
 1

Towards Understanding of Complex Communication 
Networks: Performance, Phase Transitions & Control  

V. Marbukh 
National Institute of Standards and Technology 

100 Bureau Drive, Stop 8920 
Gaithersburg, MD 20899-8920 

E-mail: marbukh@nist.gov 
 

Abstract 

The paper discusses a possibility of phase transitions and metastability in various types of complex communication networks as well as 
implication of these phenomena for network performance evaluation and control.  Specific cases include connection-oriented networks with 
dynamic routing, TCP/IP networks under random flow arrivals/departures, and multiservice wireless cellular networks.  Despite reasons for 
phase transitions and metastability in different types of networks may differ, a number of similarities suggests a possibility of unified theory of 
complex networks.  The microscopic description (statistical physics) of the complex networks is given by a Markov process with a large number 
of locally interacting components.  The relation between microscopic and macroscopic descriptions of complex networks is analogous to the 
relation between statistical physics and thermodynamics of physical systems.   

I. INTRODUCTION 
As the size and complexity of the existing and emerging communication networks grow, understanding, and especially 

controlling, network behavior is becoming more and more of a challenge.  The microscopic behavior of communication network 
often can be described by a Markov process ))(),..,(()( 1 tntntn K=  with a large number of locally interacting components 

Kktnk ,..,1),( = .  Even assuming that the number of possible states kN  of each component Kktnk ,..,1),( =  is finite, 

process ))(),..,(()( 1 tntntn K=  is homogeneous in time and irreducible, and thus ergodic, very large number of process 

))(),..,(()( 1 txtxtx K=  states KNNN ××=Σ ..1  creates a possibility of metastable, i.e., persistent, states on the time scale of 
practical interest.  This possibility is not just of theoretic interest, since metastability has been observed in real large-scale 
networks.  The possibility of metastability has a number of important practical implications for analytical and simulation-based 
performance evaluation as well as for system control.   

Implications for analytical performance evaluation include limitations of power series expansion techniques due loss 
singularities, which manifest themselves as abrupt and catastrophic changes in the network behavior with small change in the 
exogenous parameters.  Since only very limited classes of networks can be evaluated analytically or numerically, it is often argued 
that simulation is a general approach to performance evaluation of complex networks.  A possibility of phase transitions and 
metastability, however, may make interpretation of the simulation results a tricky proposition.  Implications of metastability for 
simulation-based performance evaluation include necessity of exploring space of the initial conditions, since one simulation run 
may reveal only metastable state(s), corresponding to the simulation initial conditions.  Due to inherent infeasibility of exploring 
of the entire space of possible initial conditions in a high-dimensional phase space of a complex system, there is no guarantee that 
simulation would reveal all desirable and undesirable metastable states.   Implications for complex systems control include 
necessity of keeping the system in a close neighborhood of the most desirable metastable state, since typically different metastable 
states have different desirability. 

 The paper is organized as follows.  Section II introduces and discusses a model of complex networks: a Markov process with 
a large number of interacting components, while Sections III, III and IV discusses specific cases of connection-oriented networks 
with dynamic routing, TCP/IP networks under random flow arrivals/departures, and multi-service mobile cellular networks 
respectively,. 

II. MULTI-COMPONENT MARKOV PROCESSES (REF. [1]) 

Consider homogeneous in continuous time 0≥t , K -component Markov process ))(),..,(()( 1 tntntn K
K

KK =  with finite 

number KN  of states.  Probability distribution })({Pr),( ntnobntP ==  is uniquely determined by the corresponding 
Kolmogorov equations and normalization conditions, given initial distribution ),0( nP .  Under our assumptions process )(tn  is 



 2

ergodic, i.e., unique steady-state distribution exists: ),(lim)( ntPnP
t ∞→

=  for any initial distribution ),0( nP , and the steady-

state distribution )(nP  is the unique solution to the corresponding steady-state Kolmogorov linear algebraic equations 
supplemented with the normalization condition.  Moreover, convergence to the steady-state distribution is exponential in time: 

tnenAnPntP )()()(),( χ−≤− , where constants )(nA  and )(nχ  are independent of time t , but may depend on the initial 

state nn =)0(  of the process )(tn . 

Since ∞<= )(max nAA
n

)
 and 0)(min >= n

n
χχ( , it is possible to obtain the following uniform with respect to the initial 

state nn =)0(  exponential convergence: teAnPntP χ() −≤− )(),( .  The problem, however, is that constant χ(  generally 

depends on the number of process )(tn  states ΣN , and as the number of states increases: ∞→ΣN , it is possible that  rate of 
convergence to the steady-state distributions approaches zero: 0→χ( .  In a case of a Markov process 

))(),..,(()( 1 tntntn K
K

KK =  describing a system with K  interacting components KktxK
k ,..,1),( = , the number of process 

))(),..,(()( 1 tntntn K
K

KK =  states KNNN ××=Σ ..1  is astronomically high even for moderate number of interacting 

components K .  This reconciles ergodicity of Markov “micro process” ))(),..,(()( 1 tntntn K
K

KK =  with possibility of 
metastability.   

