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Abstract

The performance of face recognition algorithms is re-
cently of increased interest. Empirical analyses of algo-
rithms have traditionally been limited to rank-based scores
such as cumulative match and receiver operating charac-
teristics. This restriction to performance measures based
on rank-based statistics arises because it is not possible to
directly compare similarities output by algorithms. This
paper presents the Phi-PIT transformation that makes it
possible to compare such heterogeneous outputs, and al-
lows a large body of classical statistical methods to be
used to measure and analyze performance. These statistical
techniques inclucde multiple comparison techniques, anal-
ysis of variance (ANOVA), and regression techniques. This
paper presents ANOVA, graphical ANOVA, and Student-
Newman-Keuls clustering analyses of the transformed out-
puts of fifteen face recognition algorithms.

1 Introduction

The last decade has seen significant advances in face
recognition technology. However, these advances have not
been accompanied by a clear understanding of why some
recognition algorithms perform better than others. There is
little consensus on which factors influence performance or
on their relative importance. For example, how much of the
observed variation in performance is attributable to the al-
gorithms themselves? How much is due to the subjects or to
the images? How much is due to subtle interactions among
images and algorithms? What are the effects of training sets
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on performance? Credible, quantifiable answers to these
questions are necessary for advances in face recognition.

Statistical techniques seem to offer a rich means for in-
vestigating performance properties of algorithms. The com-
munity acknowledges the utility of common image sets for
comparing algorithmic performance, but the effort is com-
plicated by the fact that algorithms estimate and rank iden-
tities using similarity scores. The scales that different algo-
rithms employ for matching are distinct, and do not imme-
didately lend themselves to direct comparison.

Thus algorithm performance has, to date, been based
on rank statistics; most frequently used are the cumulative
match characteristics (CMC) curves for identification per-
formance [14], and receiver operator characteristics (ROC)
curves for verification performance.

Data generally fall into three classes: ratio, ordinal, nom-
inal. Nominal data are named categories such as red, white,
and blue, upon which arithmetic cannot be meaningfully
performed. Ordinal data are typically represented as inte-
gers, with an implied or explicit relative ranking among the
numbers: e.g., 10 is better than 9 is better than 8, etc. How-
ever, there is no information concerning how much better
10 is than 9, or 9 is than 8. Ratio data are real numbers and
inherit the rich arithmetic and ordering structure of the real
line.

One can always pass from ratio to ordinal scale by rank-
ing the ratio scale numbers given by observation or exper-
iment. Rank-based statistics have the mathematical virtue
that, if the characteristics one seeks to compare are invari-
ant under monotonic transformation, then “the best that one
can do” is to compare via ranks [2]. But ranks have the very
obvious potential defect of “throwing away information” in
the passage from the richness of ratio scale similarity scores
to the leaner ordinal scale of ranked scores.

If one could directly compare similarity scores among



algorithms in their original ratio scale, or transformed ver-
sion thereof, it would open up the field to the use of a large
existing corpus of statistical analysis tools for performance
set ranking, clustering, and general comparisons. The list
would include the many techniques of Multiple Compar-
isons [5], Analysis of Variance (ANOVA) [4] and vari-
ants (Multivariate ANOVA, General Linear Models, Mixed-
Effects Models), regression techniques [1] ((Multi)linear,
Nonlinear, Logistic, All Possible Subsets), and a host of
multivariate techniques such as MultiDimensional Scaling,
Discriminant Analysis, and Clustering; see, for example,
[6].

Thus this paper discusses a transformation of similarities
obtained from different algorithms tested on common sets
of images that permits direct comparison in a ratio scale.
We illustrate its use via graphical one-way ANOVA (box-
plots, [9]) and a simple, easily interpretable graphical Mul-
tiple Comparison technique called Student-Newman-Keuls
[5].

2 Image Selection

Face recognition algorithms estimate the identity of a
person in a facial image “degree of match” between un-
known subject probe and enrolled gallery image as “sim-
ilarity scores”. Performance of recognition algorithms can
be obtained by post-hoc analysis of the matrix of similar-
ity scores generated by comparing all probe images with
all gallery images. Thus the similarity score, sij , is the re-
sult of comparing the i-th gallery and j-th probe images.
This matrix of similarity scores and the identities of the
subjects are the sole inputs necessary for computing recog-
nition performance. For example, an ROC curve can be
obtained by counting the relative numbers of matching and
non-matching elements above a threshold t.

