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Abstract 
 
A quantum computer, if built, will be to an ordinary computer as a hydrogen bomb is to 
gunpowder, at least for some types of computations.  Today no quantum computer exists, beyond 
laboratory prototypes capable of solving only tiny problems, and many practical problems 
remain to be solved.   Yet the theory of quantum computing has advanced significantly in the 
past decade, and is becoming a significant discipline in itself.  This article explains the concepts 
and basic mathematics behind quantum computers and some of the promising approaches for 
building them.  We also discuss quantum communication, an essential component of future 
quantum information processing, and quantum cryptography, widely expected to be the first 
practical application for quantum information technology.   
 
 
1 Introduction 
 
Computer users have become accustomed to an exponential increase in computing speed and 
capacity over the past few decades.  Gordon Moore observed in 1965 that chip capacity doubled 
every year.  Although the growth rate has slowed to “only” doubling about every 18 months, the 
geometric increase predicted by “Moore’s law”, as it is called, has held for over 40 years.  
Today’s high-end PCs have the same power as machines that were considered supercomputers 
not long ago.  Software advances have been equally dramatic, perhaps most familiar to the 
average user in the form of computer graphics.  The crude colored dots and flat polygons in 
computer games of 20 years ago have been replaced by the near-photorealistic graphics of 
today’s video games and movies.   
 
An enormous amount of computing power is required for the complex software used in computer 
animations, molecular biology analyses, computational fluid dynamics, global climate and 
economic modeling, worldwide credit card processing, and a host of other sophisticated 
applications.  The demands of these problem domains have led researchers to develop distributed 
computing systems harnessing the power of thousands, and in some cases more than a million, 
processors into clusters.  Yet there are limits to this approach.  Adding more processors increases 
the computing capacity of these clusters only linearly, yet many problems, particularly in physics 
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and computer science, increase exponentially with the size of their inputs.  The computing 
demands of these problems seem to be inherent in the problems themselves; that is, the 
overwhelming consensus is that no possible algorithm executable on a Turing machine, the 
standard model of computing, can solve the problem with less than exponential resources in 
time, memory, and processors. 
 
The doubling of computing power every 18 months has enabled scientists to tackle much larger 
problems than in the past, but even Moore’s law has limits.  For each new chip generation, the 
doubling of capacity means that about half as many atoms are being used per bit of information.  
But when projected into the future, this trend reaches a limit of one atom per bit of information 
sometime between 2010 and 2020.  Does this mean that improvements in computing will slow 
down at that point?  Fortunately, the answer is “not necessarily.”  One new technology, quantum 
computing, has the potential to not only continue, but in fact dramatically increase the rate of 
advances in computing power, at least for some problems.  The key feature of a quantum 
computer is that it can go beyond the Turing machine model of computation.  That is, there are 
functions that can be computed on a quantum computer that cannot be effectively computed with 
a conventional computer (i.e., a classical Turing machine.)  This remarkable fact underlies the 
enormous power of quantum computing.   
 
Why all the excitement now?  In 1982 Richard Feynman pointed out [Feyn82] that simulating 
some quantum mechanical systems took a huge amount of classical resources.  He also suggested 
the complement, that if the quantum effects could be harnessed, they may be able to do a huge 
amount of classical computation.  However, nobody had any idea how that might be done. 
 
At about the same time, David Deutsch tried to create the most powerful model of computation 
consistent the laws of physics.  In 1985 he developed the notion of a Universal Quantum 
Computer based on the laws of quantum mechanics.  He also gave a simple example suggesting 
that quantum computers may be more powerful than classical computers.  Many people 
improved on this work in the following decade.  The next breakthrough came in 1994 when Peter 
Shor demonstrated [Shor95] that quantum computers could factor large numbers efficiently.  
This was especially exciting since it is widely believed that no efficient factoring algorithm is 
possible for classical computers.  One limitation still dimmed the lure of quantum computing. 
 
