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ABSTRACT 

A simple technique to estimate the position of a mobile node 
inside a building is based on the Received Signal Strength 
(RSS). In a previous publication, we investigated the 
feasibility of using circular array antennas and beamforming 
in order to enable an access point to estimate the position of a 
mobile inside a building. The approach utilized the two 
dimensional information (i.e. RSS for various azimuth 
directions) that is captured in a priori measured radio map. 
Generating these radio maps is not only extremely labor-
intensive and time consuming but also sensitive to changes in 
the environment and possible source of interference. It would 
be interesting to find out if a deterministic propagation model 
such as ray tracing can be used to construct a radio map that 
effectively replaces the off-line manual measurements. In this 
paper, we investigate this issue and provide a novel 
positioning methodology that exhibits acceptable 
performance without the need for extensive set of 
measurements in the off-line mode. The performance for 
various parameters and building model accuracy will be 
presented and discussed.     

I. INTRODUCTION 

In recent years, technologies that find the location of mobile 
sources inside buildings are becoming an attractive area of 
research and development. A significant application of such 
technologies is in emergency situations where it is important 
to be able to locate or track the movements of the first 
responders inside closed environments. More commercial and 
public safety applications are also emerging every day.  
       A simple technique to estimate the position of a given 
source is based on the Received Signal Strength (RSS). RSS 
is attractive because it is widely applicable to wireless sensors 
or local area networks and does not require sophisticated 
localization hardware. The general philosophy in this 
approach is to establish a one-to-one correspondence between 
a given position and the average received signal strength from 
at least three access points with known locations. One such 
system that has been implemented on the existing wireless 
local area network infrastructure is RADAR [1]. There are 
two main phases in the operation of this system: an off-line 
phase (i.e. data collection or training phase) and an online 
phase (i.e. mobile position estimation). In the off-line phase, a 
“Radio Map” of the environment is created. A “Radio Map” 
is a database of locations throughout the environment and 
their corresponding received signal strengths from several 
access points. In the on-line phase, access points measure the 
received signal strength from the mobile, and then search 
through the Radio-Map database to determine the best signal 
strength vector that matches the one observed. The system 

estimates the location associated with the best-matching 
signal strength vector (i.e. nearest neighbor) to be the location 
of the mobile. This technique essentially calculates the 2L  
distance (i.e. Euclidean distance) between the observed RSS 
vector and the entries in the set defined by the radio-map. It 
then picks the vector that minimizes this distance and declares 
the corresponding physical coordinate as the estimate of the 
mobile’s location.  
       The main drawback of the RSS-based techniques such as 
RADAR is the need for a measurement-based training phase, 
during which the radio map of the environment is created. 
This map essentially contains the received signal strengths 
from all reference nodes throughout the environment. The 
process to generate a radio map is not only labor-intensive 
and costly but also very sensitive to changes in the 
environment and possible sources of interference in the 
building.  
       A simple alternative to generate the radio map for RSS-
based positioning systems is using an appropriate propagation 
model instead of the actual measurements. For example, 
deterministic channel models such as ones based on ray-
tracing are a good candidate for this problem. However, in 
these models, only simple high-level building information 
such as layout is used and other detail information about the 
environment such as the exact radio properties of the walls, 
and other obstacles affecting the RSS such as furniture are 
often ignored. The accuracy of the predicted signal strengths 
can be highly dependent on this detailed information which is 
almost impossible to capture in the model. Therefore, the 
performance of the positioning system will depend on the 
model’s detail.  
       In a multipath environment, such as indoor, the mobile 
receives the transmitted signal from many directions due to 
possible reflections, diffractions and scattering phenomena. In 
[2], we showed that any information pertaining to the angular 
distribution of power can be used to increase the accuracy of 
a RSS-based localization methodology. In particular, an 
access point with an antenna that has beamforming capability 
can measure the signal strength in different directions to form 
a Spatial Power Spectrum (SPS) that can be used for position 
estimation. We showed that by using a more generalized and 
sophisticated radio map that contains received signal strength 
information from various directions, the system would have 
the capability of estimating the mobile position with fewer 
access points and higher accuracy.  
       In this paper, we extend our work in [2,10] and propose a 
positioning methodology that reduces the dependence of the 
system on the existence of an accurate radio map that has 
been obtained through rigorous measurement. The new 
methodology takes advantage of a ray-tracing tool that can 
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create an approximate radio map of the environment. 
Assuming only one access point, this approach exhibits good 
performance even in presence of 4 dB of error in the 
estimated RSS. Increasing the number of access points will 
increase the robustness of the positioning system against 
imprecision in the radio map.  

