functionalities. That is, any program that can statically

analyze source code is in the class. It need not be a stand-

alone tool that analyzes source code and does nothing else.

Our first funding, from the US Department of Homeland

Security, was to develop tests for tools. After talking with

vendors, we decided we could increase adoption by

developing basic tests.

One reason software developers do not adopt a tool is they

are not sure whether any tool of the sort is really helpful

and whether a particular tool is actually broadly useful.

Some demonstrations are set up to give the appearance of

great performance, when the breadth or depth or power is

disappointing in practice. A standard developed by NIST

would help assure software developers that source code

security analyzers are useful. In addition, when a tool

satisfies the standard, the user has some assurance that it

has adequate coverage. Speeding the adoption of these

tools can increase vendors' sales: the market for source

code analyzers can grow a lot before it is saturated.

2 A specification for static source code
security analyzers

NIST is a non-regulatory agency. This means we cannot

mandate the use of our standards or tests. We must "sell"

our results. One step to acceptable tests is a widely

accepted specification of what such a tool should do.

We need the cooperation of vendors and developers of

source code security analyzers to efficiently succeed. They

have experience with what users, or at least their

customers, need and want from such analyzers. They also

have experience with what is practical, having written

production analyzers. Some of the best researchers in the

field have been the primary agents in developing these

commercial tools. Finally we want our standard to be an

endorsement that vendors will seek, rather than something

to be forced on them. How can we position this effort to

help vendors and consumers?

We looked for available source code security analyzers on

the web, in published articles, and by personal contact. We

the updated collection of tools is on-line at [12]. We

organized several workshops and conference sessions on

source code security analyzers. Vendors were willing to

attend, and we discussed possible approaches and goals

with them. To build a consensus, we established a mailing

list, where we discussed facets, and made drafts of the

specification available for public review and comment.

Informally a static source code security analyzer (1)

examines source to (2) detect and report weaknesses that

can lead to security vulnerabilities [13]. Tools that examine

other artifacts, like requirements, byte code or binary, and

tools that dynamically execute code are not included.

Again, when we use the term "tool", we mean a set of

capabilities of a tool.

Before continuing, we must decide the purpose of the

specification and tests. It would be nice if they could serve

as a metric to completely characterize the capabilities of a

tool, but that is not possible, even in theory. A bit more

practical specification could establish a lofty goal whose

satisfaction ensures the user got the level of security

checking needed. But since different users have different

security needs, this is complicated. A specification could

settle for a recommended standard, like due diligence. Even

here, we have little objective evidence to establish such a

level.

We chose to work for a minimum standard to begin with. A

minimum standard would reduce argument about how high

a level is right and exactly what should be required.

Although insufficient for, say, setting recommended

practices, a minimum standard opens the way for a higher

standard.

What exactly should a source code analyzer do?

In more detail, such an analyzer should find weaknesses

and report their class and location. The weakness class

corresponds to CWE entries. Many tools also report

conditions that may expose the weakness, data or control

flow related to it, more information about that class of

weakness including examples of how to fix it, the certainty

that the weakness is a vulnerability (not a false alarm), or

some rating of the severity or ease of exploit.

Optionally a tool should produce a report that could be used

by other tools. For practical use in repeated runs, there must

be some mechanism to suppress reports of weaknesses

judged to be false alarms or otherwise to be subsequently

ignored.

False positives are a critical factor. Conceptually, static

analysis tools compute a model of a program. They then

analyze the model for certain properties. Since static

analysis problems are undecidable in general, either the

computed model is approximate or the analysis is

approximate. Due to these approximations, tools may miss

weaknesses (false negatives) or report correct code as

having a weakness (false positives). To be adopted a tool

must "have an acceptably low false positive rate" [13].

Nowhere in the specification is a rate given. One reason is

that a rate that is acceptable for one application or

development situation may not be acceptable for another.

Why then bother having the requirement? It is a NIST

practice to only test items in the specification. It would be

"poor sportsmanship" to test for a false positive rate

without a written requirement. With more research we hope

to be able to give acceptable rates, at least for some

situations.