Quantum effects are exceeding fragile.  Even at atomic sizes, noise tends to quickly distort 
quantum behavior and squelch non-classical phenomenon.  How could a quantum computer 
undergo the hundreds or thousands of processing steps needed for even a single algorithm 
without some way to compensate for errors?  Classical computers use millions and even billions 
of atoms or electrons to smooth out random noise.  Communication, storage, and processing 
measures and compares bits along the way to detect and correct small errors before they 
accumulate to cause incorrect results, distorted messages, or even system crashes.  But 
measuring a quantum mechanical system causes the quantum system to change. 
 
An important breakthrough came in 1996 when Andrew Steane and independently, Richard 
Calderbank and Peter Shor, discovered methods of encoding quantum bits, or “qubits”, and 
measuring group properties so that small errors can be corrected.  These ingenious methods use 
collective measurement to identify characteristics of a group of qubits, for example, parity.  Thus 



it is conceivable to compensate for an error in a single qubit while preserving the information 
encoded in the collective quantum state. 
 
Although a lot of research and engineering remain, today we see no theoretical obstacles to 
quantum computation and quantum communication.  In this article, we review quantum 
computing and communications, current status, algorithms, and problems that remain to be 
solved.  Section 2 gives the reader a narrative tutorial on quantum effects and major theorems of 
quantum mechanics.  Section 3 presents the “Dirac” or “ket” notation for quantum mechanics 
and mathematically restates many of the examples and results of the preceding section.  Section 
4 goes into more of the details of how a quantum computer might be built and explains some 
quantum computing algorithms, such as Shor’s for factoring, Deutsch’s for function 
characterization, and Grover’s for searching, and error correcting schemes.  Section 5 treats 
quantum communication and cryptography.  We end with an overview of physical 
implementations in Section 6. 
 
 
2 The Surprising Quantum World 
 
Subatomic particles act very differently from objects in the everyday world.  Particles can have a 
presence in several places at once.  Also two well-separated particles may have intertwined fates, 
and the observation of one of the particles will cause this remarkable behavior to 
vanish.  Quantum mechanics describes these, and other physical phenomena extraordinarily well. 
 
We begin with a simple experiment that you can do for a few dollars worth of equipment.  Begin 
with a beam of light passing through a polarizer, as in Figure 1. 

 

 
Figure 1. Polarizer dims beam by half. 

 
A typical beam, such as from the sun or a flashlight, has its intensity reduced by half.  Suppose 
we add another polarizer after the first.  As we rotate the polarizer, the beam brightens and dims 
until it is gone2, as depicted in Figure 2.  

 

 
Figure 2. Two orthogonal polarizers extinguish the beam. 

 
Leaving the two polarizers at the minimum, add a third polarizer between them, as shown in 
Figure 3.  As we rotate it, we can get some light to pass through! How can adding another filter 
increase the light getting through? 

 
                                                 
2 Real polarizers are not perfect, of course, so a little light always passes. 



 
Figure 3. A third polarizer can partially restore the beam! 

 
Although it takes extensive and elaborate experiments to prove that the following explanation is 
accurate, we assure you it is.  Classical interpretations of these results are misleading at best. 
 
To begin the explanation, photons have a characteristic called “polarization”.  After passing 
through polarizer #1, all the photons of the light beam are polarized in the same direction as the 
polarizer.  If a polarizer is set at right angles to polarizer #1, the chance of a photon getting 
through both polarizers is 0, that is, no light gets through.  However, when the polarizer in the 
middle is diagonal to polarizer #1, half the photons pass through the first two polarizers.  More 
importantly, the photons are now oriented diagonally.  Half the diagonally oriented photons can 
now pass through the final polarizer.  Because of their relative orientations, each polarizer lets 
half the photons through, so a total of 1/8 passes through all three polarizers. 
 
 
2.1 Sidebar: Doing the Polarization Experiment Yourself 
 
You can do the polarization experiment at home with commonly available materials costing a 
few dollars.  You need a bright beam of light.  This could be sunlight shining through a hole, a 
flashlight, or a laser pointer.   
 