       Section 2 will describe our proposed positioning 
approach. Modeling the error in the estimated RSS by the ray-
tracing tool is discussed in Section 3. System performance is 
provided in Section 4 and finally concluding remarks and 
future plans are expressed in Section 5. 

II. APPROACH 

Consider a simple system consisting of an Access Point (AP) 
and a mobile node inside a building. Assume that the grid of 
points Niyx ii ,....,2,1),( =  cover the entire building layout 
with a known resolution. If the mobile’s coordinate is 

),( ** yx  then the objective of the positioning system is to 
estimate the mobile’s location by finding the closest grid 
point to the mobile’s coordinate. In other words, find ‘ k ’ 
where 

),(),(minarg ** yxyxk iii −= . 

 
Assume that the mobile node is a simple transmitter with an 
omnidirectional antenna and known transmit power ‘ P ’. The 
AP is a receiver that is equipped with a circular array antenna 
with beamforming capability. In this way, the RSS in any 
given direction can be measured by electronically rotating the 
main lobe of the antenna pattern to the desired direction. 
Define )(θAPRSS  to be the RSS from the mobile at the AP 
when the main lobe of its antenna is pointing at azimuth 
direction θ  (Fig. 1a). Also, as shown in Fig. 1b, define 

),( ii yxRθ  to be the received signal strength from the AP at 
the grid point ),( ii yx  when the AP transmits a signal 
identical to the mobile (i.e. same power and frequency). If 

),( jj yx happens to be the same as ),( ** yx (i.e. actual 
coordinate of the mobile node), then due to symmetry in the 
propagation of radio waves, we should have: 
 

)(),(),( ** θθθ APjj RSSyxRyxR ==  
 

Now define ),(ˆ
ii yxRθ  to be the received signal strength from 

the AP at the grid point ),( ii yx  estimated by a deterministic 
model such as ray-tracing. There will be a difference between 
this estimate and the actual value of the RSS. Define the 
“error” in the estimated RSS at grid point ),( ii yx to be the 
absolute value of this difference. In other words, if 

),( ii yxEθ denotes this error, then: 
 

),(ˆ),(),( iiiiii yxRyxRyxE θθθ −=  
 

The value of this error in dB can be modeled as a Normal 
Random Variable with intensity σ  and mean µ . A brief 
overview of the corresponding derivation has been provided 
in the Appendix. 

AP
MobileMain lobe

Side lobe

θ

Transmission Power: P)(θAPRSS

AP
MobileMain lobe

Side lobe

θ
Main lobe

Side lobe

θ

Transmission Power: P)(θAPRSS  
(a) 

AP
MobileMain lobe

Side lobe

θ

Grid pointXTransmission Power: P
),( ii yx

),( ii yxRθ

AP
MobileMain lobe

Side lobe

θ
Main lobe

Side lobe

θ

Grid pointXTransmission Power: P
),( ii yx

),( ii yxRθ

 
(b) 

Fig. 1: RSS from (a) Mobile to AP (b) from AP to a grid point 
 

NiyxR ii ,....,2,1),(ˆ =θ can be calculated by the ray-tracing 
model and the results can be saved in a database to form an 
estimated radio map of the environment.  
 
Our approach in estimating the mobile’s coordinate is to build 
a likelihood map for every θ , and then combine the 
information on all such maps to estimate the position of the 
mobile. A likelihood map, as the name implies, should 
highlight the likely positions of the mobile. Quantitatively, a 
likelihood map is basically a collection of Likelihood Scores 
(LS) for each grid point. Likelihood score at the grid point 

),( ii yx is defined as follows: 

)(),(
1),(

θθ
θ

APii RSSyxR
yxLS

−
=  

This is equivalent to: 

),()(),(ˆ
1),(

iiAPii

ii
yxERSSyxR

yxLS
θθ

θ
θ +−

=  

 
The mobile is likely to be close to grid points that have a high 
likelihood score. So, for each likelihood map, the set of grid 
points with the highest likelihood scores determine possible 
positions of the mobile inside the building. Figure 2 displays 
an example of a likelihood map for the building layout shown 
in Figure 4. The peaks in the 3-D plot display the likely 
positions of the mobile. By judiciously combining 
information for all likelihood maps, a single grid point can be 
found that represents the estimated position of the mobile. We 
propose the following approach to estimate the mobile’s 
position. Define the Total Likelihood Score (

ATLS ) at grid 
point ),( ii yx as: 
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∑
=

θ
θ ),(
1),(

ii
iiA yxLS

yxTLS  

The grid point with the highest TLS is the mobile’s estimated 
position i.e. ),( kk yx where ‘ k ’ is 
 

),(maxarg iiAi yxTLSk =  

 
Fig. 2: Example of a likelihood map showing possible 

positions of the mobile 
 
The total likelihood map is then the collection of total 
likelihood scores for all grid points. An example of a total 
likelihood map for the same layout is shown in Figure 3.  

