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Abstract— In previous work, we established a linear program-
ming framework to determine sensor location from measured
link distances between neighboring nodes in a network. Besides
providing greater accuracy compared to other techniques, linear
programs in particular suit large networks since they can be
solved efficiently through distributed computing over the nodes
without compromising the optimality of the objective function.
This work extends our framework to determine sensor location
from measured arrival angles instead. An extensive simulation
suite substantiates the performance of the algorithm according
to several network parameters, including noise up to 15% the
maximum error; the proposed algorithm reduces the error up to
84% depending on the noise level.

Index Terms— Convex optimization, Network localization

I. INTRODUCTION

The falling price and reduced size of sensors in recent years
have fueled the deployability of dense networks to monitor and
relay environmental properties such as temperature, moisture,
and light [1]. The ability to self-organize and find their loca-
tions autonomously and with high accuracy proves particularly
useful in military and public safety operations. In dense
networks, multilateration can render good location accuracy
despite significant errors in range estimates between sensors.
This has launched a research area known as sensor location
which seeks to process potentially enormous quantities of data
collectively to achieve optimal results. Most practical systems
require local distributed processing to cope with dynamic links
or nodes in motion to maintain a network updated; alterna-
tively relaying information across a large network sanctions
the centralized processing of obsolete data, limiting scalability.

The pioneering work in sensor location only used the link
distances between nodes measured through received signal
strength or arrival time [2], [3], [4], [5], [6], [7], however
received signal strength suffers from inaccuracies due to
multipath fading and arrival time often requires expensive
equipment or large overhead for synchronization between
nodes. Arrival angle offers an alternative measurement system
suited in particular to sensor nodes equipped with smart
antennas [8]. In time, many algorithms have incorporated
arrival angle to complement link distances [9], [10], [11],
[12], [13], [14], but to our knowledge only two consider angle
measurements alone: the first concentrates on sensors with
limited computational power, emphasizing rapid organization
rather than location performance [7]; the second formulates an

optimization program with requisite geometrical constraints
on the sensor locations [15]. In order to employ efficient
convex optimization techniques, the authors relax the original
quadratic constraints to semi-definite constraints. Furthermore
the approach requires a heuristic parameter whose value de-
pends on the size and geometry of the network, which if not
chosen carefully leads to an infeasible solution [16].

Along the lines of our previous work [17], this paper also
formulates an optimization program, however with convex
geometrical constraints on the arrival angles, necessitating no
relaxation of the original constraints and so furnishes a tighter
solution. Besides the exact solution, linear programming in
particular suits large networks since it can be solved through
distributed computing over the nodes without compromising
the optimality of the objective function [18].

The paper reads as follows: Section II formally states the
sensor location problem and the subsequent section proposes
an optimization program to solve it. In Section IV we show
how to reconstruct the sensor locations from the solution to the
program, followed by a section detailing an approach to refine
this solution. Section VI presents the results from an extensive
simulation suite to substantiate the robustness of our algorithm
to varying levels of noise and other network parameters, and
the last section provides conclusions and directions for further
research.

II. PROBLEM STATEMENT

Let a network contain two types of nodes: nA anchor nodes
(or anchors) with known location and nS sensor nodes (or
sensors) with unknown location, for a total of n = nA + nS

nodes. For simplicity, let the nodes lie on a plane such that
node i has location xi ∈ R2 indexed through i, i = 1 . . . nA

for the anchors and i = nA + 1 . . . n for the sensors. The set
N contains all pairs of nodes between which the link distance
dij is less than a network parameter R known as the radio
range, i.e. (i, j), i < j; ||xi−xj ||2 < R. The set M contains
all triplets of nodes which form a triangle in the network:
(i, j, k), (i, j) ∈ N ; (j, k) ∈ N ; (i, k) ∈ N .

