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Abstract
An object of this paper is to discuss the logical development of the concept
of uncertainty in measurement and the methods for its quantification from
the classical error analysis to the modern approaches based on the Guide to
the Expression of Uncertainty in Measurement (GUM). We review
authoritative literature on error analysis and then discuss its limitations
which motivated the experts from the International Committee for Weights
and Measures (CIPM), the International Bureau of Weights and Measures
(BIPM) and various national metrology institutes to develop specific
recommendations which form the basis of the GUM. We discuss the new
concepts introduced by the GUM and their merits and limitations. The
limitations of the GUM led the BIPM Joint Committee on Guides in
Metrology to develop an alternative approach—the draft Supplement 1 to
the GUM (draft GUM-S1). We discuss the draft GUM-S1 and its merits and
limitations. We hope this discussion will lead to a more effective use of the
GUM and the draft GUM-S1 and stimulate investigations leading to further
improvements in the methods to quantify uncertainty in measurement.

1. Introduction

Most metrologists are familiar with the rudimentary concepts
of error analysis, recognize the propagation of uncertainties
formula and are aware of the concepts of Type A and
Type B evaluations promulgated by the 1995 Guide to the
Expression of Uncertainty in Measurement (GUM) [1]4. Many
metrologists have heard of the draft Supplement 1 to the GUM
(draft GUM-S1) [2] on propagation of probability density
functions (pdfs) by numerical simulation. Some discussions
and presentations on these approaches in conferences and
meetings indicate inadequate understanding of the underlying
probabilistic, statistical and metrological concepts and how
these concepts depart from classical error analysis. In this

4 The GUM is published by the International Organization for Standardiza-
tion (ISO) in the names of seven international scientific organizations: Inter-
national Bureau of Weights Measures (BIPM), International Electro-technical
Commission (IEC), International Federation of Clinical Chemistry (IFCC),
International Organization for Standardization (ISO), International Union
of Pure and Applied Chemistry (IUPAC), International Union of Pure and
Applied Physics (IUPAP) and International Organization of Legal Metrology
(OIML).

paper we discuss why and how the concepts that underlie the
GUM and the draft GUM-S1 were developed. We believe that
knowledge of this background would enhance understanding,
improve teaching and promote effective use of the GUM and
the draft GUM-S1.

We review authoritative literature on the statistical
concepts that underlie error analysis. The limitations of error
analysis were a hindrance to communication of scientific and
technical measurements. So leading authorities in metrology
assembled, discussed and debated the issues in the late 1970s
and came up with specific recommendations which form the
basis of the GUM [1, Introduction]. A brief history of
these developments is summarized in [1, Foreword], [3] and
[4]. We discuss the logical development of the concept of
uncertainty in measurement from error analysis to the GUM.
Then we discuss the new concepts introduced in the GUM,
which depart substantially from the preceding traditions of
error analysis. Next we discuss the merits and limitations
of the GUM. The limitations of the GUM motivated the
BIPM Joint Committee on Guides in Metrology (JCGM) to
develop an alternative made possible by recent advances in
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computer technologies. The alternative is the draft GUM-S1
on propagation of probability distributions by Monte Carlo
simulation [2]. So, we review the draft GUM-S1 and discuss
its merits and limitations. We hope this discussion will lead
to a more effective use of the GUM and the draft GUM-S1
and stimulate further investigations to address the limitations
of these approaches to quantify uncertainty in measurement.

1.1. Notation

We use Greek symbols such as τ , β, µ and σ for the
values of metrological quantities and statistical parameters of
probability distributions. We use lower-case Latin symbols
such as x, y and w for data and their summary statistics. In
statistical analysis, the data and their summaries are regarded as
realizations of random variables having sampling probability
distributions. A sampling probability distribution is a property
of the data generation process (that is, the measurement
procedure). Every sampling distribution has one or more
unknown statistical parameters which are to be estimated.
In both conventional and Bayesian statistical methods, the
likelihood function of an unknown parameter is the sampling
distribution of the data conditional on that parameter. We use
the same lower-case Latin symbols such as x, y and w for
random variables with sampling probability distributions and
for their realized values. The context makes clear whether a
symbol is a random variable or its realized value. As in the
GUM, we use upper-case Latin symbols such as X, Y and
W to represent random variables having state-of-knowledge
probability distributions about the values of a quantity. A
state-of-knowledge probability distribution represents belief
probabilities about the possible values of a quantity based on all
available information. All parameters of a state-of-knowledge
probability distribution are fully specified. Common examples
of statistical state-of-knowledge probability distributions are
Bayesian prior and posterior distributions. A non-statistical
example is a rectangular probability distribution for an
unknown quantity specified by scientific judgment.

2. Review of error analysis

This review of the main points of error analysis is based on
[4–15].

2.1. Authoritative references on error analysis in metrology

A classical approach to quantify uncertainty in measurement is
error analysis. It is based on statistical sampling theory, which
is also known as frequentist statistics, classical statistics or
conventional statistics. The most authoritative references on
error analysis in metrology include [5–8]. The popular books
on error analysis include [9, 10]. Other important references
relating to error analysis include [4, 11–15]. Reference [15]
describes the logical growth of the concept of uncertainty from
error analysis. However [15] is not easily accessible; therefore,
we have included it as an appendix of this paper. The primary
author of [15], Churchill Eisenhart, was a pioneer in developing
conventional statistical methods for measurement science and
technology and a leading authority on error analysis. In 1947,

he founded the Statistical Engineering Division of the US
National Bureau of Standards (NBS)5.

2.2. True value, result of measurement and error

In error analysis, the quantity to be measured (a property of
matter or phenomenon) is hypothesized (assumed) to have an
unknown constant value (essentially unique and stable value)
called true value denoted here by τ . A result of measurement
for τ is an estimate denoted here by x. When it is useful
to indicate the relationship between an estimate x and the
corresponding parameter τ , we denote the latter by τ(x).
The difference between x and τ is error6. In an ordinary
measurement, x is the arithmetic mean of a series of n replicate
measurements q1, . . . , qn made to estimate τ . The integer n

may be one or more; in particular, the individual measurements
are also results of measurement for τ . True value and error
are unknowable quantities [1, annex D], except in the trivial
case where τ is a finite number of entities.

2.3. Importance of statistical control of the measurement
procedure

A simple error analysis is based on the assumption that all
possible measurements that could be made under the given
(assumed to be fixed) conditions form a fixed probability
distribution and that the current measurements q1, . . . , qn

may be regarded as a random sample from that distribution.
Statistically this assumptions means that the measurement data
q1, . . . , qn may be regarded as realizations of independent
random variables (also denoted by q1, . . . , qn) that have
the same fixed sampling probability distribution with some
expected value µ and some variance σ 2. This statistical
assumption can be attributed to the data q1, . . . , qn only
if the measurement procedure is in a state of statistical
control [5, sections 3 and 4]. A state of statistical control
is often demonstrated by periodically measuring a reference
artefact of stable value for an extended period of time. The
stability of the reference artefact may be confirmed by a more
precise method. The importance of statistical control7 of
the measurement procedure cannot be overstated. We quote
Eisenhart [5, section 4.1].

‘In the foregoing we have stressed that a measurement
operation to qualify as a measurement process must
have attained a state of statistical control; and that
until a measurement operation has been ‘debugged’
to the extent that it has attained a state of statistical
control, it cannot be regarded in any logical sense as
measuring anything at all.’

