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Abstract 

We give some background on the Software Assurance 
Metrics And Tool Evaluation (SAMATE) project and 
our decision to work on static source code security 
analyzers. We give our experience bringing 
government, vendors, and users together to develop a 
specification and tests to evaluate such analyzers. We 
also present preliminary results of our study on 
whether such tools reduce vulnerabilities in practice. 
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1   Introduction 

The Software Assurance Metrics And Tool Evaluation, or 

SAMATE, project [11] at the US National Institute of 

Standards and Technology (NIST) focuses on one aspect of 

reliable software: software assurance, particularly security 

assurance. That is, how can we gain assurance that software 

is secure enough for its intended use? The SAMATE 

project seeks to help develop standard evaluation measures 

and methods for software assurance. 

High levels of quality and security cannot be "tested into" 

software. Such attributes must be built into software from 

the beginning, starting with requirements and choice of 

environment. Preventing flaws is far more cost-effective 

and dependable than trying to remove them. But what if the 

system being designed includes commercial, off-the-shelf 

(COTS) packages? How can a contractor thoroughly audit 

or check large packages from subcontractors? Legacy code 

may need reviews before being used in a new environment 

or for newly discovered threats. Also for quality assurance, 

one needs to know what kinds of flaws a current 

development process might leave or whether a new method 

yields better quality software. In all these cases, one must 

work with the code that is available. 

Although SAMATE will eventually consider the impact of 

using better programming languages, such as Ada1 or 

Eiffel, advanced software development approaches, and 

correct-by-construction techniques, we started with 

software metrics and understanding tools for checking 

software. 

In the software realm, what can we do to increase software 

assurance? We can enable tool improvement and encourage 

                                                           
1 Any commercial product mentioned is for information only. It does not 

imply recommendation or endorsement by NIST nor does it imply that the 

products mentioned are necessarily the best available for the purpose. 

wider use of tools. We will simultaneously urge use of 

better environments, practices, and languages. 

Some questions quickly spring to mind. If a tool gives no 

outstanding alarms for a system, how secure is the system, 

really? Is the new version of a tool better (pick your own 

definition) than the preceding version? How much better? 

Which tools find what flaws? To answer these questions, 

we must back up and try to make a comprehensive list of 

flaws that might occur and have a taxonomy of software 

security assurance tools and techniques which might be 

investigated. 

Both tasks have proved far harder than first thought. The 

effort to list flaws led to Mitre's Common Weakness 

Enumeration (CWE) [5] effort. Although not complete, the 

SAMATE web site has the latest version of the taxonomy 

of software security assurance tools and techniques [14]. 

For clarity we quote some definitions from our Source 

Code Security Analysis Tool Functional Specification 

Version 1.0 [13]. It defines a vulnerability as "a property of 

system security requirements, design, implementation, or 

operation that could be accidentally triggered or 

intentionally exploited and result in a security failure. … If 

there was a security failure, there must have been a 

vulnerability." It continues, "a vulnerability is the result of 

one or more weaknesses in requirements, design, 

implementation, or operation." We use the term "weakness" 

to emphasize that without the entire context, one cannot 

truly conclude that a problem may occur. Some other code 

or part of the system may prevent the weakness from being 

exploited. 

Why we started with static source code analyzers 

Higher level representations, such as requirements or use 

cases, are better places to prevent flaws. But we did not 

find any area mature enough for standardization. Also 

roughly half of all security weaknesses are introduced 

during coding [7], so improvement after high level design 

may be helpful. Unlike binary or byte code, source code is 

largely human-readable. Also there are many tools that 

work with source code. For these reasons, source code 

seems a good place to begin. 

Testing and static analysis complement each other. Static 

analysis is less feasible without source code. It may be 

impossible, say, in testing embedded systems or remote 

testing of Internet services. On the other hand, one cannot 

test an incomplete program, while static analysis might be 

feasible. More importantly, testing is unlikely to uncover 

very special cases, for instance, granting access when the 

user name is "matahari".  
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We started with static source code security analysis tools 

since they have a potential of higher assurance. Chess and 

McGraw [3] give an excellent short introduction to the use 

of static analysis for software assurance. Note that when we 

use the term "tool", we are actually referring to a set of 

functionalities. That is, any program that can statically 

analyze source code is in the class. It need not be a stand-

alone tool that analyzes source code and does nothing else. 

Our first funding, from the US Department of Homeland 

Security, was to develop tests for tools. After talking with 

vendors, we decided we could increase adoption by 

developing basic tests.  

One reason software developers do not adopt a tool is they 

are not sure whether any tool of the sort is really helpful 

and whether a particular tool is actually broadly useful. 