Equipped with an omnidirectional antenna array or a di-
rectional rotational antenna [19], according Fig. 1 node i
measures the arrival angle θi

j from a neighboring node j
in the clockwise (or counter-clockwise) sense relative to its
bearing θi. Given these measured angles and the locations
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Fig. 1. The arrival angles, the interior angles, and the relative bearing of a
node.

of the anchor nodes in the network, this paper proposes a
solution to the problem first posed in [20] to find the locations
of the sensor nodes and their bearings in a reference coordinate
system.

III. ARRIVAL ANGLE CONSTRAINTS

The most effective approach to sensor location employs
convex optimization by placing geometrical constraints on the
link distances between neighboring nodes of the network [2],
[15], [17]. In the place of link distances, here we constrain the
arrival angles between neighbors instead. Denote the interior
angle θij = θji = |θk

i −θk
j | as the absolute difference between

the arrival angles from neighboring nodes i and j relative to θk

(see Fig. 1). Exploiting the triangular structure of the network,
the sum of the three interior angles of each triangle must equal
π. The optimization program we solve can be stated as follows:

min
∑

(i,j)∈N

|δi
j | + |δj

i |

s.t.

θjk

︷ ︸︸ ︷

θi
j − θi

k +

θik
︷ ︸︸ ︷

θj
k − θj

i +

θij

︷ ︸︸ ︷

θk
i − θk

j = π
θi

j − θi
k ≥ 0

θj
k − θj

i ≥ 0
θk

i − θk
j ≥ 0







, ∀(i, j, k) ∈ M

(1)
where θi

j = θ̂i
j +δi

j . The objective function minimizes the sum
of the absolute residuals αij between the measured angles θ̂i

j

and the estimated angles θi
j while the constraints ensure that

the latter conform to the requisite geometry of the physical
world.

The optimization program above can be converted to a linear
program in canonical form by removing the absolute signs and
introducing four bounding constraints:

dik
jk0

dij
djk

j

i

k

Fig. 2. Node k has a single connection to the network.

min
∑

(i,j)∈N

δi+
j + δi−

j + δj+
i + δj−

i

s.t. θi
j − θi

k + θj
k − θj

i + θk
i − θk

j = π
θi

j − θi
k ≥ 0

θj
k − θj

i ≥ 0
θk

i − θk
j ≥ 0







, ∀(i, j, k) ∈ M

δi+
j ≥ 0

δi−
j ≥ 0

δj+
i ≥ 0

δj−
i ≥ 0







, ∀(i, j) ∈ N

(2)
where θi

j = θ̂i
j + δi+

j − δi−
j . Let δ̃i

j be in the optimal solution
to (1) and let {δ̃i+

j , δ̃i−
j } be in any feasible solution to (2)

such that {δ̃i+
j , δ̃i−

j } ≥ 0 and δ̃i
j = δ̃i+

j − δ̃i−
j . Further let

δ̂i+
j = δ̃i+

j −min{δ̃i+
j , δ̃i−

j } and δ̂i−
j = δ̃i−

j −min{δ̃i+
j , δ̃i−

j };
now {δ̂i+

j , δ̂i−
j } are not only in a feasible solution to (2) since

{δ̂i+
j , δ̂i−

j } ≥ 0 and δ̃i
j = δ̂i+

j − δ̂i−
j , but are also optimal since

δ̂i+
j + δ̂i−

j ≤ δ̃i+
j + δ̃i−

j in its objective function. Moreover
since δ̂i+

j · δ̂i−
j = 0, then δ̂i+

j + δ̂i−
j = |δ̂i+

j − δ̂i−
j | = |δ̃i

j |,
proving the equivalence of (1) and (2) at optimality.

The advantage of our approach lies in the linear constraints
which ensure the convexity of the problem without relaxing
the original geometrical constraints. The linear program above
does not directly yield the sensor locations xi, i = nA+1...n,
but only the estimated arrival angles θi

j , (i, j) ∈ N . In
fact the complete algorithm requires an a posteriori location
reconstruction stage described in the following section to
furnish the locations of the sensors from these angles. Note
that (2) can be applied to the triangles formed in three-
dimensional networks as well; this paper does not treat the
reconstruction stage for such networks for the sake of brevity.