The form of the sampling distribution of q1, . . . , qn is
often assumed to be approximately normal (Gaussian) with the

5 NBS is the earlier name of the National Institute of Standards and
Technology (NIST), the national metrology institute (NMI) of the USA.
6 It is sometimes more appropriate to define error as x/τ , called fractional
error. The concepts discussed in this paper can be extended to fractional error;
however, we have not done that.
7 Strict statistical control is extremely rare; the mean of the measurement
process may fluctuate. In that case the variance σ 2 should include a component
of variance for the fluctuation of process mean. If the process variance is
unstable then the process is not in a state of statistical control.
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expected value µ and variance σ 2. The assumption of normal
distribution is utopian and it may be impractical or difficult to
realize and maintain for an extended period of time.

It is important to be definite on what constitutes
replicate measurements q1, . . . , qn because the extent to
which conditions of measurement are allowed to vary freely
over successive repetitions determines the scope of statistical
inferences that may be drawn from the replicate measurements
[5, section 4.1]. When the conditions of measurement are
allowed to vary widely, the assumption of a fixed normal
distribution may be doubtful.

2.4. Sampling probability distribution of the mean

When the measurement procedure is in a state of statistical
control, the result x (arithmetic mean of the n measurements
q1, . . . , qn) may be regarded as a realization of a random
variable (also denoted by x) with a fixed sampling probability
distribution8 with the expected value E(x) = µ and variance
V (x) = σ 2(x) = σ 2/n. The claim that the variance σ 2(x)

is equal to σ 2/n requires that the measurements q1, . . . , qn

be mutually independent9. The variance σ 2(x) = σ 2/n of
the mean x tends to zero as the number n of measurements
tends to infinity. Therefore, the expected value µ is the
limiting value of the mean x as n tends to infinity. If the
common sampling distribution of q1, . . . , qn is normal then
the sampling distribution of x is also normal. When the
measurement procedure is in statistical control and n is not
too small, the sampling probability distribution of the mean
x may be approximately normal even when the probability
distributions of q1, . . . , qn are not normal. The latter result is
based on the central limit theorem [13]. Certain statistical
methods require that the original measurements q1, . . . , qn

must be normally distributed.

2.5. Random error and bias

Error analysis is based on parsing the error x − τ into two
parts: (x − τ) = (x − µ) + (µ − τ) = e(x) + β, where
e(x) = x − µ is random error and β = µ − τ is systematic
error, also called bias or offset. Parsing of error in this way
amounts to postulating the following statistical model for the
result x:

x = τ + β + e(x). (1)

In model (1), neither the true value τ nor the bias β can ever
be known exactly.

2.6. Precision and accuracy

The closeness of the mutual agreement between independent
results of measurement is called precision and the closeness of
the agreement between independent results of measurement

8 Sampling probability distribution is equally important in conventional
statistics and Bayesian statistics. In Bayesian statistics, sampling distribution
is used to define the likelihood function.
9 It is easy to show (using propagation of variances formula) that if the
correlation coefficient between qi and qj is ρij , for i �= j , then V (x) =
[σ 2/n][1 + (n − 1)ρ], where ρ is the average correlation coefficient ρ =
�ρij /(n(n − 1)) of the n(n − 1) pairs {qi , qj } for i �= j . When the average
correlation coefficient ρ is positive then the expression σ 2/n understates the
variance V (x).

and the true value is called accuracy [5]. Precision and
accuracy are characteristics of the measurement procedure
employed and not of a particular result obtained [6]. That
is, precision and accuracy are characteristics of the sampling
probability distribution of measurements rather than of a
realized result. When the measurement procedure is in a
state of statistical control, the variance σ 2 is a measure
of the precision of the sampling probability distribution of
the measurements. As σ 2 decreases, precision increases;
therefore, σ 2 is actually a measure of the imprecision [5], where
imprecision is the opposite of precision. Likewise, inaccuracy
is the opposite of accuracy.

2.7. Estimate of the variance

Suppose s2 = ∑
i (qi − x)2/(n − 1) is the sampling theory

estimate of the variance σ 2 determined from the current
measurements q1, . . . , qn. Then s2(x) = s2/n is an estimate of
the variance σ 2(x) = σ 2/n based on the current measurements
q1, . . . , qn. If the measurement procedure is in a state of
statistical control (which it must be), then one may have a
better value for σ 2 based on large amounts of past data than
the estimate s2 based on the current measurements only. In
that case the better value for σ 2 should be used.

2.8. Confidence intervals

Suppose q1, . . . , qn have the same normal sampling
distribution, N(µ, σ 2), and are mutually independent. Then
a confidence interval for the unknown expected value µ such
as (x ± t(1−α/2) × s/

√
n), where t(1−α/2) is (1 − α/2) × 100th

percentile of the t-distribution with degrees of freedom n − 1,
is a random interval. The location of the interval (x±t(1−α/2)×
s/

√
n) is random because x is random. The width of the

interval (x ± t(1−α/2) × s/
√

n) is random because s2 is random.
The confidence level associated with (x ± t(1−α/2) × s/

√
n)

is a statement about the sampling distributions of x and s2

determined from q1, . . . , qn. If the process of making the n

measurements q1, . . . , qn could be repeated infinitely many
times and the assumed fixed normal sampling distribution for
q1, . . . , qn continued to apply then the fraction (1−α) of such
intervals would include the unknown value µ. A computed
confidence interval is a realization of the random interval
(x ± t(1−α/2) × s/

√
n). The confidence level is not a statement

of probability concerning the computed interval.
A confidence interval for σ 2 is a random interval of the

form [(n − 1)s2/a, (n − 1)s2/b], where a and b are suitably
chosen percentiles of the chi-square distribution with degrees
of freedom n − 1. If the process of making measurements
could be repeated infinitely many times then some fraction
(determined by the choices of a and b) of such intervals would
include the unknown value σ 2. The confidence level is not a
statement of probability concerning the computed confidence
interval.

2.9. Bound on bias

The bias β in the measurements q1, . . . , qn is the unknown
constant parameter µ−τ , where µ is the expected value of the
sampling distributions of the measurements and τ is the true
value of the measurand. The measurements q1, . . . , qn carry
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no information about their bias. In error analysis, a bound δ on
the possible bias (offset) in the measurements is specified by
expert judgment such that the probability that the bias β may
exceed the limits of the interval (−δ, δ) is believed to be zero.
That is, −δ � β � δ with probability one.

2.10. Uncertainty

In error analysis, the uncertainty of the sampling distribution
of a result x is indicated by stating credible limits to its
likely inaccuracy [6]. The inaccuracy is indicated by two
expressions: (i) an estimate of the imprecision of x, such as
s2(x), and (ii) an assessment of the bound δ on its bias β.

2.11. Propagation of errors

Often, a result of measurement for the quantity of interest
cannot be determined by the direct measurement of that
quantity, but is determined from measurements of one or more
other quantities through a known functional relationship. For
example, generally the speed v of a moving object is not
measured directly but is determined from the measurements of
the time t taken to cover a distance d through the relationship
v = d/t . In such cases an estimate of imprecision and an
assessment of the bound on bias for the output quantity of
interest (such as speed) are determined from the estimates of
imprecision and the assessments of the bounds on biases for
the input quantities (such as the distance and the time).