Some demonstrations are set up to give the appearance of 

great performance, when the breadth or depth or power is 

disappointing in practice. A standard developed by NIST 

would help assure software developers that source code 

security analyzers are useful. In addition, when a tool 

satisfies the standard, the user has some assurance that it 

has adequate coverage. Speeding the adoption of these 

tools can increase vendors' sales: the market for source 

code analyzers can grow a lot before it is saturated. 

2   A specification for static source code 
security analyzers 

NIST is a non-regulatory agency. This means we cannot 

mandate the use of our standards or tests. We must "sell" 

our results. One step to acceptable tests is a widely 

accepted specification of what such a tool should do. 

We need the cooperation of vendors and developers of 

source code security analyzers to efficiently succeed. They 

have experience with what users, or at least their 

customers, need and want from such analyzers. They also 

have experience with what is practical, having written 

production analyzers. Some of the best researchers in the 

field have been the primary agents in developing these 

commercial tools. Finally we want our standard to be an 

endorsement that vendors will seek, rather than something 

to be forced on them. How can we position this effort to 

help vendors and consumers? 

We looked for available source code security analyzers on 

the web, in published articles, and by personal contact. We 

the updated collection of tools is on-line at [12]. We 

organized several workshops and conference sessions on 

source code security analyzers. Vendors were willing to 

attend, and we discussed possible approaches and goals 

with them. To build a consensus, we established a mailing 

list, where we discussed facets, and made drafts of the 

specification available for public review and comment. 

Informally a static source code security analyzer (1) 

examines source to (2) detect and report weaknesses that 

can lead to security vulnerabilities [13]. Tools that examine 

other artifacts, like requirements, byte code or binary, and 

tools that dynamically execute code are not included. 

Again, when we use the term "tool", we mean a set of 

capabilities of a tool. 

Before continuing, we must decide the purpose of the 

specification and tests. It would be nice if they could serve 

as a metric to completely characterize the capabilities of a 

tool, but that is not possible, even in theory. A bit more 

practical specification could establish a lofty goal whose 

satisfaction ensures the user got the level of security 

checking needed. But since different users have different 

security needs, this is complicated. A specification could 

settle for a recommended standard, like due diligence. Even 

here, we have little objective evidence to establish such a 

level. 

We chose to work for a minimum standard to begin with. A 

minimum standard would reduce argument about how high 

a level is right and exactly what should be required. 

Although insufficient for, say, setting recommended 

practices, a minimum standard opens the way for a higher 

standard.  

What exactly should a source code analyzer do? 

In more detail, such an analyzer should find weaknesses 

and report their class and location. The weakness class 

corresponds to CWE entries. Many tools also report 

conditions that may expose the weakness, data or control 

flow related to it, more information about that class of 

weakness including examples of how to fix it, the certainty 

that the weakness is a vulnerability (not a false alarm), or 

some rating of the severity or ease of exploit. 

Optionally a tool should produce a report that could be used 

by other tools. For practical use in repeated runs, there must 

be some mechanism to suppress reports of weaknesses 

judged to be false alarms or otherwise to be subsequently 

ignored. 

False positives are a critical factor. Conceptually, static 

analysis tools compute a model of a program. They then 

analyze the model for certain properties. Since static 

analysis problems are undecidable in general, either the 

computed model is approximate or the analysis is 

approximate. Due to these approximations, tools may miss 

weaknesses (false negatives) or report correct code as 

having a weakness (false positives). To be adopted a tool 

must "have an acceptably low false positive rate" [13]. 

Nowhere in the specification is a rate given. One reason is 

that a rate that is acceptable for one application or 

development situation may not be acceptable for another. 

Why then bother having the requirement? It is a NIST 

practice to only test items in the specification. It would be 

"poor sportsmanship" to test for a false positive rate 

without a written requirement. With more research we hope 

to be able to give acceptable rates, at least for some 

situations. 

Other issues for a specification 

The expressive power of programming languages makes 

analysis even harder. Analysis routines must be explicitly 

developed to handle coding complexities, such as loops, 

conditional control flow, arrays, different variable types, 
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interprocedural function calls, and aliasing. In practice no 

tool handles all possible code constructs. To assure the user 

that a tool handles some, the specification also requires that 

weaknesses be found in the presence of a set of coding 

complexities. 

No tool checks for all weaknesses in the CWE. Some are 

hard to define, like leftover debug code (CWE ID 489). 

With over 500 weaknesses tool developers concentrate on a 

relatively small set of frequent or severe weaknesses and 

put effort saved into improving analysis and user aids. 