A. Additional arrival angle constraints
Case I: Consider node i in Fig. 2 with two neighboring nodes
j and k which themselves are not neighbors, i.e.
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(a) The geometry. (b) Location propagation throughout the network. (c) Reconstructed reference arrival angles and node bearings.

Fig. 3. Location reconstruction.

(i, j) ∈ N
(i, k) ∈ N
(j, k) /∈ N






⇒

dij < R
dik < R
djk ≥ R






⇒

djk > dij

djk > dik

}

.

While node i can estimate θjk = |θi
j − θi

k|, nodes j and
k cannot estimate θik and θjk respectively due to lack of
communication between each other, forfeiting the constraint
on the sum of the interior angles of 4ijk. Alternatively we
seek a constraint on θjk through the Law of Sines which states
that djk

dij
=

sin θjk

sin θij
, so djk > dij ⇒ sin θjk > sin θij . Since

sin θ increases monotonically in the interval 0 ≤ θ ≤ π for
which the interior angle θ is valid, then θjk > θij . It follows
that θjk > θik through the same reasoning. Now

θjk > θij

θjk > θik

}

⇒ 2 · θjk > θij + θik,

and substituing the inequality above into 2 ·θjk +θjk we have
3 · θjk > θij + θik + θjk, but θij + θik + θjk = π, so θjk > π

3 .

Case II: The triangle is the smallest polygon with non-trivial
interior angles and so provides the tightest constraints on
each by reducing the terms in the sum of its interior angles.
However if there exists a simple polygon of order m > 3
which cannot be decomposed into smaller triangles of the
network, include an additional constraint in the linear program
such that its interior angles sum to (m − 2) · π.

IV. LOCATION RECONSTRUCTION

The reconstruction stage yields the locations of the sensors
in the network from the arrival angles estimated through the
linear program (2). The stage originates at any two anchor
nodes (shaded) sharing a neighboring sensor node (unshaded),
as in Fig. 3(a). Given x1 = (x1, y1) and x2 = (x2, y2) and
θ12, θ13, and θ23, the following set of equations furnishes the
unknown location x3 = (x3, y3) with respect to the reference
coordinate system centered at x1 [6]:

(a) d12 =
√

(x1 − x2)2 + (y1 − y2)2

(b) d13 = sin θ13 ·
( d12

sin θ12

)

(c)

[
x′

3

y′

3

]

=

[
x1

y1

]

+

[
d13 · cos θ23

d13 · sin θ23

]

(3)

(d) φ = arctan

(

y2 − y1

x2 − x1

)

(e)

[
x3

y3

]

=

[
x1

y1

]

+

[
cosφ − sinφ
sinφ cosφ

] [
x′

3 − x1

y′

3 − y1

]

We say that the two anchor nodes propagate their locations
to the sensor node. Once the location of the sensor node
is known, it serves with another known sensor (or anchor)
to determine the location of an unknown sensor neighoring
the two. Following the propagation path from the originating
anchor pair in Fig. 3(b), n1 and n2 propagate their locations
to n3, n1 and n3 to n4, n1 and n4 to n5, and n3 and n4 to
n6.

Denote the reference arrival angle θ̊i
j as the arrival angle

at node i from a neighboring node j in the clockwise sense
relative to the reference coordinate system, as in Fig. 3(c).
Note that θ̊i

j =
˚
θj

i + π. The reference arrival angles can
be easily found during the reconstruction stage by tracing
their values through the interior angles from the origin of
the reference coordinate system. In the figure, θ̊1

2 = φ, θ̊1
3 =

φ + θ23 + π, and θ̊2
3 = φ − θ13 + π. Now to compute the

bearing of node i, simply subtract the estimated arrival angle
from the reference arrival angle as θi = θ̊i

j − θi
j .