Suppose a result of measurement w is determined from
the two results of measurement x1, x2 through a given function
w = g(x1x2). Suppose the unknown true values for the
three quantities are τ(w), τ(x1) and τ(x2), respectively. The
function w = g(x1, x2) is based on scientific theories and
empirical knowledge which imply that τ(w) = g(τ(x1),
τ(x2)). Suppose the expected value and variance of the
sampling probability distribution of xi are µ(xi) and σ 2(xi),
for i = 1, 2 and the expected value and variance of
the corresponding w are µ(w) and σ 2(w), respectively.
For simplicity assume that the sampling distributions of x1

and x2 are mutually independent. A linear Taylor series
approximation of the function w = g(x1, x2) is

w = g(x1, x2) ≈ g(µ(x1), µ(x2)) + c1(x1 − µ(x1))

+ c2(x2 − µ(x2)), (2)

where the constant coefficients c1 and c2, called sensitivity
coefficients, are partial derivatives of the function g evaluated
at µ(x1) and µ(x2). The expected value and variance of (2)
are, respectively,

E(w) = µ(w) ≈ g(µ(x1), µ(x2)) (3)

and
V (w) = σ 2(w) ≈ c2

1σ
2(x1) + c2

2σ
2(x2). (4)

Note that the expected value µ(w) of w is not g(µ(x1), µ(x2))

unless the function g(x1, x2) is linear, in which case expression
(2) is not an approximation. When the expected values (µ(x1)

and µ(x2)) and variances (σ 2(x1) and σ 2(x2)) are unknown,
they are replaced in (4) with their estimates (x1 and x2) and
(s2(x1) and s2(x2)) to get the following weaker approximation
than (4):

s2(w) ≈ c2
1s

2(x1) + c2
2s

2(x2) , (5)

where the sensitivity coefficients c1 and c2 are now evaluated
at the known estimates x1 and x2.

Expression (5) is traditionally called law of error
propagation. This is a misnomer. A linear approximation
for the errors is w ≈ τ(w) + c1(x1 − τ(x1)) + c2(x2 − τ(x2)).
This expression does not lead to (4) and then to (5) because
the expected values E(xi − τ(xi))

2 are not equal to σ 2(xi), for
i = 1, 2. The difference between E(xi − τ(xi))

2 and σ 2(xi)

is the square of the bias µ(xi) − τ(xi) which is unknowable.
Suppose the bounds on biases in x1 and x2 are assessed as

δ(x1) and δ(x2), respectively. Then one of the many ways of
approximating the bound on bias in w is

δ(w) ≈ |c1δ(x1)| + |c2δ(x2)|, (6)

where the quantities on the right side of (6) are absolute values
[8]. Expressions (5) and (6) can be extended to a function of
more than two input quantities and for correlated results [8].

2.12. Report from error analysis

In error analysis, an estimate of imprecision and an assessment
of the bound on bias are different components of inaccuracy
and they are subject to different treatments in usage. Therefore
they are stated separately. We quote Eisenhart [5, section 4.3].

‘By whatever means credible bounds to the likely
overall systematic error of the measurement process
are obtained they should not be combined (by simple
addition, by quadrature, or otherwise) with the
experimentally determined measure of its standard
deviation to obtain an overall index of its accuracy (or
more correctly of inaccuracy). Rather (a) the standard
deviation of the process and (b) credible bounds to its
systematic error should be stated separately.’

Subsequently, Eisenhart [6] relaxed the above recommenda-
tion as follows.

‘The above recommendation should not be construed
to exclude the presentation of a quasi-absolute type
of statement placing bounds on the inaccuracy, that
is, on the overall uncertainty, of a reported value,
provided that separate statements of its imprecision
and its possible systematic error are included also.’

2.13. Uncertainty associated with reference standards

In error analysis, the uncertainties associated with the accepted
values of reference standards and the values assigned to the
fundamental constants of nature are not ordinarily included
in determining the bounds on bias for the measurement
procedure. The reason given in [6] is that their inclusion would
make everybody’s results appear unduly inaccurate relative to
each other. The GUM [1, annex D] departs from this viewpoint.

3. Evolution of the concept of uncertainty from
error analysis to the GUM

In this section, we discuss logical development of the concept
of uncertainty in measurement from error analysis to the GUM.
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3.1. Error and uncertainty in measurement

The ideas of error and uncertainty were mixed up before
publication of the GUM. The two terms were used
interchangeably [10, p 3], [14, p 241] or uncertainty was used
to refer to an estimate of error [9, p 6] or an estimate of the
likely limits of error [15]. The GUM [1, annex D] makes clear
that error is an unknowable quantity in the realm of the state
of nature and uncertainty (in measurement) is a quantifiable
parameter in the realm of the state of knowledge about nature.
Uncertainty represents the dispersion of the values that could
reasonably be attributed to the measurand [1, annex B]. A
stated result of measurement is one value (albeit a central
one) that could be attributed to the measurand. The result of
measurement and its associated uncertainty together represent
a range of the values that could be attributed to the measurand
with varying degrees of credibility. Uncertainty is not an
estimate of the likely limits of error because, for example,
a systematic effect might have been overlooked because it is
unrecognized [1, section D.5.1]. Only when there is a sound
basis to believe that no systematic effects have been overlooked
uncertainty may be considered as an approximate measure of
possible error [1, section D.6.1]. A result of measurement and
uncertainty are determined from all available information. The
GUM method of evaluating uncertainty is transparent and it is
clear what effects are included in the combined uncertainty.

3.2. Overall expression of uncertainty

This section is a highly simplified discussion of a main point
from [15]. As science and technology advanced, publications
started including tables of measurement results from various
sources. This generated the need for an overall expression of
uncertainty for the tabulated results, which raised the question,
how could a sampling theory estimate of imprecision (such as
s2(x)) and a judgmental bound on bias (such as δ) be logically
combined. Several methods were developed. An elementary
method was to add the bound δ to the estimate s(x) resulting
in the following expression:

u(x) = s(x) + δ, (7)

for the overall uncertainty. Since the estimate s2(x)

carries statistical uncertainty indicated by its degrees of
freedom, it was argued that s(x) and δ should be added
at a similar confidence level [15]. Thus, for normally
distributed measurements the following expression for the
overall uncertainty u(x) was developed:

u(x) = tν(α) × s(x) + δ, (8)

where s2(x) is based on ν degrees of freedom and tν(α) is a
percentile of Student’s t-distribution for confidence level α. A
third method was to add s(x) and δ in the quadrature, resulting
in the expression

u(x) =
√

s2(x) + δ2. (9)

If the unknown constant bias β were regarded as a random
variable with two possible values −δ and +δ each with
probability 1

2 then the expected value of β would be zero and
the variance of β would be δ2. In the statistical model (1),

x = τ + e(x) + β, the variance of the sampling distribution of
e(x) is σ 2(x) with estimate s2(x) = s2/n; therefore (9) may be
regarded as an estimate of the standard deviation of x. The idea
that the bias β may be regarded as a random variable led to the
idea of assigning to the bias β a state-of-knowledge rectangular
distribution on the interval (−δ, δ) with variance δ2/3. Thus
the square δ2 of the bound on bias in (9) was replaced with
the variance δ2/3 resulting in the following expression for the
overall uncertainty

u(x) = k
√

s2(x) + δ2/3, (10)

where k is customarily taken as 2 or 3. Expression (10) was
proposed in [16] and used in the PTB10. It was termed the
PTB approach [15]. This approach is a precursor to the GUM.
Expression (10) needed a probabilistic interpretation. In part
motivated by this need, the GUM developed the concepts of
Type A and Type B evaluations of uncertainty and the concept
of measurement equation.