For polarizers you can use the lens from a pair of polarizing sunglasses.  You can tell if 
sunglasses are polarizing by holding two pair, one behind the other, and looking through the left 
(or right) lens in series.  Rotate one pair of sunglasses relative to the other while keeping the lens 
in line.  If the scene viewed through the lens darkens and lightens as one is rotated, they are 
polarizing.  You can also buy gray light polarizing glasses or plastic sheets on the World Wide 
Web. 
 
Carefully free the lens.  One lens can be rigidly attached to a support, but the others must be able 
to rotate.  Shine the light through polarizer #1.  Put polarizer #2 in the beam well after polarizer 
#1.  Rotate 2 until the least amount of light comes through.  Now put polarizer 3 between 1 and 
2.  Rotate it until the final beam of light is its brightest.  By trying different combinations of 
lenses and rotations, you can verify that the lenses are at 45° and 90° angles from each other. 
 
 
2.2 Returning to the Subject at Hand … 
 
After we develop the mathematics, we will return to this example in Sect. 3.3 and show how the 
results can be derived.  The mathematical tools we use are quantum mechanics.  Quantum 
mechanics describes the interactions of electrons, photons, neutrons, etc. at atomic and 
subatomic scales.  It does not explain general relativity, however.  Quantum mechanics makes 
predictions on the atomic and subatomic scale that are found to be extremely accurate and 
precise.  Experiments support this theory to better accuracy than any other physical theory in the 



history of Science. 
 
The effects we see at the quantum level are very different from those we see in the every-day 
world.  So, it should not come as a surprise that different mathematics is used.  This section 
presents fundamental quantum effects and describes some useful laws that 
follow from those. 
  
 
2.3 The Four Postulates of Quantum Mechanics 
 
Quantum Mechanics is mathematically very well defined and is a framework for defining 
physical systems.  This powerful framework defines what may and may not happen in quantum 
mechanical systems.  Quantum Mechanics itself does not give the details of any one particular 
physical system. 
 
Some analogies may help.  Algebraic groups have well defined properties, such as that 
operations are closed.  Yet, the definition of a group does not give the group of rotations in 3-
space or addition on the integers.  Likewise, the rules for a role-playing game limit what is and is 
not allowed, but don't describe individuals or scenarios.  
 
Quantum mechanics consists of four postulates. [NC00 pp 80-94] 
 
 
Postulate 1 Any isolated quantum system can be completely mathematically characterized by a 
state vector in a Hilbert space.  
 
A Hilbert space is a complex vector space with inner product.  Experiments show there is no 
need for other descriptions since all the interactions, such as momentum transfer, electric fields, 
and spin conservation, can be included within the framework.  The postulates of quantum 
mechanics, by themselves, do not tell us what the appropriate Hilbert space is for a particular 
system.  Rather, physicists work long and hard to determine the best approximate model for their 
system.  Given this model, their experimental results can be described by a vector in this 
appropriate Hilbert space. 
 
The notation we will explain in Sect. 3 cannot express all possible situations, such as if we wish 
to track our incomplete knowledge of a physical system, but suffices for this paper.  There are 
more elaborate mathematical schemes that can represent as much quantum information as we 
need. 
 
 
Postulate 2 The time evolution of an isolated quantum system is described by a unitary 
transformation. 
 
Physicists use the term “time evolution” to express that the state of a system is changing solely 
due to passage of time, for instance, particles are moving or interacting.  If the quantum system is 



completely isolated from losses to the environment or influences from outside the system, any 
evolution can be captured by a unitary matrix expressing a transformation on the state vector.  
 
Again, pure quantum mechanics doesn't tell us what the transformation is, but provides the 
framework into which experimental results must fit.  The corollary is that isolated quantum 
systems are reversible.  
 
 
Postulate 3 Only certain sets of measurements can be done at any one time.  Measuring projects 
the state vector of the system onto a new state vector. 
 
This is the so-called collapse of the system.  From a mathematical description of the set of 
measurements, one can determine the probability of a state yielding each of the measurement 
outcomes. 
 