We chose a "minimum" set of weaknesses: those that are 

most common or occur most often, most easily exploited, 

and are caught by existing tools. 

To be as flexible as possible the specification should 

explicitly refer to the subset of weaknesses that a tool 

purports to catch. However this causes severe problems in 

developing test material that also covers coding 

complexities. 

We need to check that all weaknesses (in our "minimum" 

set) are caught in the presence of all coding complexities. 

The naive test suite would have every weakness in the 

presence of every coding complexity. This would be 

thousands of tests, complicating the creation and running of 

the test suite. Since we expect the same analysis modules to 

handle coding complexities for all weaknesses, we believe 

having each weakness in the presence of a few coding 

complexities, where every coding complexity occurs at 

least once, has substantially the same testing power. This 

test suite has less than 100 test cases. 

Allowing for a subset of weaknesses presents challenges. In 

the extreme, what if a tool only purports to catch one 

weakness? The three or four test cases from the test suite 

will not exercise all coding complexities. We see a number 

of possibilities. 

We could go back to having thousands of cases, so any 

weakness also exercises all coding complexities, but it 

would be unwieldy. One option is to develop a generator to 

create a custom test suite with the coding complexities 

distributed throughout as many or as few weaknesses as 

desired. Another possibility is to prepare adequate test 

suites as needed, in hopes that a limited amount of work 

would address real needs. Trusting that most tools cover a 

minimum set, we discarded the allowance for subsets from 

the specification. But we now find that unrealistic. 

As part of the result of a study of tools Britton [2] reported, 

"84 percent of the vulnerabilities found were identified by 

one tool and one tool alone". Rutar, Almazan, and Foster 

[9] concluded that tools for finding bugs in Java do not 

overlap much in what they catch. In consolidating 

weakness classes found by five tools Martin [6] reported 

little overlap: few weaknesses were even caught by two 

tools. Currently the best approach, that is lowest false 

positive and highest identification rates over many 

weaknesses, is to use two or more tools as a combined 

metatool. 

What are the attributes of test cases? Small cases separate 

the question of "can this be detected" from "how scalable is 

the tool". On the other hand, large programs allow 

examination of speed and maximum size and exercise a 

tool in a more realistic situation. Having one weakness in 

each test case makes analysis of the result easier, but 

having multiple weaknesses in one program should be more 

challenging. It is straightforward to write code with known 

weaknesses, whereas extracting examples from production 

code disarms the objection that it is unrealistic. Trying to 

find an instance of a weakness and extracting a slice of 

code could take excessive amounts of time. Even with the 

slice, we would have to secure permission to make it 

publicly available. 

Currently our test cases are very small, purpose written 

code with one weakness per case. For measuring the false 

positive rate we also have cases without weaknesses or in 

which weaknesses have been fixed. 

Sharing example code 

While researching source code security analyzers, we found 

it difficult to get a corpus of code with known weaknesses. 

Although academicians develop them for research, 

companies have some for testing, and evaluators assemble 

them, few were available. We felt a single repository of 

such could be helpful to the entire community. Not only 

would it provide a place for us to keep and publish our test 

cases, it would allow people to share the work they've 

done. 

The SAMATE Reference Dataset (SRD) [10] is an on-line, 

publicly available repository of thousands of samples of 

flawed software. Each test case consists of one or more 

files. Test cases may consist of source code, byte code, 

binaries, requirements, or other artifacts. 

Each test case may have explanatory information 

associated with it, for instance, the author or contributor, 

the date submitted, language, which flaw(s) it exhibits, and 

a description. In addition, test cases may have directions on 

how to compile and link source code, input that triggers the 

flaw, or expected output. Registered users can submit test 

cases and add comments to any test case. 

For historical stability, the content of test cases will never 

be updated. If the code in a test case needs to be fixed or 

improved, a new test case will be added, and the status of 

the existing test case will be changed to "deprecated". 

Deprecated status advises against using the case for new 

work. This way, a test report referring to a certain test suite 

can be rerun exactly, even years later. 

Methods to minimize test evasion 

A fixed, public test set allows for various abuses. A tool 

developer may write special-purpose code to get the right 

result for a very special case. This diverts effort from 

general improvements and incorrectly raises ratings. More 

simply a developer may add code to recognize the case, 

perhaps the name and size of the file, and hard-code the 

right result. 
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We see several ways to minimize such distractions. Easiest 

is to keep the test set secret. The test set would only be 

shared with parties trusted to keep it private. Practically a 

public version would be needed to allow others to examine 

and critique the tests and to allow vendors to practice. Even 

with a public version, it might be difficult to convince tool 

developers that the private tests are fair and reasonable. 