 
Fig. 3: Example of the total likelihood map showing the 

estimated position of the mobile 

III. MODELING THE ERROR IN ESTIMATED RSS 

At indoor environments, the radio wave may travel through 
various obstructions such as walls, doors and furniture before 
reaching the mobile. Since, it is almost impossible to create a 
precise replica of the environment for the ray-tracing tool 
(including radio properties of all obstructions); it is valuable 
to have a model that can account for the difference between 
the average RSS estimates made by ray-tracing and actual 
measurement.  
       The difference in the average received signal strength 
(when measured in decibels) between the ray-tracing 
prediction and actual measurement (i.e. ),( ii yxEθ ) can be 

modeled by a Normal random variable (see Appendix). We 
will assume that the mean of the corresponding distribution is 
zero; therefore, crude calibration of the ray-tracing tool might 
be needed to ensure this property. We refer to the variance of 
this normal distribution as “error intensity”. We will 
investigate the performance of the positioning algorithm for 
various error intensities.  
       In order to do so, we need to generate sample realizations 
of ),( ii yxEθ for different values of error intensity.  However, 
these realizations should be correlated for different θ . 
Consequently, we need a method to generate angle-dependent 
correlated Gaussian random variables. To do this, we follow 
the methodology outlined in [5,6]. If ],....,,[ 21 NxxxX =  is a 
random vector containing uncorrelated Gaussian random 
variables ix , then random vector ],....,,[ 21 NyyyY =  (with 

correlated Gaussian random variables iy ) can be generated 
by using a matrix C as 

XCY = . 
C is a matrix of weight coefficients satisfying the following 
relation: 

TCC=Γ  
In other words, C is the Cholesky factorization of Γ , where 
Γ is the correlation matrix of random vector Y  i.e. 
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ijρ  is the angular cross-correlation function of the error in the 
average RSS estimates. We propose the following 
exponential decaying function to model the cross-correlation. 
 

2ln
cor

ji

eij
θ

θθ

ρ
−

−

=  
 

Nii ,....,2,1=θ is the direction of the main lobe of the 
antenna pattern at the AP. Given an angular rotation step-size 
of δ , we will have δπ /2=N . corθ  is called the de-
correlation angle and corresponds to the angle at which the 
correlation drops to 50%. We have considered a range of 10° 
to 45° for corθ . Similar distance-dependent correlation 
functions have been reported for outdoor systems [7,8]. 

IV. SYSTEM PERFORMANCE 

To evaluate the performance of our proposed positioning 
algorithm, we used WiSE. WiSE (i.e. Wireless System 
Engineering) is a ray-tracing tool that has been developed and 
verified by Bell Laboratories [3,4]. For each θ , we simply 
used WiSE to estimate values of RSS for all grid points in 
order to build an estimated radio map of the environment. We 
made sure that the antenna pattern at the AP is the same 
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pattern that is generated by beamforming with a circular array 
antenna. For the building layout shown in Fig. 4, we 
conducted extensive simulations to obtain the system 
performance. Transmission frequency was set at 2.4 GHz. We 
have studied the effect of many parameters such as grid 
resolution, de-correlation angle ( corθ ), rotation step-size (δ ), 
number of APs, number of the array elements at the AP and 
error intensity; however, for brevity, we only present the main 
performance results in the following. Fig. 5 represents the 
average error in the estimated position versus number of the 
antenna array elements at the AP for various error intensities. 
Higher number of elements at the AP will increase the 
resolution of the beamformer; which along with an 
appropriately chosen δ  can enhance the positioning accuracy. 
As observed in Fig. 5, average error of about 2 meters is 
achievable with 10 elements or higher even when there is 4dB 
of error in the estimated RSS by the ray-tracing tool.  