One powerful result is that arbitrary quantum states cannot be measured with arbitrary 
accuracy.  No matter how delicately done, the very first measurement forever alters the state of 
the system.  We discuss this in more detail in Section 2.6. 
 
The measurements in a set, called “basis”, are a description of what can be observed.  Often 
quantum systems can be described with many different, but related, bases.  Analogously, 
positions in the geometric plane may be given as pairs of distances from the origin along 
orthogonal, or perpendicular, axes, such as X and Y.  However, positions may also be given as 
pairs of distances along the diagonal lines X=Y and X= -Y, which form an equally valid set of 
orthogonal axes.  A simple rotation transforms between coordinates in either basis.  Polar 
coordinates provide yet another alternative set of coordinates.  Although it may be easier to work 
with one basis or another, it is misleading to think that coordinates in one basis are the 
coordinates of a position, to the exclusion of others. 
 
 
Postulate 4 The state space of a composite system is the tensor products of the state spaces of 
the constituent systems. 
 
Herein lies a remarkable opportunity for quantum computing.  In the everyday world, the state 
space of a system composed of several subsystems is the product of the state spaces of the 
subsystems that constitute it.  However, quantum mechanical systems can become very 
complicated very fast.  The negative view is to realize how much classical computation we need 
to simulate even simple systems of, say, 10 particles.  The positive view is to wonder if this 
enormously rich state space might be harnessed for very powerful computations. 
 
2.4 Superposition 
 
As can be seen from the polarization experiment above, very tiny entities may behave very 
differently from macroscopic bodies.  An everyday solid object has a definite position, velocity, 
etc.  But at the quantum scale, particle characteristics are best described as blends or 
superpositions of base values.  When measured, we get a definite value.  However, between 



measurement events, any consistent mathematical model must allow for the potential, or 
“amplitude”, of several states at once.  Another example may provide a more intuitive grasp. 
 
2.4.1 Young’s Double Slit Experiment 
 
In 1801, using only a candle for a light source, Thomas Young performed an experiment whose 
results can only be explained if light acts as a wave [You07].  Young shined the light through 
two parallel slits onto a surface, as diagrammed in Figure 4, and saw a pattern of light and dark 
bands.  The wavy line on the right graphs the result; light intensity is the horizontal axis, 
increasing to the right.  This is the well-known interference effect: waves, which cancel and 
reinforce each other, produce this pattern. 
 

 
Figure 4.  Young’s Double Slit Experiment 

 
Imagine, in contrast, a paintball gun pointing at a wall in which two holes have been drilled, 
beyond which is a barrier, as shown in Figure 5.  The holes are just big enough for a single 
paintball to get through, though the balls may ricochet from the sides of the holes.  The gun 
shoots at random angles, so only a few of the paintballs get through.  If one of the holes is 
covered up, the balls that get through will leave marks on the wall, with most of the marks 
concentrated opposite the hole and others scattered in a bell curve (P1) to either side of the hole, 
as shown in the figure.  If only the second hole is open, a similar pattern (P2) emerges on the 
barrier immediately beyond the hole.  If both holes are open, the patterns simply add.  The paint 
spots are especially dense where the two patterns overlap, resulting in a bimodal distribution 
curve that combines P1 and P2.  No interference is evident. 
 



 
Figure 5.  Paintballs fired at a wall 

 
What happens when electrons are fired at two small slits, as in Figure 6?  Surprisingly, they 
produce the same wave pattern of Figure 4.  That is, the probability of an electron hitting the 
barrier at a certain location varies in a pattern of alternating high and low, rather than a simple 
bimodal distribution.  This occurs even when electrons are fired one at a time.  Similar 
experiments have been done with atoms and even large molecules of carbon-60 (“buckeyballs”), 
all demonstrating wave-like behavior of matter.  So something “wave-like” must be happening at 
small scales. 
 