3.3. Whose uncertainty: metrologist or user

In a report from error analysis, the uncertainty of a result
of measurement x is expressed in different forms depending
on the importance of the estimate of imprecision and the
assessment of the bound on bias in relation to the intended
use of the result x as well as to other possible uses to which
it may be put [6, 7, 13, chapter 23]. Thus the following
four cases are considered: (i) both bias and imprecision
are negligible, (ii) bias is not negligible but imprecision is
negligible, (iii) neither bias nor imprecision is negligible and
(iv) bias is negligible but imprecision is not negligible. Specific
recommendations with respect to each of these cases are
discussed in [6]. A user is expected to use the report from
error analysis to determine his/her expression of uncertainty in
light of the intended use of measurements. Thus error analysis
puts the responsibility for evaluating uncertainties on the users
of the measurement data.

The GUM puts the responsibility for quantifying
uncertainty on the metrologist who makes the measurements.
The stated result of measurement and its associated uncertainty
together indicate the state of knowledge of the metrologist
concerning the unknown value of the quantity measured rather
than the uncertainty associated with a subsequent use of the
result of measurement.

3.4. Random and systematic sources of variation

A measurement procedure is affected by various sources of
variation and it is often difficult to determine the category,
random or systematic, to which a source of variation should be
assigned [1, section E.1.3], [3, 14, 15]. The decision depends
on the chosen viewpoint (interpretation) of the measurement
procedure. Thus arbitrariness is inherent in the classification
of errors as random and systematic. Despite arbitrariness of
this classification, in error analysis an estimate of imprecision
(arising from random error) and an assessment of the bound
on bias (systematic error) are reported separately or combined
in an ad hoc manner. The GUM regards the variations

10 PTB (Physikalisch-Technische Bundesanstalt) is the NMI of Germany.
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arising from random and systematic effects as components
of uncertainty and recommends a logically consistent way of
combining all components of uncertainty.

3.5. Importance of realistic uncertainty

In error analysis, a bound on bias is set to a safe value
that is not likely to be exceeded. This often made the
uncertainty unrealistically large [1, section E.1]. When the
uncertainty is generally stated to be too large, decision makers
discount it or ignore it completely. Indeed, catastrophes have
happened because stated uncertainties were ignored. On the
other hand, an understatement of uncertainty might lead to
misplaced trust on the reported values. For example, when
the stated uncertainty is too small, an inspector may reject
with higher frequency manufactured products that are in-
tolerance and accept with higher frequency those that are
out-of-tolerance. The GUM [1, annex E] emphasizes the
importance of determining realistic uncertainties to the extent
of the state of knowledge of metrologist.

3.6. Target value of the measurand

Eisenhart [5] discusses at length the concept of true value in
error analysis and the difficulty of defining it; we quote from
[5, section 3.3c].

‘Indeed, as is evident from the foregoing, the ‘true
value’ of the magnitude of a particular quantity is
intimately linked to the purposes for which a value
of the magnitude of this quantity is needed, and its
‘true value’ cannot, in the final analysis, be defined
meaningfully and usefully in isolation from these
needs. Therefore, as this fact becomes more widely
recognized in science and engineering, I hope that
the traditional term ‘true value’ will be discarded in
measurement theory and practice, and replaced by
some more appropriate term such as ‘target value’
that conveys the idea of being the value that one would
like to obtain for the purpose in hand, without any
implication that it is some sort of permanent constant
preexisting and transcending any use that we may
have for it.’

The GUM [1, annex D] discusses the concept of true value
at length. It states that depending on the detail with which the
measurand is defined, a range of values may be consistent with
the definition of measurand and the adjective ‘true’ in true value
is unnecessary.

We think that a modifier for the word value when referring
to a value of the measurand may be useful for ease of
communication. For the reasons discussed in [5, section 3.3c],
we prefer the term target value over the term true value when
referring to a value of the measurand.

4. Guide to the Expression of Uncertainty in
Measurement (GUM)

In this section we discuss statistical and metrological concepts
that underlie the GUM. The draft GUM-S1 is based on certain
variations of these concepts which are discussed in the next
section.

4.1. Measurement equation in the GUM

The concept of measurement equation is the most original
methodological contribution of the GUM, in our view. The
term measurement equation11 was introduced in [2] by two
of the primary authors of the GUM (Dr Barry N Taylor and
Dr Chris E Kuyatt of NIST). In the GUM, the measurement
equation is a function

Y = f (X1, ..., XN) (11)

that represents the after-measurement-method (ingredients
and recipe) of determining a result y for the value of the
measurand and its associated standard uncertainty u(y) from
various input values x1, . . . , xN and their associated standard
uncertainties u(x1), . . . , u(xN ) and correlation coefficients
r(x1, x2), . . . , r(xN−1, xN). The GUM regards all input
arguments and the output of a measurement equation
Y = f (X1, . . . , XN ) as variables with state-of-knowledge
probability distributions about the corresponding input and
output quantities. Thus Y is a variable having a state-of-
knowledge probability distribution about the value of the
measurand and X1, . . . , XN are input variables having state-
of-knowledge probability distributions about various input
quantities. The input values x1, . . . , xN are identified with the
expected values, the standard uncertainties u(x1), . . . , u(xN )
are identified with the standard deviations and r(x1,
x2), . . . , r(xN−1, xN) are correlation coefficients of the state-
of-knowledge probability distributions for X1, . . . , XN . Some
of the input variables X1, . . . , XN may themselves be regarded
as measurands and functions of additional variables. Thus the
function Y = f (X1, . . . , XN ) may represent a hierarchical
system of equations [17,18]. A measurement equation should
not be confused with a statistical model12 stipulated to relate
the measurement data and statistical parameters.

Development of a thorough measurement equation is
the key to determining uncertainty in measurement. To
develop a measurement equation, detailed understanding of the
important influence quantities in the measurement procedure
is required [19]. All other aspects of uncertainty evaluation
can be programmed in a computer.

In the GUM, the inputs are expected values, variances
(squares of standard uncertainties) and correlation coefficients
associated with state-of-knowledge probability distributions
for the input quantities and the outputs are the expected value
and variance for the measurand. Thus the inputs and the
outputs of a measurement equation in the GUM are similar
entities (such is not the case in the draft GUM-S1).

4.2. Type A and Type B evaluations

The uncertainty associated with a result of measurement
generally consists of many components. The GUM explicitly

11 It is unfortunate that the draft GUM-S1 uses the term ‘measurement model’
or ‘model of measurement’ or simply ‘model’ for a measurement equation
because metrologists use the term measurement model for two different things:
(i) a statistical model, such as (1), which relates the data to statistical parameters
and (ii) the measurement equation, such as (11). Thus the term measurement
model is highly ambiguous.
12 Statistical models relate data to statistical parameters. For example, the
one-way analysis of variance model yij = µ + τi + eij relates the data {yij } to
the statistical parameters µ and {τi} and the simple linear regression model
yi = α + βxi + ei relates the data {yi} to the statistical parameters α and β

and the values {xi} of the regressor variable.
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recognizes non-statistical methods (termed Type B) as valid
means to quantify components of uncertainty. Indeed,
professionally determined Type B evaluations of uncertainty
components may be more reliable than statistical evaluations
(termed Type A) [1, section 4.3.2]. The terms Type A and
Type B apply to the methods of evaluation rather than to
the sources of uncertainty. Although the GUM [1, sections
2.3.2 and 2.3.3] applied the labels Type A and Type B to
the methods for evaluating uncertainties, this classification
also applies to the methods for evaluating expected values,
standard deviations and correlation coefficients of state-of-
knowledge probability distributions for the input variables of
a measurement equation [1, section 5.2.5, 18].