Other issues for a specification

The expressive power of programming languages makes

analysis even harder. Analysis routines must be explicitly

developed to handle coding complexities, such as loops,

conditional control flow, arrays, different variable types,

186 SAMATE and Evaluat ing Stat ic Analysis Tools

Volume 28, Number 3, September 2007 Ada User Journal

interprocedural function calls, and aliasing. In practice no

tool handles all possible code constructs. To assure the user

that a tool handles some, the specification also requires that

weaknesses be found in the presence of a set of coding

complexities.

No tool checks for all weaknesses in the CWE. Some are

hard to define, like leftover debug code (CWE ID 489).

With over 500 weaknesses tool developers concentrate on a

relatively small set of frequent or severe weaknesses and

put effort saved into improving analysis and user aids.

We chose a "minimum" set of weaknesses: those that are

most common or occur most often, most easily exploited,

and are caught by existing tools.

To be as flexible as possible the specification should

explicitly refer to the subset of weaknesses that a tool

purports to catch. However this causes severe problems in

developing test material that also covers coding

complexities.

We need to check that all weaknesses (in our "minimum"

set) are caught in the presence of all coding complexities.

The naive test suite would have every weakness in the

presence of every coding complexity. This would be

thousands of tests, complicating the creation and running of

the test suite. Since we expect the same analysis modules to

handle coding complexities for all weaknesses, we believe

having each weakness in the presence of a few coding

complexities, where every coding complexity occurs at

least once, has substantially the same testing power. This

test suite has less than 100 test cases.

Allowing for a subset of weaknesses presents challenges. In

the extreme, what if a tool only purports to catch one

weakness? The three or four test cases from the test suite

will not exercise all coding complexities. We see a number

of possibilities.

We could go back to having thousands of cases, so any

weakness also exercises all coding complexities, but it

would be unwieldy. One option is to develop a generator to

create a custom test suite with the coding complexities

distributed throughout as many or as few weaknesses as

desired. Another possibility is to prepare adequate test

suites as needed, in hopes that a limited amount of work

would address real needs. Trusting that most tools cover a

minimum set, we discarded the allowance for subsets from

the specification. But we now find that unrealistic.

As part of the result of a study of tools Britton [2] reported,

"84 percent of the vulnerabilities found were identified by

one tool and one tool alone". Rutar, Almazan, and Foster

[9] concluded that tools for finding bugs in Java do not

overlap much in what they catch. In consolidating

weakness classes found by five tools Martin [6] reported

little overlap: few weaknesses were even caught by two

tools. Currently the best approach, that is lowest false

positive and highest identification rates over many

weaknesses, is to use two or more tools as a combined

metatool.

What are the attributes of test cases? Small cases separate

the question of "can this be detected" from "how scalable is

the tool". On the other hand, large programs allow

examination of speed and maximum size and exercise a

tool in a more realistic situation. Having one weakness in

each test case makes analysis of the result easier, but

having multiple weaknesses in one program should be more

challenging. It is straightforward to write code with known

weaknesses, whereas extracting examples from production

code disarms the objection that it is unrealistic. Trying to

find an instance of a weakness and extracting a slice of

code could take excessive amounts of time. Even with the

slice, we would have to secure permission to make it

publicly available.

Currently our test cases are very small, purpose written

code with one weakness per case. For measuring the false

positive rate we also have cases without weaknesses or in

which weaknesses have been fixed.

Sharing example code

While researching source code security analyzers, we found

it difficult to get a corpus of code with known weaknesses.

Although academicians develop them for research,

companies have some for testing, and evaluators assemble

them, few were available. We felt a single repository of

such could be helpful to the entire community. Not only

would it provide a place for us to keep and publish our test

cases, it would allow people to share the work they've

done.

The SAMATE Reference Dataset (SRD) [10] is an on-line,

publicly available repository of thousands of samples of

flawed software. Each test case consists of one or more

files. Test cases may consist of source code, byte code,

binaries, requirements, or other artifacts.

Each test case may have explanatory information

associated with it, for instance, the author or contributor,

the date submitted, language, which flaw(s) it exhibits, and

a description. In addition, test cases may have directions on

how to compile and link source code, input that triggers the

flaw, or expected output. Registered users can submit test

cases and add comments to any test case.