 
Figure 6.  Double slit experiment with electrons 

 
 
2.4.2 Explaining the Double Slit Experiment 
 
How do we explain these results?  If a wave passes through the slits, we can expect interference, 
canceling or reinforcing, resulting in a pattern of light and dark lines.  But how can individual 
electrons, atoms, or molecules, fired one at a time, create interference patterns?  A desperate 
classical explanation might be that the particles split, with one part passing through each hole.  
But this is not the case: if detectors are placed at H1 or at H2 or in front of the barrier, only one 
particle is ever registered at a time.  (Remarkably, if a detector is placed at H1 or H2, the pattern 
follows Figure 5.  More about this effect later.) 
 



The quantum mechanical explanation is that particles may be in a “superposition” of locations.  
That is, an electron is in a combination of state “at H1” and “at H2”.  An everyday solid object 
has a definite position, mass, electric charge, velocity, etc.  But at the quantum scale, particle 
characteristics are best described as blends or superpositions of base values.  When measured, we 
always get a definite value.  However, between measurement events, any consistent 
mathematical model must potentially allow for an arbitrary superposition of many states.  This 
behavior is contrary to everyday experience, of course, but thousands of experiments have 
verified this fact: a particle can be in a superposition of several states at the same time.  When 
measured, the superposition collapses into a single state, losing any information about the state 
before measurement.  
 
The photons in the beam-and-filters experiment are in a superposition of polarizations.  When 
polarizer #1 tests the photon for vertical or horizontal polarization, the photon either emerges 
polarized vertically, or it doesn't emerge.  No information about prior states is maintained.  It is 
not possible to determine whether it had been vertical, diagonal, or somewhere in 
between.  Since vertical polarization is a superposition, or combination, of diagonal 
polarizations, some of the vertically polarized photons pass through the middle polarizer and 
emerge polarized diagonally.  Half of the now-diagonally polarized photons will pass through the 
final, horizontal polarizer. 
 
 
2.5 Randomness 
 
In the beam-and-filters experiment, randomly some photons emerge polarized while others do 
not emerge at all.  This unpredictability is not a lack of knowledge.  It is not that we are missing 
some full understanding of the state of the photons.  The random behavior is truly a part of 
nature.  We cannot, even in principle, predict which of the photons will emerge and which will 
not. 
 
This intrinsic randomness may be exploited to generate cryptographic keys or events that are not 
predictable.  But it also means that the unpredictability of some measurements is not merely an 
annoying anomaly to be reduced by better equipment, but an inherent property in quantum 
computation and information.  Even though an individual measurement may be arbitrary, the 
statistical properties are well defined.  Therefore we may take advantage of the randomness or 
unpredictability in individual outcomes. 
 
We can make larger or more energetic systems that are more predictable, but then the quantum 
properties, which may be so useful, disappear, too. 
 
 
2.6 Measurement 
 
As opposed to being an objective, external activity, in quantum mechanics measuring a system is 
a significant step.  A measurement is always with regard to two or more base values.  In the 
photon polarization experiment, the bases are orthogonal directions: vertical and horizontal, two 
diagonals, 15° and 105°, etc.  The basis for other systems may be in terms of momentum, 
position, energy level, or other physical quantities. 



 
When a quantum system is measured, it collapses into one of the measurement bases.  No 
information about previous superpositions remains.  We cannot predict into which of the bases a 
system will collapse, however given a known state of the system, we can predict the probability 
of measuring each basis. 
 
 
2.7 Entanglement 
 
Even more surprising than superposition, quantum theory predicts that entities may have 
correlated fates.  That is, the result of a measurement on one photon or atom leads 
instantaneously to a correlated result when an entangled photon or atom is measured. 
 