Type B evaluations are parameters of state-of-knowledge
probability distributions specified by judgment based on all
available information [1, section 4.3]. All illustrations of
Type A evaluations discussed in the GUM are estimates
determined from frequentist statistics. Their probabilistic
interpretation does not agree with state of knowledge
probabilistic interpretation of Type B evaluations [18]; thus,
they cannot be combined with Type B evaluations logically.
The GUM [1, section 4.1.6] resolved this issue by declaring that
the statistical estimates (Type A) determined from frequentist
statistics be regarded as parameters of state-of-knowledge
probability distributions. That is, all statistical (Type A) and
non-statistical (Type B) evaluations in the GUM are regarded
as parameters of state-of-knowledge probability distributions.
Thus in the GUM, Type A evaluations, determined from
frequentist statistics, acquired the same state-of-knowledge
probabilistic interpretation as Type B evaluations. Armed
with this interpretation Type A and Type B evaluations can
be logically combined. The method of combining Type A
and Type B evaluations was formalized by the concept of
measurement equation.

4.3. Combining uncertainties through a linear approximation
of the measurement equation

A major focus of the GUM is the quantification of the
uncertainty associated with a result of measurement that is
determined from a number of input quantities through a
measurement equation. The GUM propagates the estimates,
standard uncertainties and correlation coefficients for various
input quantities through a linear approximation of the
measurement equation to determine an estimate and standard
uncertainty for the value of the measurand. Specifically, the
GUM approximates the measurement equation (11) by the
linear function

Y ≈ YLinear = f (x1, . . . , xN) +
N∑

i=1

ci(Xi − xi), (12)

determined from the first-order Taylor series expansion,
where x1, . . . , xN are input values for X1, . . . , XN ; the
coefficients c1, . . . , cN , called sensitivity coefficients, are
partial derivatives of Y with respect to X1, . . . , XN evaluated
at x1, . . . , xN . If we regard x1, . . . , xN as the expected
values, u(x1), . . . , u(xN ) as the standard deviations and r(x1,
x2), . . . , r(xN − 1, xN) as the correlation coefficients of state-
of-knowledge pdfs for X1, . . . , XN then the expected value

and the variance of YLinear defined in (12) yield the following
expressions for y and u(y):

y = E(YLinear) = f (x1, . . . , xN) (13)

and

u2(y) = V (YLinear) =
N∑

i=1

c2
i u

2(xi)

+ 2
N∑

i<j

cicju(xi)u(xj )r(xi, xj ). (14)

Expression (14) is called the propagation of uncertainties for-
mula. The GUM regards the result y and the standard uncer-
tainty u(y) determined from (13) and (14) as an approximate
expected value and standard deviation of a state-of-knowledge
probability distribution for the value Y of the measurand. The
result y and the standard uncertainty u(y) differ from the
unknown expected value E(Y ) and the standard deviation S(Y )

of Y = f (X1, . . . , XN ) to the extent that the probability distri-
bution of Y differs from the probability distribution of YLinear.
The GUM [1, section E.5] discusses the relationship between
the propagation of uncertainties formula (14) and a similar
propagation of errors formula used in error analysis.

A proper evaluation of uncertainty requires that every
effort must be made to identify correlated input variables and
correlation coefficients between those input variables must be
quantified and included in the calculation of combined standard
uncertainty [20,21]. Indeed, failure to identify and incorporate
correlation coefficients between input variables is a leading
cause of unreasonable uncertainty evaluations.

When the input variables are uncorrelated, the propagation
of uncertainties formula (14) reduces to

u2(y) =
N∑

i=1

c2
i u

2(xi). (15)

Thus for uncorrelated input variables, the products c1u(x1),
. . . , cNu(xN) are the uncertainty contributions from the
components u(x1), . . . , u(xN) to the combined standard
uncertainty u(y) [22, 23].

The GUM [1, section 5.1.2] notes that when the non-
linearity of the measurement equation is significant, higher
order terms from the Taylor series expansion must be included
in (15). The higher order terms given in the GUM [1, section
5.1.2] require not only that the pdfs of the input variables
X1, . . . , XN be independent but also that each has a normal
distribution [18, section 5.3]. The latter requirement is highly
restrictive and not stated in the GUM. Most metrologists do
not use the higher order terms given in the GUM to determine
combined standard uncertainty.

4.4. Degrees of freedom

A statistical estimate determined from sampling theory
(frequentist statistics) is uncertain because of the limited
number of measurements [1, section E.4.3]. Such uncertainty
in a sampling theory estimate is called statistical uncertainty.
The statistical uncertainty in the estimate s2(x) = s2/n of the
variance σ 2(x) = σ 2/n of the mean x of independent and
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identically normally distributed measurements q1, . . . , qn is
quantified by degrees of freedom. The degrees of freedom
associated with s2(x) are n − 1. Even though the GUM
interprets s2(x) as a Type A evaluation of the variance of a
state-of-knowledge pdf, it recognizes the degrees of freedom
n − 1 as a measure of its statistical uncertainty.

In addition, the GUM [1, section G.4.2] suggests that
the concept of degrees of freedom may be used to represent
subjective doubt about a non-statistical (Type B) evaluation
of uncertainty. This suggestion is controversial and most
metrologists ignore it [25, section 2, comment 3].

If measurement equation (11) is linear and X1, . . . , XN

are independently distributed, the GUM [1, section G.4]
recommends the use of the Welch–Satterthwaite formula to
determine effective degrees of freedom associated with the
combined standard uncertainty u(y) determined from (15).

It is shown in [18, 25, 26] that if Bayesian statistics is
used for the statistical (Type A) evaluations, then there is
no need to count degrees of freedom. Bayesian estimates
are never uncertain; in particular, they do not have statistical
uncertainties.

4.5. Quantification of uncertainty from systematic effects

A common practice in metrology is to apply a correction to
the result of the measurement when a significant systematic
effect is recognized. A correction for a systematic effect is
always uncertain. Before publication of the GUM, there was
no generally accepted approach to account for the uncertainty
associated with a correction for a systematic effect. The
GUM established the following principle. A correction should
be applied to a result of measurement for each recognized13

significant systematic effect and the uncertainty associated
with the correction should be quantified and included in the
combined standard uncertainty associated with the corrected
result. The correction is regarded as a random variable with a
state-of-knowledge pdf [1, section 4.3], [17, section D.3]. A
state-of-knowledge pdf for the correction variable is specified
on the basis of all available information including scientific
judgment and relevant data. The expected value of this state-
of-knowledge distribution is the correction applied to the result
and the standard deviation is the associated uncertainty. Often
the correction applied to the result is zero but the associated
uncertainty could be large [17, section D.3.1].