A. Network topologies
Case I: In general network topologies, especially those with
low anchor density, no single sensor node neighbors any
two anchors, as in Fig. 4(a). Consider as an alternative the
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(a) The path n1 → n3 → n4 → n5 → n2 connects the two anchors. (b) Location propagation from x1 and x3 to x4, x5, and x2.

Fig. 4. Location propagation between anchors.

connection between the two anchors through the minimum-
hop path n1 → n3 → n4 → n5 → n2: here propagation
originates from one known anchor n1 and one unknown sensor
n3 rather than from an anchor pair. Since x3 is unknown, the
value of φ is also unknown; instead orient a relative coordinate
system centered at x1 along the line between n1 and n3, as
in Fig. 4(b). Now propagate x1 and x3 to x4, x5, and x2 as
described before, however rather than in terms of real values
and with respect to the reference coordinate system, here in
terms of the variables (x3, y3) and with respect to the relative
coordinate system. These locations assume the following form
with individual real-valued terms (dx, dy) computed pairwise
and stepwise through (3): (x4, y4) = (x1 + dx

14, y1 + dy
14),

(x5, y5) = (x4 +dx
45, y4+dy

45), and (x2, y2) = (x5 +dx
25, y5 +

dy
25), or compactly

[
x2

y2

]

=

[
x1 + d3P

y1 + d2P

]

, (4)

where d3P = dx
14 + dx

45 + dx
25 and d2P = dy

14 + dy
45 + dy

25

represent the distances from n1 and n2 respectively to the
imaginary point P in the relative coordinate system. Once the
propagation reaches n2, backward substitute (x2, y2) in (4)
to solve for the unknown values (x1, y1), which in turn yield
the locations of the other sensor nodes along the minimum-hop
path. Now that all nodes along the path have known neighbors
with which to propagate their locations to other unknown
sensors, propagation can continue as described previously.

Case II: To enable location propagation to it, a node must bear
connections from at least two nodes with known locations. For
node k in Fig. 2 with a single connection to the network, the
reconstruction problem is ill-posed given only the estimated
angle θjk and the reconstructed distance dij on the shown
propagation path to it. Assume djk = R to provide the third
component which completely specifies the triangle 4ijk and
allows reconstruction of xk.

B. Multiple location solutions
Scale remains the inherent drawback of using measured

angles for sensor location as opposed to measured distances:

while knowing the three link distances of a triangle identifies
it uniquely, knowing the three angles of a triangle merely
generates a family of similar triangles. Hence the constraints in
(2) are necessary for geometrical consistency, but not sufficient
to ensure a unique solution for the sensor locations since
they do not account for scale. In fact we shall see that the
reconstructed location depends on the propagation path chosen
from the originating anchor pair, where the scale of each
triangle is determined by the reconstructed distance common
to the preceding triangle on the path.

Consider the network in Fig. 5 as an example. There exists
buts one propagation path to sensor n3 from the anchor pair
(n1, n2): reconstruct x3 through the interior angles θ12, θ13,
and θ23 together with x1 and x2; the known distance d12

determines the scale of 4123 and in the process furnishes d13

and d23. In sequence, there exist two paths labeled a and b to
sensor n4: in reconstructing x4 through path a, d13 determines
the scale of 4134 and in turn renders location x

a
4 ; likewise, in

reconstructing x4 through path b, d23 determines the scale of
4234 and in turn renders x

b
4. Hence the angles estimated from

(2) may yield multiple solutions. Since each propagation from
the originating anchor pair accumulates location error due to
the sequential application of more and more erroneous angle
measurements, choose the minimum-hop path to the sensor to
reconstruct its location; if there exist multiple candidates with
minimum hops as in the figure, average the candidate recon-
structed locations and any associated reconstructed distances
into single values respectively.