For a more intuitive grasp of what we mean by “correlated results”, imagine that two coins could 
be entangled (there is no known way of doing this with coins of course).  Imagine one is tossing 
a coin.  Careful records show it comes up “heads” about half the time and “tails” half the time, 
but any one result is unpredictable.  Tossing another coin has similar, random results.  But 
surprisingly, the records of the coin tosses show a correlation!  When one coin comes up heads, 
the other coin comes up tails and vice versa.  We say that the state of the two coins is 
entangled.  Before the measurement (the toss), the outcome is unknown, but we know the 
outcomes will be correlated.  As soon as either coin is tossed (measured), the fate of tossing the 
other coin is sealed.  We cannot predict in advance what an individual coin will do, but their 
results will be correlated:  once one is tossed, there is no uncertainty about the other. 
 
This imaginary coin tossing is only to give the reader a sense of entanglement.  Although one 
might come up with a classical explanation for these results, multitudes of ingenious experiments 
have confirmed the existence of entanglement and ruled out any possible classical explanation.  
Over several decades, physicists have continually refined these experiments to remove loopholes 
in measurement accuracy or subtle assumptions.  All have confirmed the predictions of quantum 
mechanics. 
 
With actual particles any measurement collapses uncertainty in the state.  A real experiment 
would manufacture entangled particles, say by bringing particles together and entangling them or 
by creating them with entangled properties.  For instance, we can “downconvert” one higher 
energy photon into two lower energy photons which leave in directions which not entirely 
predictable.  Careful experiments show that the directions are actually a superposition, not 
merely a random, unknown direction.  However, since the momentum of the higher energy 
photon is conserved, the directions of the two lower energy photons are entangled.  Measuring 
one causes both photons to collapse into one of the measurement bases.  But once entangled, the 
photons can be separated by any distance, at any two points in the universe, yet measuring one 
will result in a perfectly correlated measurement for the other.  
 
Even though measurement brings about a synchronous collapse regardless of the separation, 
entanglement doesn't let us transmit information.  We cannot force the result of a measurement 
any more than we can force the outcome of tossing a fair coin (without interference). 
 



 
2.8 Reversibility 
 
Postulate 2 of quantum mechanics says that the evolution of an isolated system is reversible.  In 
other words, any condition leading to an action also may bring about the reverse action in time-
reversed circumstances.  If we watch a movie of a frictionless pendulum, we cannot tell if the 
movie is being shown backwards or not.  In either case, the pendulum moves according to the 
laws of momentum and gravity.  If a beam of photons is likely to move an electron from a lower 
to a higher energy state, the beam is also likely to move an electron from the higher energy state 
to the lower one.  (In fact, this is the “stimulated emission” of a laser.)  This invertible procession 
of events is referred to as “unitary evolution.”  To preserve superposition and entanglement, we 
must use unitary evolutions. 
 
An important consequence is that operations should be reversible.  Any operation that loses 
information or is not reversible cannot be unitary, and may loose superposition and 
entanglement.  Thus to guarantee that a quantum computation step preserves superposition and 
entanglement, it must be reversible. 
 
Finding the conjunction of A AND B is not reversible: if the result is false, we do not know if A 
was false, or B was false, or both A and B were false.  Thus a standard conjunction destroys 
superpositions and entanglements.  However, suppose we set another bit, C, previously set to 
false, to the conjunction of A AND B, and keep the values of both A and B.  This computation is 
reversible.  Given any resulting state of A, B, and C, we can determine the state before the 
computation.  Likewise all standard computations can be done reversibly, albeit with some extra 
bits.  We revisit reversible computations in Sect. 4.1.1. 
 
 
2.9 The Exact Measurement “Theorem” 
 
Although quantum mechanics seems strange, it is a very consistent theory. Seemingly reasonable 
operations are actually inconsistent with the theory as a whole. For instance, one might wish to 
harness entanglement for faster-than-light or even instantaneous communication. Unfortunately, 
any measurement or observation collapses the state. Also unfortunately, it is impossible to tell 
with local information whether the observation preceded or followed the collapse: the 
observation gives the same random result in either case. Communicating with the person holding 
the other entangled particle, to determine some correlation, can only be done classically, that is, 
no faster than the speed of light. So entanglement cannot be used to transmit information faster 
than light and violate relativity. 
 