There is no direct correspondence between the classifica-
tion of the methods of evaluation as Type A or Type B and the
identification of uncertainties as arising from random effects
or from the corrections for systematic effects [17, section D.2].
However, the components of uncertainty arising from random
effects are usually evaluated by statistical methods (Type A)
and the components of uncertainty arising from the corrections
for recognized systematic effects are most often evaluated by
other methods (Type B).

4.6. Uncertainty from definition and realization of the
measurand

Whereas error analysis is concerned only with the inaccuracy
of a measurement procedure, the GUM recognizes sources

13 If we can think of a systematic effect then it is recognized. A recognized
effect may or may not be significant.

of uncertainty relating to the definition and the realization
of the measurand as well [1, section 3.3.2 (a), (b), (c) and
annex D]. In practice, the measurand is incompletely defined
[1, section D.1]; thus, many values may agree with the
stated definition of measurand. The incomplete definition
of the measurand is a source of uncertainty. The quantity
actually realized for measurement may not fully agree with the
definition of the measurand [1, section D.2]. The difference
between a value of the quantity realized for measurement and a
target value of the measurand is another source of uncertainty.
These potential sources of uncertainty are often, but not always,
negligible [1, section D.5.3].

4.7. Fundamental expression of uncertainty

The authors of the GUM [1, section 0.4] determined that a
suitable expression of uncertainty should satisfy the following
criteria:

‘Internally consistent: it should be directly derivable
from the components that contribute to it, as well as
independent of how these components are grouped
and of the decompositions of the components into
subcomponents.’

‘Transferable: it should be possible to use directly the
uncertainty evaluated for one result as a component
in evaluating the uncertainty of another measurement
in which the first result is used.’

A standard uncertainty is both internally consistent
and transferable. Therefore, standard uncertainty is the
fundamental expression of uncertainty in both the GUM as
well as the draft GUM-S1.

4.8. Expanded uncertainty interval and coverage probability

Sometimes it is necessary to express uncertainty as an interval
[1, section 6.1.2]. To meet this need, the GUM introduced the
concept of expanded uncertainty. An expanded uncertainty
U is obtained by multiplying the standard uncertainty u(y)

by a coverage factor k; that is U = k u(y). The expanded
uncertainty U defines an interval [y ± U ] = [y ± k u(y)]
about the result of measurement y that may be expected to
encompass a large fraction of the distribution of values that
could reasonably be attributed to the measurand [1, section
3.3.7]. The GUM did not assign a name to the interval [y ± U ].
However, Dr Barry N Taylor, a primary author of the GUM,
refers to it as an expanded uncertainty interval [18, reference 5].
In the GUM, an expanded uncertainty interval is determined
after the result y and its associated standard uncertainty u(y)

have been determined. Along with an expanded uncertainty
interval [y ± U ], the coverage factor k must be stated, so the
standard uncertainty u(y) may be recovered.

The coverage probability of an expanded uncertainty
interval [y ± k u(y)] is the fraction covered by this
interval of a state-of-knowledge probability distribution for
Y , represented by y and u(y). Since the GUM does not
yield a state-of-knowledge probability distribution for Y ,
the coverage probability cannot be determined in general.
Sometimes, it may be possible to state an approximate
coverage probability, when the measurement equation is
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Table 1. Sketch of an uncertainty budget for uncorrelated input quantities.

Standard Sensitivity Uncertainty
Quantity Result uncertainty coefficient contribution
Xi xi u(xi) ci ciu(xi)

X1 x1 u(x1) c1 c1u(x1)

XN xN u(xN) cN cNu(xN)

Y y u(y)

linear, the pdfs for X1, . . . , XN are independently distributed
and the requirements of the central limit theorem are met
[1, annex G, 18, 26].

4.9. Uncertainty budget

An uncertainty budget is a table that lists all input
quantities (or their identifiers such as Xi), the corresponding
results (estimates) xi , standard uncertainties u(xi), sensitivity
coefficients ci and the uncertainty contributions ciu(xi)

[22, 23]. The types of methods (Type A or Type B) used
for evaluating the results and uncertainties are also indicated.
Along with numerical values, the units of measurement should
also be stated. A sketch of an uncertainty budget for the
uncorrelated input variable is shown in table 1.

The GUM did not suggest any format for reporting
the details on how the combined standard uncertainty was
determined. A task force of the European Co-operation
for Accreditation [22] developed the standardized format
indicated in table 1 for presenting the details. An uncertainty
budget is a vital output from the evaluation of combined
standard uncertainty u(y) for the following reasons. An
uncertainty budget makes the calculation of combined standard
uncertainty transparent. A user of the results from uncertainty
evaluation may be interested in the degrees of contribution
to the combined standard uncertainty u(y) from each of its
components u(x1), . . . , u(xN) [22,23]. The Eurachem/Citac-
Guide [23] displays bar-charts of the uncertainty contributions
ciu(xi), for i = 1, . . . , N , to show the degrees of contribution.
In particular, the uncertainty budget identifies the dominant
components of combined standard uncertainty u(y). A
metrologist who is interested in understanding, managing or
improving the measurement process needs the details provided
by the uncertainty budget. In interlaboratory evaluations
uncertainty budgets from individual laboratories are needed
for detailed comparisons, especially when the results are
inconsistent. An uncertainty budget is a critical aid in assessing
a reported combined standard uncertainty u(y).

4.10. Degrees of contribution from correlated inputs

This subsection describes a useful addition to the uncertainty
budget for correlated input variables. (It is not a part of
the main GUM procedure.) Reference [24] introduced a
coefficient of contribution, h(y, xi), which quantifies the
degree of contribution from u(xi) to u(y). The coefficients
of contribution add up to one so they may be expressed as a
per cent. For uncorrelated input variables, [24] defines the
coefficient of contribution, h(y, xi), as

h(y, xi) =
[
ciu(xi)

u(y)

]2

. (16)

The coefficient of contribution (16) is the square of the
correlation coefficient between YLinear and Xi . A general
expression for the coefficient of contribution, h(y, xi), that
applies to both uncorrelated and correlated input variables is

h(y, xi) =
[
ciu(xi)

u(y)

]
[r(y, xi)] , (17)

where r(y, xi) is the coefficient of correlation between YLinear

and Xi defined as

r(y, xi) =
N∑

j=1

[
cju(xj )

u(y)

]
[r(xi, xj )] . (18)

General expression (17) reduces to the special case (16) for
uncorrelated input variables. The degrees of contribution from
u(x1), . . . , u(xN) to u(y) are affected by correlations between
the input variables [24]. Therefore, when some input variables
are correlated it is useful to include in the uncertainty budget a
column for the correlation coefficients r(y, xi) and a column
for the coefficients of contribution h(y, xi) [24].

4.11. Merits of the GUM

(i) The GUM does not require complete knowledge of the
state-of-knowledge pdfs for the input quantities and their
joint pdf.

(ii) The GUM requires as inputs only the expected values,
standard deviations and correlation coefficients of state-
of-knowledge probability distributions for the input
quantities. It yields as output an approximate expected
value and standard deviation of a state-of-knowledge
probability distribution for the value of the measurand.
Thus GUM is applicable as an approximation (to the
extent that a linear approximation to the measurement
equation gives reasonable results) in those situations
where reasonable estimates for the expected values,
standard deviations and correlation coefficients for the
input variables are available.