V. LINK DISTANCE CONSTRAINTS

This section proposes a method to synthesize the multiple
location solutions inherent to measured angles into a unique
solution which ultimately proves more robust to noise. The
method employs the reconstructed distances given from the
previous section in the linear program taken from [17]:
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min
∑

(i,j)∈N

|αij |

s.t. dij + djk ≥ dik

dij + dik ≥ djk

djk + dik ≥ dij






, ∀(i, j, k) ∈ M

(5)

where dij = d̂ij + αij . The problem minimizes the sum of
the absolute residuals αij between the reconstructed distances
d̂ij and the estimated distances dij , provided that the latter
conform to requisite geometrical constraints. The approach
follows the one described in Section III, except that, as
explained in Section IV-B, the distance constraints are tighter
than the angle contraints and in turn yield a unique location
solution. Like (2), the linear program in (5) yields only the
estimated distances from which the final sensor locations are
reconstructed. The recontruction stage in [17] amounts to con-
verting the three estimated distances of each network triangle
to three estimated angles through the Law of Cosines and
proceeding as in Section IV, however now the reconstruction
is independent of the path chosen.

Hence the combined algorithm to estimate the arrival angles
in Section III and reconstruct the sensor locations in Section
IV effectively serves as an initialization step to this section.
If given additionally the measured distances as input to the
algorithm, then making d̂ij a weighted sum of the recon-
structed and measured distances offers a method to integrate
both measured arrival angles and measured link distances.

VI. RESULTS

In order to quantify the performance of our algorithm, we
conduct experiments on a network with the same structure
as in [15], [17], [18]. The network contains 50 sensor nodes
uniformly distributed throughout a 1 × 1 unit area. The
three parameters of the experiments vary as the number of

anchor nodes, the radio range, and the noise level in the
measurements. The measured angles are generated from the
ground-truth angles θ̄i

j by adding Gaussian noise as in [20].
So the algorithm accepts as input θi

j = θ̄i
j + N (0, σ),

where the standard deviation σ = noise · π is a fraction
of the maximum error π. Figure 6(a) illustrates an example
network with #anchors = 3, R = 0.25, and noise = 0.05.
The anchors and sensors appear as blue and cyan asterisks
respectively, and the links as blue lines between neighboring
nodes. The network contains 211 links for an average node
connectivity of 7.9623.

The two performance measures for an experiment are the
average relative angle error over all the measured angles

eθ =
1

2N

∑

(i,j)∈N

|θ̄i
j − θi

j |

θ̄i
j

+
|θ̄j

i − θj
i |

θ̄j
i

(6)

and the average location error over all the sensor nodes

ex =
1

nS

n∑

i=nA+1

||x̄i − xi||2, (7)

where x̄i and xi denote the ground-truth and estimated
locations. We present results from two algorithms for each
experiment: algorithm 1 runs (2) on the measured angles and
subsequently reconstructs the sensor locations. The angle error
is e1

θ = 0.031 and the location error is e1
x

= 0.093; algorithm
2 runs (5) on the reconstructed distances from algorithm 1 and
subsequently reconstructs the final sensor locations, reducing
the angle error to e2

θ = 0.019 and the location error to
e2
x

= 0.066. The true locations appear in Figure 6(b) as blue
astericks and the estimated locations from algorithms 1 and 2
appear as cyan and green astericks respectively, connected to
the true location by error lines.

Table I contains the results for 36 experiments as the cross
product of #anchor = {3, 5, 7}, R = {0.20, 0.25, 0.30}, and
noise = {0, 0.05, 0.1, 0.15}. The result for each experiment is
reported as the average over ten trials of randomly distributed
nodes in the network. The average connectivity of the networks
for three anchors is 5.4372 for R = 0.20, 7.7238 for R = 0.25,
and 10.2477 for R = 0.30. For each slot in the table, there
are four results shown according to the legend for algorithms

1 and 2: e1
θ e1

x

e2
θ e2

x

.
Even with perfect angle measurements, the location problem

may be ill-posed as explained in Section IV-A: due to lack
of connectivity, the algorithms must resort to heuristics to
reconstruct some of the locations. This explains the nonzero
location error in some slots of the first row of Table I despite
the zero angle error; for some experiments, the heuristics ac-
tually add more error to the measured angles as seen from the
results for algorithm 2. For higher levels of noise, algorithm 1
reduces the angle error up to 52% (e1