If we could exactly measure the entire quantum state of a particle, we could determine if it were 
in a superposition. Alice and Bob could begin with two pairs of particles; let us call them the “T” 
pair, T1 and T2, and the “F” pair, F1 and F2.  They manipulate them so T1 and T2 are entangled 
with each other and F1 and F2 are entangled with each other.  Bob then takes T1 and F1 far away 
from Alice.  If exact measurement were possible, Bob could continuously measure his particle 
T1 to see if it has collapsed into a definite state. To instantly communicate a “1”, Alice observes 
her member of the “T” pair, T2, causing it to collapse.  Because the “T” pair was entangled, 
Bob’s particle, T1, simultaneously collapses into a definite state.  Bob detects the collapse of T1, 



and writes down a “1.”  Similarly, a “0” bit could be transmitted instantly using the “F” pair if, 
indeed, exact measurement were possible. In fact, if we were able to exactly measure an 
unknown quantum state, it would lead to many inconsistencies.  
 
 
2.10 The No-Cloning Theorem 
 
One might be tempted to evade the impossibility of exact measurement by making many exact 
copies of particles and measuring the copies. If we could somehow manage to have an unlimited 
supply of exact copies, we could measure them and experimentally build up an exact picture of 
the quantum state of the original particle. However, the “No-Cloning Theorem” proves we 
cannot make an exact copy of an unknown quantum state. In Sect. 3.6 we prove a slightly 
simplified version of the theorem. 
 
What about setting up an apparatus, say with polarizers, laser beams, magnetic fields, etc. which 
produces an unlimited number of particles, all in the same quantum state? We could make 
unlimited measurements in various bases, and measure the state to arbitrary accuracy. Indeed, 
this is what experimental physicists do. But it is a measurement of the result of a process, not the 
measurement of a single, unknown state.  
 
Alternatively, if we could exactly measure an unknown quantum state, we could prepare as many 
particles as we wished in that state, effectively cloning. So the lack of exact measurement foils 
this attempt to clone, and the lack of cloning closes this route to measurement, maintaining the 
consistency of quantum mechanics. 
 
 
3 The Mathematics of Quantum Mechanics 
 
The ugly truth is that general relativity and quantum mechanics are not consistent.  That is, our 
current formulations of general relativity and quantum mechanics give different predictions for 
extreme cases.  We assume there is a “Theory of Everything” that reconciles the two, but it is 
still very much an area of thought and research.  Since relativity is not needed in quantum 
computing, we ignore this problem.  Let us emphasize that thousands of experiments that have 
been done throughout the world in the last 100 years are consistent with quantum mechanics. 
 
We present a succinct notation and mathematics commonly used to formally express the notions 
of quantum mechanics.  Although this formalization cannot express all the nuances, it is enough 
for this introductory article.  More complete notations are given in various books on quantum 
mechanics. 
 
 
3.1 Dirac or Ket Notation 
 



We can represent the state of quantum systems in “Dirac” or “ket” 3 notation. (“Ket” rhymes 
with “let.”)  A qubit is a quantum system with two discrete states.  These two states can be 
expressed in ket notation as 0  and 1 .  An arbitrary quantum state is often written Ψ .   State 
designations can be arbitrary symbols.  For instance, we can refer to the polarization experiment 
in Section 2 using the bases ↑  and →  for vertical and horizontal polarization and   and   
for the two orthogonal diagonal polarizations.  (Caution: although we use an up-arrow for 
vertical, “up” and “down” polarization are the same thing: they are both vertical polarization.  
Likewise be careful not to misinterpret the right or diagonal arrows.) 
 
A quantum system consisting of two or more quantum states is the tensor product of the separate 
states in some fixed order.  Suppose we have two photons, P1 and P2, where P1 has the state 

1P , and P2 has the state 2P .  We can express the state of the joint system as 21 PP ⊗ , or 

we can express it as 12 PP ⊗ .  The particular order doesn't matter as long as it is used 
consistently. 
 