The similarity sij is a match score if the i-th gallery and
j-th probe images are of the same person; a similarity is a
non-match score if the images are of different people. A
set of similarity scores is homogeneous if all elements are
match scores. Likewise, a set is heterogeneous if all ele-
ments are non-matches.

The analysis performed in this paper is based on the
Sep96 FERET evaluation [14], in which images from 1196
persons were used. We restrict attention here to those sub-
jects for which the data contains at least eight images of the
same human subject. The IDs of the FERET subjects meet-
ing this criterion are: 93, 108, 182, 383, 468, 469, 547, 556,
588, 660, 705, 706, 708, 711, 717, 722, 744, 745, 751, 752
and 770. They are renumbered from 1 in the figures.

Each algorithm evaluated under the Sep96 FERET pro-
tocol generated 12,690,568 similarity scores corresponding
to pairwise comparisons of images in sets of size 3,816 and
3,323.

Index Name
1 baseline-cor
2 baseline-ef
3 ef-angle
4 ef-Mahalanobis-angle
5 ef-L1
6 ef-L2
7 ef-Mahalanobis
8 ef-Mahalanobis-L1
9 ef-Mahalanobis-L2
10 Excalibur
11 MIT-Mar-95
12 MIT-Sept-96
13 MSU
14 UMD-Mar-97
15 USC-Mar-97

Table 1. The fifteen algorithms and their in-
dices.

The outputs of fifteen algorithms are considered. Six
were independently developed and evaluated in the Sep96
FERET evaluations. They are: MIT-Mar95 [10], MIT-
Sep96 [11], MSU [17], UMD-Mar97 [16, 17], USC-Mar97
[7], and one developed by Excalibur Corp. Two more,
baseline-ef and baseline-cor, were baseline algorithms from
the Sep96 FERET evaluations [14]. The final seven algo-
rithms are due to Moon and Phillips [12], are prefixed by
”ef-”, and are implementations of the principal components
analysis (PCA) face recognition algorithm. They differ only
in the distance metric used in the nearest neighbor classi-
fication. In all the figures that follow, the algorithms are
indexed by the numbers given in table 1.

3 The PIT and Phi-PIT Transformations

It is often the case, with real world data, that in order
to make meaningful inferences on the structure of the data,
one must subject elements of the data to transformation [3].
Richter scale for earthquakes, the pH scale for acidity, deci-
bels for intensity of sounds are all common examples of
physical data numbers re-expressed by - logarithmic - trans-
formation in order to facilitate understanding and operation.

In our situation each algorithm yields similarity scores
on different scales as a result of using different normal-
izations and distance metrics. This is shown in Figure 1,
which plots the empirical cumulative distribution function
(ECDF) of the MSU, UMD97, and USC97 algorithms. The
ECDFs were generated from all 12,690,568 similarity ele-
ments. For these three algorithms, the range of the similar-
ities scores was in [0; 1]. Figure 2 presents a boxplot of the
similarity scores for all fifteen algorithms. Figures 1 and 2
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Figure 1. Empirical CDFs, for the MSU,
UMD97, and USC97 algorithms.
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Figure 2. Boxplot of raw similarity scores.

show that the arbitrary ranges and distributions of the raw
similarity scores do not allow for direct comparison.

Meaningful comparison of algorithms is only possible
if the similarity scores are put on a single scale. A coher-
ent renormalization of similarity values can be achieved by
transforming them by their ECDF. The application of the
ECDF constitutes the Probability Integral Transform (PIT)
in which numbers distributed according to a parent CDF are
transformed into uniformly distributed numbers on the unit
interval. So if the ECDF of the k-th algorithm is F̂k , then
similarity scores coming from algorithm k are transformed
according to:

uij = F̂k(sij): (1)

The result is similarity values that are uniformly distributed
on the unit interval. Because all values are transformed by
their native ECDF onto the unit interval the scores are now
directly comparable. The ECDFs are estimated from the
12,690,568 similarities scores.

A second recommended step in the transforming process
is to apply the inverse cumulative function of the standard

Gaussian (normal), ��1, to the PIT-scores obtained in step
one:

pij = ��1(F̂k(sij)) = ��1(uij) (2)

This transformation takes the uniformly distributed PIT-
scores and converts them to normally distributed Phi-scores.
A Gaussian form for score expression is selected because
many classical statistical comparison techniques assume ap-
proximate normality of datasets being compared.