From the perspective of linear algebraic Kolmogorov equations, metastability and phase transitions correspond to a situation 
when as the number of states increases: ∞→ΣN , the minimum eigenvalue associated with the corresponding steady-state 
Kolmogorov system approaches zero, causing singularity of the Kolmogorov system.  This singularity reconciles ergodicity of 
Markov “micro process” ))(),..,(()( 1 tntntn K

K
KK =  with possibility of phase transitions, which are the abrupt and catastrophic 

changes in the steady-state distribution with a small variation in the exogenous parameters.   There are two possible frameworks 
for addressing the issues of phase transitions and metastability in complex systems.  One framework is based on asymptotic 
investigation of Markov process ))(),..,(()( 1 tntntn K

K
KK =  as the number of components increases ∞→K .  Another 

framework defines and investigates the limiting process ),..)(()( 1 tntn ∞∞ =  directly [1]. 

III. CONNECTION-ORIENTED NETWORKS WITH DYNAMIC ROUTING (REF. [2]-[6]) 

Consider a network with I  nodes },..,1{ Ii ∈  and link Ll ∈  with capacities lC .  Due to limited space consider a single-

service network, where all flows require the same bandwidth b , so that link l  of capacity lC  can carry at most 

,..}1,0,:max{ =≤= mbCmmM ll  flows.  For each origin-destination pair ),( jis =  flows arrive according to a Poisson 

process with rate sΛ .  The duration of each flow is distributed exponentially with average µ1 .  We will characterize the 

network state by vector ),( Rrnn r ∈= , where rn  is the number of flows in progress on route r , and R  is the set of all 
feasible routes in the network.  A flow with origin-destination ),( jis =  arriving when the network state is n , is admitted on a 

feasible route sRr ∈   with origin-destination ),( jis =  with probability ),( nsqr  and rejected with probability 

∑ ∈
−=

sRr r nsqnsq ),(1),(0 .  Thus, set of conditional probabilities )},({ nsqr , which should satisfy obvious self-consistency 

conditions, determines dynamic admission and routing strategies.  Given probabilities )},({ nsqr , vector )),(()( Rrtntn r ∈=  
is a homogeneous in time, ergodic Markov process with finite number of states.  The network performance is characterized by 
unconditional blocking probabilities for a flow with origin-destination s : )],([)( 0 nsqEs n=π .  A multi-component nature of 

process )),(()( Rrtntn r ∈=  creates a possibility of phase transitions and metastability.  Macro description of process 

)),(()( Rrtntn r ∈=  can be developed based on approximation of chaos propagation: 

                                                                            ∏≈
l

lmtPmtP ),(),(                                                                                         (1) 
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where the number of flows carried on a link l  is ∑ ∈
=

rlr rl tntm
:

)()( .  Approximation (1) leads to non-linear mean-field 

equations, and bifurcations of these equations are associated with phase transitions and metastability. 
 

IV. TCP/IP NETWORKS UNDER RANDOM FLOW ARRIVALS/DEPARTURES (REF. [7]-[10]) 
Flow level Markov model of fair bandwidth sharing under fluctuating demand has been proposed in [7] for a case of file 

transfer flows and then in [8] for a case of mixture of file transfer and streaming flows.  These Markov models assume separation 
of time scales: given numbers of flows in progress, bandwidth sharing protocol reaches the equilibrium much faster than the 
numbers of flows in progress change due to flow arrivals/departures.  Stability under condition that each link can accommodate its 
average load had been established in [8]-[9].  Following [8], assume that the network carries file transfer and streaming flows.  
Introduce vector ),( 21 nn , where )( 11 rnn =  and )( 22 rnn =  are the vectors of the numbers of file transfer and streaming flows, 
respectively, carried on all feasible routes Rr ∈ .  Consider a network with I  nodes },..,1{ Ii ∈  and link Ll ∈  with capacities 

lC .  We assume that file transfer and streaming flows arrive at a route Rr ∈  according to Poisson process of rate r1Λ  and r2Λ  

respectively.  The size of a file arriving on a route Rr ∈  is distributed exponentially with average rb , and the holding time of a 

streaming flow arriving on a route Rr ∈  is distributed exponentially with average rτ .  All flow arrivals, file sizes and holding 
times are jointly statistically independent. 
 We assume separation of time scales: given vector 21 nnn +=  of numbers of flows in progress )( rnn =  where 

rrr nnn 21 += , the TCP flow control protocol reaches equilibrium bandwidth sharing much faster than the numbers of flows 
change due to flow arrivals/departures.  Under this assumption numbers of flows in progress can be approximated by a 
homogeneous in time 0≥t  Markov process ))(),(( 21 tntn .  Under fluid regime [8]: 

