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Abstract This paper presents two data-based mod-
els for the measured time series of global annual
average tropospheric temperatures. One model is
a smoothing spline fit designed to give an optimal
separation of signal from noise. The other com-
bines an optimal spline fit to the measured record
of CO2 concentration in the atmosphere with a pre-
viously reported 70 year cycle in the temperatures.
It assumes a simple linear relation between changes
in temperature and changes in the CO2 concentra-
tion. When the cycle is added to the model, its fit to
the temperature data is very similar to the optimal
spline fit. The differences between the two fits are
smaller in magnitude than the residuals for either
one of them.
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1 Introduction

The observed increase in global average temper-
atures over the last 150 years is widely believed
to be a consequence of the rising concentration of
the greenhouse gas carbon dioxide in the atmo-
sphere. Good measurements for both the atmo-
spheric CO2 concentrations and the temperature
variations since 1856 are now readily available on
the Web. We will examine the greenhouse hypoth-
esis by using optimal spline fits to both records
to construct a simple mathematical model relating
them.

2 The spline2 algorithm

The optimal spline fits were obtained from the
spline2 algorithm [1, 2, 3] which uses a regression
spline with the number and locations of the knots
chosen to optimize the separation of the data record
into signal and noise components. Since it does not
assume anything about the mathematical form of

the underlying trend, spline2 must base its judge-
ment completely on the noise, i.e., on the residuals
of the fit. It does so by considering a range of pos-
sible autocorrelation lengths ξ. For each ξ, spline2
successively fits a large number of trial splines in
the least squares sense to the data. Many of these
trial splines have their knot locations optimized on
the basis of the preceding fit. It then applies the
Durbin-Watson test [4, 5, 6] to the weighted resid-
uals of these fits. From all trial functions that pass
this test, spline2 selects the simplest one, i.e., the
spline with the fewest number of knots. For this
spline it computes a number α which measures the
discrepancy between the autocorrelation function
of the residuals and an assumed negative exponen-
tial autocorrelation function. Finally, the ξ value
with the smallest α is selected and the correspond-
ing best spline is taken to be the overall optimum
spline.

3 The CO2 concentrations

The measured atmospheric CO2 concentrations are
plotted in Figure 1. The South Pole data, which
start in 1958, were direct measurements from the
atmosphere made by Keeling and Whorf [7]. The
ice core measurements by Etheridge, et. al. [8]
and Neftel, et. al. [9] were derived from air bub-
bles trapped at different depths in the Antarc-
tic ice sheet. They contain larger measuring er-
rors than do the atmospheric measurements, but
the good agreement with the atmospheric values
in the interval of overlap (1958 to 1978) shows
that the two kinds of data are consistent. All
of these data are readily available from the web
site http://cdiac.ornl.gov/ which is maintained by
the Carbon Dioxide Information Analysis Center at
Oak Ridge National Laboratory.

The spline2 fit shown in Figure 1 is a cubic
regression spline using 6 knots located at times
1765.0, 1888.8, 1938.1, 1963.5, 1978.51, and 2004.5.
This curve will be used in the following as the func-
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Figure 1: Annual average atmospheric CO2 concentrations in parts per million by volume [ppmv]. The solid
curve is the spline2 fit for years 1765 to 2004. The measurements can be found at:

Law Dome http://cdiac.ornl.gov/ftp/trends/co2/lawdome.combined.dat
Siple Sta. http://cdiac.ornl.gov/ftp/trends/co2/siple2.013
South Pole http://cdiac.ornl.gov/ftp/trends/co2/sposio.co2

tional representation c(t) of the measured concen-
trations. The horizontal dashed line in the plot
gives the average value for the years 1647 to 1764,
i.e., c0 = 277.04 ppmv. This value will be used as
an estimate of the preindustrial concentration.

4 The temperature anomalies

The measured time series of annual global average
temperature anomalies [10, 11] is plotted in Figure
2. The temperature anomaly, for any given year,
can be defined by


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The quantity of interest in global warming studies
is temperature change, so it does not matter where
the zero point is chosen. Absolute temperatures
can be recovered from the anomalies by adding the
reference temperature. For the anomalies plotted
here the average temperature for the years 1961 to
1990 was used as the reference temperature.

The dashed curve in the Figure is the optimal
spline2 fit to the data. It used 4 knots at times
1856.5, 1905.83, 1955.17, and 2004.5. The sum of
squared residuals for the fit was

SSR =

149
∑

i=1

[Tobs(ti) − Tspline(ti)]
2

= 1.4374 ,

and the corrected total sum of squares for the data
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Figure 2: Annual global average temperature anomalies compiled by the Climatic Research Unit at
http://www.cru.uea.ac.uk/ftpdata/tavegl2v.dat. The dashed curve is the spline2 fit and the solid curve is
the fit of the model (2) using the spline2 fit from Figure 1 for c(t).

was

CTSS =
149
∑

i=1

[Tobs(ti) − Taverage]
2 = 8.5563 ,

so the coefficient of determination is

R2 = 1 −
SSR

CTSS
= 0.8320 .