Mobile

●

Mobile

●

 
Fig. 4: Building layout showing the location of the mobile, 

AP and grid points 

Fig. 6 displays the Cumulative Distribution Function (CDF) 
of position error for 500 randomly distributed mobile test 
location and various error intensities. For error intensities less 
than or equal to 4 dB, average error less than 3m is achievable 
with probability 0.9.  
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Fig. 5: Performance for various error intensities and array 

elements ( corθ =10°,δ =5°, Grid Resolution=0.5 m) 
 

       For error intensities up to 4 dB, it seems that using only 
one access point can lead to reasonable accuracy for most 
applications. For higher error intensities, more number of 
access points can greatly help in reducing the average error in 

the estimate position. Fig. 7 demonstrates this point. As 
observed, using 3 access points for the layout in Fig. 4 leads 
to a very good performance even in the presence of 8dB 
modelling error. 
  
       We also investigated other approaches to calculate the 
Total Likelihood Score, e.g. 

BTLS  as shown below; however, 
we did not observe a significant change in performance. 
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Fig. 6: CDF of error for various error intensities 
( corθ =10°,δ =5°, Grid Resolution=0.5 m, Array 

Elements=12) 
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Fig. 7: Performance vs. error intensity for various number of 

access points ( corθ =10°,δ =5°, Grid Resolution=0.5 m, 
Array Elements=12) 

V. CONCLUSION 

The underlying philosophy in this paper is that exploiting the 
information in the angular distribution of RF energy around a 
receiver could result in methodologies that are robust against 
propagation modeling error i.e. ray-tracing. Efficient and 
custom implementation of such ray-tracing tools integrated 
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with appropriate positioning algorithm, such as the one 
proposed here, can lead to a complete system that is quickly 
deployable in any given environment. 
       Throughout this paper we have considered the case where 
the stationary access point with the circular array is the 
receiver and the mobile is the transmitter. If there are many 
transmitters available, a multiple access scheme has to be in 
place to differentiate between the signals of different 
transmitters. It is also possible to consider the case where the 
mobile is the receiver with circular array antenna capable of 
beamforming. In this case, many mobiles can estimate their 
locations simultaneously without the need for a multiple 
access scheme. More studies need to be done before such 
systems can have widespread applications in our daily life.  
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VI. APPENDIX: MODELING THE RAY-TRACING 
PREDICTION ERROR 

At indoor environments, the radio wave transmitted by the 
source node travels through different obstructions such as 
walls, doors, bookshelves, etc. Each one of these obstructions 
can be characterized by its own signal attenuation constant 
and thickness [9]. Suppose that the ith  obstruction has an 
attenuation constant of iα  and thickness ir , also suppose that 
the power of the wave entering (and exiting) an obstruction is 

1−iE (and iE ) respectively, then 
)exp(1 iiii rEE α−= −  

 
If the knowledge of the exact values of  iα  and ir  is not 
available, for example when using a propagation model like 

ray-tracing, then there will be an error in the estimated power 
of the signal passing through the obstruction. 

)exp(ˆ
1 iiiii rEE εα +−= −  

Where iÊ  is the estimated signal power after the obstruction 
and iε  is the error component due to the partial knowledge of 
the attenuation constant and thickness. Since the signal passes 
through many obstructions (e.g. n ), the total predicted RSS 
(i.e. nÊ ) can be expressed by: 

)exp(ˆ
11

0 ∑∑
==

+−=
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i
i

n

i
iin rEE εα   (1) 

Also, since iε  varies randomly from obstruction to 
obstruction, if we consider the number of obstructions to be 
large enough (i.e. ∞→n ), then by using the central limit 

theorem, we can state that the random variable ∑
=

=∆
n

i
i

1
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a Normal distribution )(xp  such as  
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Where ∆m  and ∆σ are the mean and variance of the random 
variable∆ . Now define the random variable Y by 

)exp(log()ˆlog(
1

0 ∑
=

−−=
n

i
iin rEEY α  

Y basically describes the difference (in dB) in the received 
power estimated by the ray-tracing model and the received 
power expected in reality. Using equation (1), we will get 

eeY
n

i
i loglog)(

1
∆== ∑

=

ε  

Therefore, the mean, variance and probability density 
function of Y can be expressed by the following Normal 
distribution. 

emmM YY loglog ∆== ,   eYY loglog ∆== σσσ  
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Therefore, the difference in the average received signal 
strength between the ray-tracing prediction and actual 
measurement can be modeled by a Lognormal distribution. 
Here, we will assume the mean YM  to be zero, while we 
investigate the system performance for various error 
intensities 2

Yσ . 