Transformation to other distributional forms is easily
achieved. Many standard non-uniform random number
generators are based on appropriate transformation of uni-
formly distributed numbers. To transform and compare to
lognormality, for example, the transformation

eij = exp(��1(F̂k(sij))) = exp(pij) (3)

should be employed.
Each of the above transformations is monotone, so ranks

are preserved. Thus general rank order statistics, such as
CMC and ROC scores are invariant.

4 Score Comparison via Boxplots

Having coherently transformed all scores from an algo-
rithmic comparison experiment into a Gaussian framework,
retaining the original ratio scale of the data, we are now at
liberty to rank, cluster, and generally compare sets of al-
gorithmic scores on comparable Gallery-Probe match prob-
lems using the whole panoply of classical statistical meth-
ods.

A boxplot is a graphic technique for visually character-
izing the distribution of a data set, or sets of data. It is an
easily implemented schematic, used to compare the empiri-
cal distributions represented by batches of numbers. It can
be thought of as constituting a visual one-way ANOVA. Lo-
cation, spread, and extreme information for each batch are
embedded in the graphical display. This allows meaning-
ful comparison of distributional information through rapid
assessment of the alignment or misalignment, ranking, and
clustering of median values and boxes, and differences in
spread.

Here, the batches of numbers being compared are raw or
suitably transformed scores, indexed by algorithm or image
subject.

Important features of the boxplot are: (1) the width of
each box is proportional to the data set size; (2) the median
value of the data, used as an indicator of location because
of its resistance to outliers, is identified by the X; (3) the in-
terquartile range (the range from the 25 th to 75th percentile,
i.e. the “middle half”) of the data is represented by the body
of the box; (4) the extremes (minimum and maximum) are
represented by the whiskers (ends of the straight lines) pro-
jecting out of the box.
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Figure 3. Boxplot of Phi-PIT similarity scores
by algorithm.
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Figure 4. Boxplot of Phi-PIT scores by sub-
ject showing more pronounced subject effect
in terms of median slippage than original un-
transformed data.

As described in section 2 there are at least eight images
for each subject. In general let each subject have L i images,
and let P k

i be the set of homogeneous scores for person i re-
ported by algorithm k. If the similarity scores for algorithm
k are symmetric, there are Li(Li�1)=2 different similarity
scores. If the scores are asymmetric, each pair are aver-
aged to produce Li(Li � 1)=2 scores. Let P k be the union
of all 21 sets of homogeneous scores for algorithm k; i.e.,
P k = [iP

k
i . Figure 3 is a boxplot of the P k’s for all fif-

teen algorithms. Because the scores have been transformed
to be on the same scale it is meaningful to compare them
across algorithms. The majority of the scores are above
zero because the lower non-match scores have been omit-
ted. In fact, a correlation between the relative height of an
algorithms boxplot with the other algorithms and its perfor-
mance on traditional measures such the CMC and ROC is
expected.

Figure 3 shows algorithm effects: discernible variation in

homogeneous similarity scores across the algorithms. But
what is the difference in distribution of homogeneous scores
among the 21 subjects. This plot assesses whether some
people harder to recognize than others. In the psychological
literature this is connected to the typical vs. atypical people
issue, and it has been shown that humans have a harder time
recognizing typical people [8, 13, 15]. Do some subjects
display a larger range of similarity scores?

The first step is to collect all the similarity scores for each
person. Let Si be all the similarity scores for all fifteen al-
gorithms for person i; i.e., Si = [kP

k
i . Figure 4 contains

the boxplots for all 21 Si’s. Figure 4 shows a large vari-
ation in the distribution of similarity scores among the 21
subjects, in terms of median, and interquartile levels, and
range of each distribution.

Figures 3 and 4 show algorithm and subject effects in
isolation. Now we look at interaction between algorithm
and subject effects. In Figure 4, each subject has a range of
scores, however, within a subject we do not have the distri-
bution broken out by algorithm. If for subject 1, algorithm
j has the highest ranked median, is the same true for the
remaining algorithms? One can look at how the ranking
of means for P k

i vary using graphical analysis of variance
(GANOVA). Means are used because it is not possible to
simultaneously display the entire set of homogeneous simi-
larities in a way that overall structure can be appreciated.