For historical stability, the content of test cases will never

be updated. If the code in a test case needs to be fixed or

improved, a new test case will be added, and the status of

the existing test case will be changed to "deprecated".

Deprecated status advises against using the case for new

work. This way, a test report referring to a certain test suite

can be rerun exactly, even years later.

Methods to minimize test evasion

A fixed, public test set allows for various abuses. A tool

developer may write special-purpose code to get the right

result for a very special case. This diverts effort from

general improvements and incorrectly raises ratings. More

simply a developer may add code to recognize the case,

perhaps the name and size of the file, and hard-code the

right result.

P. E. Black 187

Ada User Journal Volume 28, Number 3, September 2007

We see several ways to minimize such distractions. Easiest

is to keep the test set secret. The test set would only be

shared with parties trusted to keep it private. Practically a

public version would be needed to allow others to examine

and critique the tests and to allow vendors to practice. Even

with a public version, it might be difficult to convince tool

developers that the private tests are fair and reasonable.

Another possibility is to develop a test generator that

creates unique test sets on demand. The challenge with this

approach is to ensure that every test set generated is similar

in its testing power. Adding code from production

applications or getting large pieces of code would be hard.

We are writing an obfuscator to discourage developers

from having their program recognize tests and return pre-

determined answers. At a minimum the obfuscator must

change source code file names. The next level is to change

comments and names in the source code, such as variable

and function names. Although very hard in general, the

obfuscator only needs to work on the test suite.

Since most source code analyzers already have powerful

abstraction capabilities, they could store signatures of

abstract syntax trees and return prepared responses when

one is recognized. To foil this, the obfuscator could insert

benign code or rearrange existing code. Rather than

requiring full code rewriting capabilities in the obfuscator,

test cases could be in some preprocessed form or have

"hints" stored. In this case, a macro processor could

generate many different versions of the test set. Developers

still might be tempted to add special case algorithms to

improve results.

3 Do tools really help?

One can think of several potential problems with the use of

such tools in practice. A tool may report many weaknesses,

but miss the small number of serious weaknesses that really

affect security. If a user takes a mechanical approach to

fixing weaknesses reported by tools, programmers may not

think as much about the program logic and miss more

serious vulnerabilities. Also, the developer may spend time

correcting unimportant weaknesses reported, making other

mistakes in the process and not having as much time for

harder security challenges. Recognizing such problems,

Dawson Engler [4] articulated the question: "Do static

source code analysis tools really help?"

Funded by the US Department of Homeland Security,

Coverity, in collaboration with Stanford University, has

analyzed over 50 open-source projects since March 2006

[1]. As an example, they reported over 600 defects in

Firefox and 98 defects in Python. At least one security

vulnerability was detected: CVE-2006-0745. Others have

similar, although smaller, scans. Maintainers may use these

reports to fix previously unknown vulnerabilities. By

studying these, we may be able to support or refute Engler's

question.

We are examining the history of reported vulnerabilities for

the projects scanned by Coverity. We use reported

vulnerabilities as a surrogate measure for actual

vulnerabilities. The null hypothesis is that there is no

change in the number of reported vulnerabilities after the

start of scanning. We give preliminary results we have for

one project, MySQL.

Coverity scanned MySQL version 4.1.8 in early 2005.

Version 4.1.10, released 15 February 2005, contained fixes

based on Coverity reports. Figure 1 compares vulnera-

bilities discovered in version 4.1.10 or later versions with

vulnerabilities discovered before the 15 February release.

"Discovery" means it was reported in the National

Vulnerability Database (NVD) [8].

Red bars, on the right, are vulnerabilities discovered in

version 4.1.10 or later. They are grouped by discovery date.

As the discovery date, we used the earlier of the discovery

date in the NVD and in the SecurityFocus database [15].

Our data covers 21 months after the release of version

4.1.10. The light blue bars, on the left, are vulnerabilities

discovered before the release. We began 21 months before

the release, that is May 2003. Vulnerabilities discovered

after 15 February 2005 that were only present in versions

before 4.1.10 were not used.

0

1

2

3

4

5

6

0-3 3-6 6-9 9-12 12-15 15-18 18-21

Months

Before 4.1.10 After 4.1.10 .