Another possibility is to develop a test generator that 

creates unique test sets on demand. The challenge with this 

approach is to ensure that every test set generated is similar 

in its testing power. Adding code from production 

applications or getting large pieces of code would be hard. 

We are writing an obfuscator to discourage developers 

from having their program recognize tests and return pre-

determined answers. At a minimum the obfuscator must 

change source code file names. The next level is to change 

comments and names in the source code, such as variable 

and function names. Although very hard in general, the 

obfuscator only needs to work on the test suite. 

Since most source code analyzers already have powerful 

abstraction capabilities, they could store signatures of 

abstract syntax trees and return prepared responses when 

one is recognized. To foil this, the obfuscator could insert 

benign code or rearrange existing code. Rather than 

requiring full code rewriting capabilities in the obfuscator, 

test cases could be in some preprocessed form or have 

"hints" stored. In this case, a macro processor could 

generate many different versions of the test set. Developers 

still might be tempted to add special case algorithms to 

improve results. 

3   Do tools really help? 

One can think of several potential problems with the use of 

such tools in practice. A tool may report many weaknesses, 

but miss the small number of serious weaknesses that really 

affect security. If a user takes a mechanical approach to 

fixing weaknesses reported by tools, programmers may not 

think as much about the program logic and miss more 

serious vulnerabilities. Also, the developer may spend time 

correcting unimportant weaknesses reported, making other 

mistakes in the process and not having as much time for 

harder security challenges. Recognizing such problems, 

Dawson Engler [4] articulated the question: "Do static 

source code analysis tools really help?" 

Funded by the US Department of Homeland Security, 

Coverity, in collaboration with Stanford University, has 

analyzed over 50 open-source projects since March 2006 

[1]. As an example, they reported over 600 defects in 

Firefox and 98 defects in Python. At least one security 

vulnerability was detected: CVE-2006-0745. Others have 

similar, although smaller, scans. Maintainers may use these 

reports to fix previously unknown vulnerabilities. By 

studying these, we may be able to support or refute Engler's 

question. 

We are examining the history of reported vulnerabilities for 

the projects scanned by Coverity. We use reported 

vulnerabilities as a surrogate measure for actual 

vulnerabilities. The null hypothesis is that there is no 

change in the number of reported vulnerabilities after the 

start of scanning. We give preliminary results we have for 

one project, MySQL. 

Coverity scanned MySQL version 4.1.8 in early 2005. 

Version 4.1.10, released 15 February 2005, contained fixes 

based on Coverity reports. Figure 1 compares vulnera-

bilities discovered in version 4.1.10 or later versions with 

vulnerabilities discovered before the 15 February release. 

"Discovery" means it was reported in the National 

Vulnerability Database (NVD) [8].  

Red bars, on the right, are vulnerabilities discovered in 

version 4.1.10 or later. They are grouped by discovery date. 

As the discovery date, we used the earlier of the discovery 

date in the NVD and in the SecurityFocus database [15]. 

Our data covers 21 months after the release of version 

4.1.10. The light blue bars, on the left, are vulnerabilities 

discovered before the release. We began 21 months before 

the release, that is May 2003. Vulnerabilities discovered 

after 15 February 2005 that were only present in versions 

before 4.1.10 were not used. 
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Figure 1  MySQL vulnerabilities before and after 4.1.10 

The data is insufficient to draw any conclusions. We are 

trying to take confounding factors into account, and we are 

analyzing similar data from other projects to accumulate a 

statistically meaningful set. 

4 Future directions 

We are planning several studies to answer questions such 

as the following. How does one tool's assessment correlate 

with another tool's assessment? What is the subject of a 

metric, that is, does it apply to the algorithm, an 

implementation, or an execution trace? 

We are currently working on specifications and tests for 

web application scanners. The next class of tool we will 

work on is binary analyzer. We are also guiding efforts to 

formalize descriptions of weaknesses. Although formal 

description will have many uses in the long term, our 

immediate application is a test case generator. The 

generator uses the descriptions to produce example code. 

We are looking for collaborations. In particular, we need a 

few more people to serve on our technical advisory panel, 

which meets once or twice a year to suggest where we 

might be of most help in the future. We also seek 
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participants in focus groups to review specifications and 

test plans for classes of tools. 

In the long term we plan to go beyond tools, especially 

checking tools. Society must move beyond a catch-and-

patch approach. We will help develop metrics to gauge 

more secure languages, good processes, environments, etc. 

We want to help demonstrate what really improves 

software security. 
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