                       0;;;2,1);1(,;; 11 →∈∈====Λ −− ελελε RrLliOccC lirlrlririr                                                (2) 

The following system of ordinary differential equations describing evolution of the vector ),( 21 ηη , where ),( Rriri ∈= ηη  and 

irir nεη = , has been derived in [8] 

                                                    )(),( 21
21

11
2111 ηη

ηη
ηηηλη +
+

−= −
r

rr

r
rrr xb&                                                                            (3) 

                                                    1
22122 ),( −−= rrrr n τηηλη&                                                                                                           (4) 

In (3)-(4) the bandwidth allocated to a flow carried on a route Rr ∈  is )( 21 ηη +rx , and it is assumed that arrivals rates depend 

on the numbers of flows already in progress: ),( 21 ηηλλ irir = .  System (3)-(4) global stability under condition that each link 
can accommodate its average load had been established in [8]-[9].  However, these stability results for the Markov model and 
system (3)-(4) under fluid regime do not account for the bandwidth wasted on transmissions of “dead” file transferring packets 
which will be dropped downstream and then retransmitted [10].   

Probably, the simplest way to account for retransmissions is replacing throughput )( 21 ηη +rx  with the corresponding good-

put )()](1[)( 212121 ηηηηπηη ++−=+ rrr xg , where the end-to-end packet loss on a route Rr ∈  is )( 21 ηηπ +r .  This 

seemingly minor change drastically alters stability properties of the Markov process ))(),(( 21 tntn  due to deterioration of the 
good-put as the numbers of flows in progress increase.  The corresponding “good-put based” Markov model is unstable even 
under light average load, when the corresponding throughput-based models are stable.  The instability is a result of demand 
fluctuations: sufficient increase in the number of flows in progress causes increase in the packet loss, reducing good-put and 
further increasing number of flows in progress [10].  Despite instability, desirable meta-stable network state may still exist.  The 
network can be stabilized in a close neighborhood of this meta-stable state with appropriately designed flow admission strategy at 
the price of a small flow rejection probability.  Network over provisioning without flow admission control only reduces but not 
eliminates the instability region. 
 

V. MULTI-SERVICE MOBILE CELLULAR NETWORKS (REF. [11])  

Consider a cellular wireless network with set of cells L  serving S  classes of wireless users.  Cell Ll ∈  has capacity lC  

while each user of class Ss ,..,1=  requires capacity sb  and has exponentially distributed “life-span” sτ  with average 
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01 ss λτ = .  Numbers of users in different cells are described by vector ),..,1;,..,1,( LlSsnn sl === , where the number of 

users of class s  in cell l  is sln .  We assume that the feasible region for vector X  is as follows: 

                                                         
⎭
⎬
⎫

⎩
⎨
⎧ =≤= ∑

=

LlCnbnF l

S

s
sls ,..,1,:

1
                                                                                       (5) 

This assumption describes Frequency Division Multiple Access (FDMA) network, and under some assumptions can be justified   
for Code Division Multiple Access (CDMA) networks [11]. 
 We assume that new users of class Ss ,..,1=  originate in cell Ll ∈  according to a Poisson process of rate slΛ .  A new 

user originated in cell Ll ∈  is admitted with probability )(nslα  and rejected with probability )(1)( nn slsl αβ −= .  Each 

admitted into the network user of class Ss ,..,1=  performs a random walk over set of cells Ll ∈  during the user “life-span” 

),0[ sτ .  The random walk is described by Markov process )(tsξ  with set of states L , continuous time and transitional rates 

from cell Ji ∈  to cell iJj \∈  equal sijλ .  Under these assumptions vector ),..,1;,..,1),(()( LlSstntn sl ===  is a 
homogeneous in time multi-component Markov process with finite number of states.  Under some natural assumptions process 

)(tn  is irreducible and thus ergodic. 
Similar to a case of connection-oriented networks (1), steady-state macro description of process 

),..,1;,..,1),(()( LlSstntn sl ===  can be developed based on approximation of chaos propagation: 

                                                                             ∏≈
l

ll nPnP )()(                                                                                                (6) 

where vector ),..,1,( Ssnn sll ==  characterizes numbers of users in cell Ll ∈ .  In absence of admission control or when 

admission control is based only on the average (but not instantaneous) values of vector ),..,1;,..,1),(()( LlSstntn sl === , 

further simplification is possible: ∏
=

≈
S

s sl

x
sl

l
ll xZ

nP
sl

1 !
1)( ρ

, where normalization constant is ∑∏
∈ =

=
l

sl

Fx

S

s sl

x
sl

l x
Z

1 !
ρ

 and “effective 

loads” siρ  satisfy the corresponding “mean-field” equations.  Bifurcations of these, generally non-linear, mean-field equations 
can be naturally associated with phase transitions and metastability, predicted in [11].   
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