(iii) When measurement equation (11) is linear, the result y

and the standard uncertainty u(y) obtained from (13) and
(14) are the correct expected value and standard deviation
of Y for all state-of-knowledge probability distributions
for the input variables X1, . . . , XN that have the expected
values x1, . . . , xN , standard deviations u(x1), . . . , u(xN )
and correlation coefficients r(x1, x2), . . . , r(xN−1, xN)

[25]. Thus, when the measurement equation is linear,
the result y and the standard uncertainty u(y) determined
according to the GUM are robust evaluations that apply for
all pdfs with the given parameters for the input quantities.
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4.12. Limitations of the GUM

(i) When measurement equation (11) is non-linear and
the uncertainties u(x1), . . . , u(xN ) are not sufficiently
small, the result y and the standard uncertainty u(y)

determined from (13) and (14), respectively, may be
poor approximations to the expected value E(Y ) and the
standard deviation S(Y ) of Y = f (X1, . . . , XN ) [25].

(ii) When measurement equation (11) is non-linear, the GUM
does not provide any indication of the direction and
magnitude of errors possible in the result y and the
standard uncertainty u(y) with respect to E(Y ) and S(Y ),
respectively.

(iii) The GUM does not yield a pdf for the value of the
measurand because the inputs are only expected values,
variances and correlation coefficients. Thus it does not
yield the coverage probability for uncertainty expressed
as an interval. Some metrologists regard it as a limitation
of the GUM. We do not fully concur with this view
because uncertainty expressed as an interval with a stated
coverage probability indicates exactitude which may not
be warranted by the extent of factual information available
concerning the input quantities.

These limitations of the GUM motivated the BIPM
JCGM to develop the draft Supplement 1 to the GUM (the
draft GUM-S1) on propagation of pdfs by Monte Carlo
simulation [27].

5. The draft Supplement 1 to the GUM

In this section, we review the draft GUM-S1 and discuss its
merits and limitations.

5.1. Measurement equation in the draft GUM-S1

In the draft GUM-S1, the measurement equation is a function
Y = f (X1, . . . , XN ) that represents the after-measurement-
method of determining a state-of-knowledge pdf for the value
Y of the measurand from a completely specified joint pdf
for various input variables X1, . . . , XN . The draft GUM-S1
requires the user to specify a state-of-knowledge pdf for each
input variable X1, . . . , XN as well as to specify the joint pdf
for X1, . . . , XN . Therefore, the draft GUM-S1 requires more
information concerning the input quantities than the GUM.

5.2. Propagation of pdfs by Monte Carlo simulation

The draft GUM-S1 [2] propagates the pdfs assigned to the
input variables X1, . . . , XN to determine a pdf for the value
Y of the measurand through a Monte Carlo simulation of the
measurement equation Y = f (X1, . . . , XN ). A result y and
its associated standard uncertainty u(y) for the value of the
measurand are then determined from the simulated pdf for Y .
The basic algorithm is as follows.

(1) Specify the measurement equation Y = f (X1, . . . , XN).
(2) Specify a joint pdf for X1, . . . , XN . The draft GUM-

S1 addresses two situations: (i) the input variables
X1, . . . , XN are all mutually independent in which case
the joint pdf is the product of the individual pdfs and (ii)
the joint pdf for X1, . . . , XN is multivariate normal.

In principle, the draft GUM-S1 is applicable for any joint
pdf for X1, . . . , XN from which random samples can
be numerically generated and the corresponding values
for Y calculated from the measurement equation. The
draft GUM-S1 mentions multivariate normal distribution
because numerical methods for generating random
samples from this distribution are known.

(3) Generate M random samples x
(r)
1 , . . . , x

(r)
N , for r =

1, . . . , M , from the joint pdf for X1, . . . , XN by Monte
Carlo simulation. The number M may be set in advance or
determined adaptively in real-time simulation. The draft
GUM-S1 suggests that M = 106 is likely to be adequate.

(4) Calculate the M simulated values y(r) = f (x
(r)
1 , . . . , x

(r)
N )

for Y using the measurement equation.
(5) Calculate the result y and standard uncertainty u(y) as the

arithmetic mean and the experimental standard deviation
of the M simulated values y(1), . . . , y(M) for Y .

(6) Calculate a coverage interval [ylow, yhigh] for Y by
determining the limits ylow and yhigh such that the interval
[ylow, yhigh] encompasses the desired fraction p of the
simulated distribution for Y . The fraction p is the
coverage probability of the interval. When the pdf for
Y is asymmetric, the preferred interval [ylow, yhigh] may
not be symmetric with respect to the result y. A common
value for p is 95%.

The draft GUM-S1 discusses two forms of the interval
[ylow, yhigh]. The first form is the interval [y(0.025), y(0.975)],
where y(0.025) and y(0.975) are the 0.025th quantile (2.5%
percentile) and 0.975th quantile (97.5% percentile) of the
simulated distribution for Y . The interval [y(0.025), y(0.975)]
excludes equal probability 0.025 (2.5%) on each side and it is
therefore a probabilistically symmetric interval. The second
form is the shortest width interval [ylow, yhigh] having the
coverage probability p = 95%. The draft GUM-S1 seems
to favour the shortest width interval [ylow, yhigh].

5.3. Type A and Type B probability distributions

The GUM applies Type A and Type B classification to
the methods for evaluating the expected values, standard
deviations and correlation coefficients of state-of-knowledge
pdfs for the input variables of a measurement equation [1,18].
A natural extension for the draft GUM-S1 is to apply Type A
and Type B classification to the methods for specifying the
input state-of-knowledge pdfs. Thus a Type A pdf is specified
on the basis of statistical analysis of the current measurement
data and a Type B pdf is specified by other means. Different
approaches are needed for specifying the two types of pdfs.
Generally, a Type A pdf is a Bayesian posterior probability
distribution based on the current measurement data. A Type
B pdf is specified by other means such as scientific judgment.
The probabilistic interpretation of a Type B pdf is like that
of a prior pdf used in Bayesian statistics. The draft GUM-
S1 [1, section 5.11.3] states that a classification of state-of-
knowledge pdfs into Type A and Type B is not needed. We
beg to differ. Even though the draft GUM-S1 treats Type A
and Type B pdfs in exactly the same way, this classification is
useful for interpreting the output of numerical simulation and
in discussing the relationship between the draft GUM-S1 and
Bayesian statistics [25].
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5.4. Merits of the draft GUM-S1

(i) When the measurement equation is non-linear, the draft
GUM-S1 enables determination of the result y uncertainty
u(y) and coverage interval [ylow, yhigh] with a stated
coverage probability for those joint input pdfs for which
numerical simulation can be carried out.

(ii) When the measurement equation is non-linear, the draft
GUM-S1 can be used to assess errors in the result y and
standard uncertainty u(y) determined from (13) and (14)
for those joint input pdfs for which numerical simulation
can be carried out.

(iii) The draft GUM-S1 can be used to assess the coverage
probabilities of expanded uncertainty intervals [y ±
k u(y)] determined from the GUM for those joint input
pdfs for which numerical simulation can be carried out.

The draft GUM-S1 is based on Monte Carlo simulation.
A Monte Carlo simulation is useful in evaluating uncertainty in
measurement for multivariate measurands as well as in least-
square computations [28–30].