Figures 6 and 5 show the GANOVA of the interaction be-
tween the algorithms and subject effects, which we now ex-
plain. The GANOVA plots Phi-PIT scores against an index
denoting algorithm or subject while each trace corresponds
to one subject or algorithm. Let P k

i denote the mean of
the P k

i ’s. Trace k, corresponds to algorithm k and connects
the points fP k

1
; P k

2
; : : : ; P k

21
g. This shows how the means

of the P k
i ’s vary by subject and algorithm. Stratification of

the traces indicates a clear factor effect. Any criss-crossing
of the traces corresponds to interaction between algorithm
and subject manifested by variation in levels of one factor
across different levels of the other. Figure 6 shows some
stratification, while also showing some criss-crossing. The
amount of stratification and criss-crossing is dependent on
the subjects. Figure 5 shows less stratification indicative of
less pronounced subject effect.

5 Analysis of Phi-PIT-scores

The graphical techniques of the previous section that do
not make any distributional assumptions. However, with-
out distributional assumptions statistical inference cannot
be performed. Because the Phi-PIT transformation yields a
data set of 12,690,568 values that are normally distributed,
it is possible to perform statistical inference tests that re-
quire the data with a Gaussian distribution.
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Figure 5. Graphical ANOVA of Phi-PIT simi-
larity values. Each trace corresponds to one
subject algorithm.
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Figure 6. Graphical ANOVA of Phi-PIT simi-
larity values. Each trace corresponds to one
subject. The plot shows both the strong strat-
ification indicative of algorithm effect, and
criss-crossing suggestive of modest interac-
tion between algorithm and subject.

First ANOVA can be used to formally analyze the in-
teraction between algorithm and subject effects that were
graphically studied above. The results of the ANOVA ap-
pear in table 2. The F-values and near-zero P-values indi-
cate unambiguous algorithm and subject effects, and less
significant algorithm-subject interaction.

The standard global F-test for equality of means associ-
ated with the oneway ANOVA is a one-shot test for assess-
ing the “homogeneity” (equality) of the means of groups
being compared. If the test fails, as it has here, it becomes
of natural interest to consider what subgroupings of means
might exhibit homogeneity. There exists a large corpus of
such techniques in the statistical literature, which goes un-
der the name of Multiple Comparisons.

Student-Newman-Keuls (SNK) is a standard Multiple

Effect SSQ DF MSQ F-value P-value
Algorithm 1671.0 14 119.4 126.2 0.000
Subject 3645.9 20 182.3 192.8 0.000
Interaction 2533.9 280 9.1 9.6 0.000

Table 2. ANOVA table for replicated 2-factor
fixed-effect with interaction model for Phi-PIT
scores. The small P-values indicate signifi-
cant algorithm and subject effects and algo-
rithm:subject interaction.

Comparisons procedure designed in part to protect against
the risk of inflated Type I error associated with procedures
of the “all possible t-tests” type. (Type I error means erro-
neous rejection of null hypotheses of equality of clusters of
means.) If the mean Phi-PIT scores are computed for each
of the algorithms being considered, a natural (t-) statistic for
pairwise comparison of means is the (absolute value of) the
difference between the means denominated by a standard
error of that difference. SNK concentrates on the largest
such statistic, the so-called Studentized range, from all such
possible pairwise comparisons. SNK is a stepdown proce-
dure for testing all possible subset homogeneity (equality of
means) hypotheses based on the distribution of the largest
such. The procedure starts by checking whether all k al-
gorithm means can be clustered; then whether any of the
(k-1)-fold sets of means can be clustered; then any of the
(k-2)-fold sets etc. At each level the homogeneity (equal
means) hypothesis is tested against the appropriate Studen-
tized range. The resulting SNK schematic in figure 7 is
an easily understood ranking and clustering of the groups
(here: algorithms) being compared. The numbers represent
the mean Phi-PIT scores for the algorithms indicated. The
figure shows that an SNK cluster of the two best algorithms
in the top rank, a clear clustering of the worst algorithms
at the bottom, and groupings of “in-between” algorithms in
the middle.

6 Discussion and Conclusion

The paper employs the Phi-PIT transformation of the
heterogeneous outputs of face recognition systems. It per-
mits direct comparison of similarity scores across systems
in the ratio scale. This normalization immediately enables
the use of a large number of standard statistical procedures
for comparison of algorithms. Further the gaussianity of the
transformed scores allows techniques that require it to be
invoked, such as ANOVA or SNK. The restriction to mono-
tonic transformations preserves the rank-order statistics of
the data. This has the desirable property of leaving tradi-
tional scoring metrics unchanged.
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Figure 7. SNK ranking and clustering of al-
gorithms. The vertical displacement is linear
with the mean Phi-PIT value; the horizontal
displacement and vertical lines give the clus-
tering. Extended lines indicate cluster over-
lap.
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