Thus the fit explains 83 % of the variance in the
data.

The solid curve in Figure 2 is the fit of a model
based on the atmospheric CO2 concentrations. The
time scale was chosen so that t = 0 at epoch 1856.0.
Let T (t) be the temperature anomaly and c(t) the
atmospheric CO2 concentration at time t. Assume
that changes in the former are linearly proportional
to changes in the latter, so

dT

dt
= η

dc

dt
, (1)

where η is the constant of proportionality. Inte-
grating this equation gives

T (t) = T0 + η[c(t) − c0] , (2)

where c0 is the preindustrial CO2 concentration and
T0 is the corresponding temperature anomaly. Us-
ing c0 = 277.04 ppmv, the least squares fit of this
model gives the parameter estimates and standard
uncertainties

T̂0 = (−0.469± .017 ) [◦C] ,

η̂ = ( [9.33 ± .41] × 10−3 ) [◦C/ppmv] ,

with

SSR = 1.8893 , and R2 = 0.7792 .

These last two values are not as good as the corre-
sponding ones for the spline fit, but still the model
explains 78 % of the variance in the data and it
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Figure 3: Upper Panel: The residuals for the solid curve fit in Figure 2.
Lower Panel: Fourier power spectrum of the above residuals.

tracks the data quite well. The spline fit undulates
around the model fit in a quasi-periodic manner
and a close inspection shows that the data do the
same.

5 The temperature cycle

The residuals for the fit are plotted in the top panel
of Figure 3, and the power (variance) spectrum
for those residuals is plotted in the bottom panel.
The dominant peak, which is centered at frequency
0.01453 yr−1 (period = 68.82 yr) was shown by
both Fisher’s test and the cumulative periodogram
test to be statistically significant at the 95 % level.
This is not surprising because this cycle was previ-
ously reported by Schlesinger and Ramankutty [12]
who used a completely different technique to isolate
it. They suggested that it “arises from predictable
internal variability of the ocean-atmosphere sys-
tem.” Its presence in the data suggests a model

of the form

T (t) = T0 + η[c(t) − c0] + A sin

[

2π

τ
(t + φ)

]

, (3)

with free parameters T0, η, A, τ , and φ. The fit of
this model is plotted as the solid curve if Figure 4.
The parameter estimates and standard uncertain-
ties are

T̂0 = (−0.507 ± .016 ) [◦C] ,

η̂ = ( 0.01039± .00042 ) [◦C/ppmv] ,

Â = ( 0.099 ± .012 ) [◦C] ,

τ̂ = ( 71.5 ± 2.2 ) [yr] ,

φ̂ = (−1.0 ± 1.4 ) [yr] ,

and the corresponding estimate for the angular fre-
quency of the cycle is

ω̂ ≡
2π

τ̂
= 0.0879 [rad/yr] .
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Figure 4: Two data-based fits to the temperature anomaly time series. The dashed curve is the spline2 fit
and the solid curve is the fit of the model (3) using the spline2 fit from Figure 1 for c(t).

The sum of squared residuals and coefficient of de-
termination for the fit were

SSR = 1.2674 and R2 = 0.8519 ,

so it explains ≈ 85 % of the variance in the data.
This is a little better than the ≈ 83 % explained by
the spline2 fit which is also plotted in the Figure
for comparison. The agreement between the two
fits is actually quite good when one considers their
very different origins. The magnitudes of the differ-
ences between the two are small in comparison to
the magnitudes of the residuals for either of them.
Those differences are plotted in Figure 5 together
with the residuals for the model fit. A plot of the
residuals for the spline fit would look very similar
to those for the model. It seems fair to say that
the differences between the two models are smaller
than the noise in the data. This is a powerful ar-
gument for the correctness of both approaches to
isolating the signal.

6 Conclusions

The results from fitting the model (3) suggest that
the temperature anomaly record can be decom-
posed into three variance components

Tobs ≡ Baseline + Sinusoid + Noise ,

where

Baseline ≡ T̂0 + η̂ [c(t) − c0] ,

Sinusoid ≡ Âsin
[

ω̂(t + φ̂)
]

, and

Noise ≡ residuals for the fit .

These three variance components are plotted in
Figure 6. An approximate analysis of variance
shows that the Baseline, Sinusoid, and Noise ac-
count for ≈ 77 %, ≈ 8 %, and ≈ 15 % of the vari-
ance, respectively. The Baseline suggests that:

1. the atmosphere has warmed by ≈0.9 ◦C since
1856,
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Figure 5: The residuals for the solid curve fit in Figure 4 and the difference between the solid curve and
dashed curved fits. The figure would look much the same if the residuals for the dashed curve fit were plotted
instead.

2. there is a linear relationship between the warm-
ing and the increase in atmospheric CO2 in the
years 1856 to 2004, and

3. the warming is accelerating.

The first half of the warming occurred in the years
1856 to 1975 and the second half in the years 1976
to 2004.
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