5.5. Limitations of the draft GUM-S1

(i) A simulated pdf for the value Y of the measurand may
give an impression of being factual and exact. However,
it is factual only to the extent that the joint pdf assigned
to the input variables is factual. All determinations of
the pdfs for the input variables are based on assumptions
and models which could be faulty. Suppose a scaled and
shifted t-distribution is assigned as a Bayesian posterior
distribution to an input quantity determined from a series
of measurements (Type A). This assignment requires that
the measurement procedure be in a state of statistical
control with a fixed normal distribution. As noted earlier,
this ideal state is impractical or difficult to achieve and
maintain. To the extent that the actual measurement
procedure deviates from the assumed ideal state, the
assigned t-distribution and the simulated pdf for Y may not
be factual. Likewise, a Type B pdf must be professionally
determined and based on factual information; otherwise it
may not be reliable. It would be useful to include in the
draft GUM-S1 a discussion of the challenges in assigning
a joint pdf to the input variables.

(ii) Sometimes it is possible to specify correlation coefficients
between state-of-knowledge probability distributions for
correlated input variables; however, often it is not possible
to specify the joint pdf for the input variables or the joint
pdf may not be in a form that is easy to numerically
simulate. Then the GUM-S1 cannot be used directly. This
issue is discussed in [28].

(iii) Uncertainty budget is a vital output from the calculation of
uncertainty and it is a critical aid in assessing the combined
standard uncertainty from the practical viewpoint [22,23].
An uncertainty budget requires sensitivity coefficients and
individual components of uncertainty. The draft GUM-S1
[2, annex B] discusses how sensitivity coefficients may be
numerically determined. However, an uncertainty budget
is not a direct output of propagating pdfs by numerical
simulation.

(iv) A simulated pdf for the value Y of the measurand
determined from the draft GUM-S1 is not easily
transferable. In the GUM, the inputs and the outputs are
similar entities: expected values, standard deviations and
correlation coefficients. In the draft GUM-S1, the pdf
for each input variable is specified by a few parameters
[2, section 6]. The output pdf for Y is a simulated
distribution specified by M values where M may be to
the order of 106. Thus the input and output are dissimilar
entities. The simulated values for Y cannot be easily
archived and transmitted for subsequent use as input for
another uncertainty calculation on a different occasion by
another person. If only the result, standard uncertainty
and coverage interval are reported then the simulated
pdf cannot be reconstructed from the reported values.
However, a result and standard uncertainty obtained from
the draft GUM-S1 may be used as inputs for another
evaluation of uncertainty according to the GUM.

(v) As discussed in the draft GUM-S1, Monte Carlo
simulation involves many numerical issues. In particular,
if the computational algorithm is not developed carefully,
numerical errors can accumulate. Thus professionally
developed, good and easy to use computational software
which avoid accumulation of numerical errors are needed.
The GUM also requires computational software; however,
the numerical issues in the draft GUM-S1 are more
complex and challenging.

We regard the draft GUM-S1 as a useful companion to
the GUM.

5.6. Relationship between the draft GUM-S1 and Bayesian
statistics

A topic of current interest among leading researchers in
metrology is the relationship between the draft GUM-S1
and Bayesian statistics. Reference [25] addressed this
topic in the context of linear calibration. We regard the
following books as authoritative references on Bayesian
statistics: [31–36]. Bayesian statistics provides inference
about unknown parameters on the basis of available statistical
data and prior information. The link between the data and the
unknown parameters is provided by a likelihood function. The
likelihood function is the sampling pdf of the data regarded as
a function of the parameters. Thus Bayesian statistics is a
method for statistical (Type A) evaluation of data. The draft
GUM-S1 goes beyond Bayesian statistics to combine statistical
evaluations (Type A) and non-statistical evaluations (Type B)
through a Monte Carlo simulation. In this sense, the draft
GUM-S1 is an extension of Bayesian statistics.

6. Summary

The ideas of error and uncertainty were mixed up until
the GUM clarified their meanings. Error analysis did not
yield a combined expression of uncertainty that is needed
in tabulating results of measurement with uncertainties. A
report from error analysis provides information on imprecision
and bound on bias. A user of the report is expected
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to use this information to determine his/her uncertainty in
light of the intended use. There is arbitrariness in the
classification of the sources of error as random and systematic,
yet in error analysis the two components of error are treated
differently. These and other limitations of the error analysis
were hindrance to communication of scientific and technical
measurements. Therefore the world’s leading authorities
in metrology discussed the issues and developed the GUM
to supplant error analysis for quantifying uncertainty in
measurement. A concept of enduring importance from error
analysis is that the measurement procedure must be in a state
of statistical control otherwise the measurement data cannot
be treated statistically. Until the technology of measurement
improves to such an extent that the random errors become
negligible, the need for statistical control of the measurement
procedure will remain.

While error analysis is based on the hypothetical concepts
of true value and error in the realm of the state of nature,
the GUM deals with quantifiable result of measurement
and its associated uncertainty in the realm of the state of
knowledge about nature. The GUM introduced the concept
of measurement equation to quantify a result of measurement
and its associated combined standard uncertainty. Before
publication of the GUM, this concept did not exist in the
literature on metrology or on statistical methods. The GUM
recognizes the importance of scientific judgment in evaluating
components of uncertainty and explicitly legitimized its
use. The GUM declared that no distinction be made
between statistical (Type A) and other (Type B) methods of
evaluation. Before publication of the GUM there was no
generally accepted approach to quantify a realistic expression
of uncertainty from systematic effects. The GUM promulgated
the principle that a result of measurement should be corrected
for all recognized significant systematic effects and that every
effort should be made to identify such effects. A correction
is always uncertain. So the uncertainty associated with each
correction should be quantified and included in the combined
standard uncertainty. The GUM regards the variations arising
from random effects and those associated with the corrections
for systematic effects as components of uncertainty. The
GUM recommends a logically consistent way of combining
all components of uncertainty.

The GUM propagates the estimates, standard uncertainties
and correlation coefficients for various input quantities through
a linear approximation of the measurement equation to
determine an estimate and standard uncertainty for the
value of the measurand. Thus, the GUM is applicable
as an approximation in those situations where reasonable
estimates for the expected values, standard deviations and
correlation coefficients are available. The GUM does not
require a more extensive knowledge of the complete state-
of-knowledge pdfs for the input variables. A limitation of
the GUM is that when the measurement equation is non-
linear the standard uncertainty for the value of the measurand
determined by using the GUM may be a poor approximation.
This and other limitations of the GUM motivated the
BIPM JCGM to develop draft supplement 1 to the GUM
(draft GUM-S1).

The draft GUM-S1 propagates the pdfs assigned to
the input quantities to determine a pdf for the value Y

of the measurand through a Monte Carlo simulation of
the measurement equation. The draft GUM-S1 enables
determination of the result y, uncertainty u(y) and coverage
interval [ylow, yhigh] from a linear or a non-linear measurement
equation for those joint pdfs for the input variables for
which numerical simulation can be carried out. A limitation
of the draft GUM-S1 is that it requires knowledge of the
joint distribution of correlated input variables which in
complex situations may not be known. Also, it does not
yield an uncertainty budget directly. Further, a simulated
pdf for the value of the measurand cannot be easily
archived and transmitted for subsequent use. Despite its
limitations, the draft GUM-S1 is a useful companion to
the GUM.

We hope this discussion will lead to more effective use
of the GUM and its companion the draft GUM-S1. Also, we
hope this discussion will stimulate investigations to improve
these approaches to quantify uncertainty in measurement.
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