Figure 1 MySQL vulnerabilities before and after 4.1.10

The data is insufficient to draw any conclusions. We are

trying to take confounding factors into account, and we are

analyzing similar data from other projects to accumulate a

statistically meaningful set.

4 Future directions

We are planning several studies to answer questions such

as the following. How does one tool's assessment correlate

with another tool's assessment? What is the subject of a

metric, that is, does it apply to the algorithm, an

implementation, or an execution trace?

We are currently working on specifications and tests for

web application scanners. The next class of tool we will

work on is binary analyzer. We are also guiding efforts to

formalize descriptions of weaknesses. Although formal

description will have many uses in the long term, our

immediate application is a test case generator. The

generator uses the descriptions to produce example code.

We are looking for collaborations. In particular, we need a

few more people to serve on our technical advisory panel,

which meets once or twice a year to suggest where we

might be of most help in the future. We also seek

188 SAMATE and Evaluat ing Stat ic Analysis Tools

Volume 28, Number 3, September 2007 Ada User Journal

participants in focus groups to review specifications and

test plans for classes of tools.

In the long term we plan to go beyond tools, especially

checking tools. Society must move beyond a catch-and-

patch approach. We will help develop metrics to gauge

more secure languages, good processes, environments, etc.

We want to help demonstrate what really improves

software security.

References

[1] Accelerating Open Source Quality,

http://scan.coverity.com/ (Accessed 21 May 2007).

[2] Peter A. Buxbaum (2007), All for one, but not one for

all, Government Computer News, 26(6), 19 March.

Available at http://www.gcn.com/print/26_06/43320-1.html

(Accessed 22 May 2007).

[3] Brian Chess and Gary McGraw (2004), Static Analysis

for Security, Security and Privacy Magazine, IEEE,

2(6), pp 76-79.

[4] Andy Chou, Ben Chelf, Seth Hallem, Charles Henri-

Gros, Bryan Fulton, Ted Unangst, Chris Zak, Dawson

Engler, Weird things that surprise academics trying to

commercialize a static checking tool,

http://www.stanford.edu/~engler/spin05-coverity.pdf

(Accessed 21 May 2007).

[5] Common Weakness Enumeration, The MITRE

Corporation, http://cwe.mitre.org/ (Accessed 21 May

2007).

[6] Robert A. Martin (2007), Making Security Measurable,

Providing Assurance in the Software Lifecycle DHS-

DoD Software Assurance Forum, Fair Lakes, Virginia.

[7] Gary McGraw (2006), Software Security, Addison-

Wesley.

[8] National Vulnerability Database, National Institute of

Standards and Technology, http://nvd.nist.gov/

(Accessed 21 May 2007).

[9] Nick Rutar, Christian B. Almazan, and Jeffrey S.

Foster (2004), A Comparison of Bug Finding Tools for

Java, 15th IEEE International Symposium on Software

Reliability Engineering, IEEE Computer Society, pp

245-256. Available at http://www.cs.umd.edu/

~jfoster/papers/issre04.pdf (Accessed 21 May 2007).

[10] SAMATE Reference Dataset, National Institute of

Standards and Technology, http://samate.nist.gov/ SRD/

(Accessed 20 May 2007).

[11] Software Assurance Metrics And Tool Evaluation

(SAMATE) project, National Institute of Standards and

Technology, http://samate.nist.gov/ (Accessed 20 May

2007).

[12] Source Code Security Analysis, National Institute of

Standards and Technology, http://samate.nist.gov/

index.php/Source_Code_Security_Analysis (Accessed 24

May 2007).

[13] Source Code Security Analysis Tool Functional

Specification Version 1.0, National Institute of

Standards and Technology, Special Publication 500-

268, May 2007. Available at http://samate.nist.gov/

docs/source_code_security_analysis_spec_SP500-268.pdf

(Accessed 24 May 2007).

[14] Tool Taxonomy, National Institute of Standards and

Technology, http://samate.nist.gov/index.php/

Tool_Taxonomy (Accessed 25 May 2007).

[15] Vulnerabilities, SecurityFocus, http://www.security

focus.com/vulnerabilities (Accessed 25 May 2007).