θ = 0.024, e1
x

= 0.087)
for noise = 0.05, but only up to 27% (e1

θ = 0.109, e1
x

=
0.176) for noise = 0.15; algorithm 2 performs much better,
delivering values of 84% (e1

θ = 0.008, e1
x

= 0.047) and 47%
(e1

θ = 0.079, e1
x

= 0.095) respectively. Boosting network



connectivity through R increases the number of triangles in the
network, but since the interior angles of individual triangles
are estimated independently for each triangle, algorithm 1
witnesses no significant reduction in error; increasing con-
nectivity however does improve algorithm 2 since there are
more triangles incident on a particular link to use in estimating
its value. Raising the number of anchors in the network also
enhances the performance of both algorithms.

The computational complexity of the simplex algo-
rithm used to solve linear programs typically varies as
O(#constraints) [21]. The sparsity of our constraint ma-
trices allows for more efficient algorithms than the sim-
plex, and so the expected complexity should not exceed
O(#constraints). The upper bound on the number of con-
straints coincides with a fully-connected network, where the
number of triangles is

(
n
3

)
= n(n−1)(n−2)

2 and each one
introduces one and three constraints in (2) and (5) respectively,
resulting in a complexity of O(n3). The observed complexity
for up to R = 0.30 is typically much less: MATLAB solved
the larger linear program (5) with 1692 contraints using an
interior-point algorithm in less than one second on a 1GHz
Pentium IV processor.

VII. CONCLUSIONS AND FURTHER WORK

In previous work, we established a framework through linear
programming to determine sensor location from measured
link distances between neighboring nodes in a network. This
work extends the framework to determine sensor location from
measured arrival angles instead. An extensive simulation suite
substantiates the performance of the algorithm according to
several network parameters, including noise up to 15% the
maximum error; the proposed algorithm reduces the error up
to 84% depending on the noise level.

Formerly we showed that the linear program with link
distance constraints can be solved efficiently through dis-
tributed computing over the nodes without compromising the
optimality of the objective function; our current work shows
analogous results for the linear programs with arrival angle
constraints. In addition, our current work involves integrating
both measured link distances and measured arrival angles.
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(a) The triangular connectivity of a network. (b) The reconstructed sensor locations.

Fig. 6. Example network with three anchor nodes, R = 0.25, and noise = 0.05.

R=0.20 R=0.25 R=0.30noise 3 5 7 3 5 7 3 5 7
0.000 0.079 0.000 0.064 0.000 0.049 0.000 0.008 0.000 0.005 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.0000.00 0.003 0.050 0.003 0.042 0.002 0.029 0.001 0.004 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
0.035 0.097 0.034 0.094 0.034 0.091 0.031 0.094 0.030 0.092 0.030 0.090 0.027 0.092 0.025 0.089 0.024 0.0870.05 0.026 0.078 0.023 0.074 0.021 0.071 0.019 0.065 0.018 0.061 0.017 0.059 0.012 0.052 0.009 0.049 0.008 0.047
0.077 0.150 0.077 0.145 0.073 0.137 0.076 0.143 0.073 0.138 0.072 0.133 0.071 0.141 0.069 0.138 0.068 0.1290.10 0.061 0.123 0.057 0.115 0.055 0.114 0.054 0.095 0.052 0.093 0.050 0.089 0.047 0.839 0.047 0.082 0.045 0.081
0.128 0.196 0.127 0.184 0.126 0.178 0.119 0.193 0.117 0.187 0.115 0.182 0.113 0.188 0.111 0.181 0.109 0.1760.15 0.104 0.139 0.102 0.098 0.099 0.099 0.097 0.119 0.095 0.106 0.092 0.102 0.085 0.104 0.081 0.098 0.079 0.095

TABLE I
NUMERICAL RESULTS FOR EXPERIMENTS