For brevity, the tensor product operator is implicit between adjacent states.  The above two-
photon system is often written 21 PP .  Since the order is typically implicit, the ket is usually 

written without indices, thus: PP .  Ket “grouping” is associative, therefore a single ket may be 
written as multiple kets for clarity: 0 0 0 , 0 00 , and 00 0 , all mean 321 000 .  Bases are 
written in the same notation using kets.  For example, four orthogonal bases of a two qubit 
system are 00 , 01 , 10 , and 11 .  Formally, a ket is just a column vector. 
 
 
 
 
3.2 Superpositions and Measurements 
 
Superpositions are written as a sum of states, each with an “amplitude” which may be a complex 
number.  For instance, if an electron has a greater probability of going through the top slit in 
Figure 6, its position might be 243141 HH + .  The polarization of a photon that is in an 

equal superposition of vertical and horizontal polarizations may be written as ↑21  + 

→21 .  In general, a two-qubit system is in the state 00a  + 01b  + 10c  + 11d .   
 
The norm squared of the amplitude of a state is the probabilities of measuring the system in that 
state.  The general two qubit system from above will be measured in state 00  with probability 

|a|2.  Similarly, the system will be measured in states 01 , 10 , or 11  with probabilities, |b|2, 

                                                 
3 The name comes from “bracket.”  P. A. M. Dirac developed a shorthand “bracket” notion to express the outer 
product of state vectors, ΨΨ .  In most cases the column vector, or right-hand side, can be used alone.  Being the 
second half of a bracket, it is called a ket. 



|c|2, and |d|2 respectively.  Amplitudes must be used instead of probabilities to reflect quantum 
interference and other phenomena. 
 
Because a measurement always finds a system in one of the basis states, the probabilities sum to 
one.  (The requirement that they sum to one is a reflection of the basic conservation laws of 
physics.)  Hence the sum of norm squared amplitudes must always sum to one, also.  Amplitudes 
that nominally do not sum to one are understood to be multiplied by an appropriate scaling factor 
to “normalize” them so they do sum to one. 
 
A measurement collapses the system into one of the bases of the measurement.  The probability 
of measuring the system in, or equivalently, collapsing the system into any one particular basis is 
the norm squared of the probability.  Hence, for the location distribution 243141 HH + , 

the probability of finding an electron at location H1 is 
2

41  = 41 , and the probability of 

finding an electron at H2 is 
2

43 = 43 .  After measurement, the electron is either in the state 

1H , that is, at H1, or in the state 2H , that is, at H2, and there is no hint that the electron ever 
had any probability of being anywhere else.  If measurements are done at H1 or H2, the 
interference disappears resulting in the simple bimodal distribution shown in Figure 5.   
 
 
3.3 The Polarization Experiment, Again 
 
Just as geometric positions may be equally represented by different coordinate systems, quantum 
states may be expressed in different bases.  A vertically polarized photon’s state may be written 
as ↑ .  It may just as well be written as a superposition of two diagonal bases 21  + 

21 .  Likewise a diagonally polarized photon   may be viewed as being in a superposition 
of vertical and horizontal polarizations ↑21  + →21 .  For the polarization is  , the 

superposition is ↑21  - →21 ; note the sign change.  In both cases, the amplitudes squared, 
2

21 and 
2

21− , still sum to one.  We can now express the polarization experiment 

formally. 
 
The first polarizer “measures” in some basis, which we can call ↑  and → .  Regardless of 
previous polarization, the measurement leaves photons in either ↑  or → , but only passes 
photons which are, say ↑ .  If the incoming beam is randomly polarized, half the photons 
collapse into, or are measured as, ↑  and passed, which agrees with the observation that the 
intensity is halved. 
 
A second polarizer, tilted at an angle, θ , to the first, “measures” in a tilted basis θcos  and 

θsin .  Photons in state ↑  can also be considered to be in the superposition cos θθ cos  + 



sin θθ sin .  The second polarizer measures photons in the tilted basis, and passes only those 
collapsing into θcos .  Since the chance4 of a photon collapsing into that state is cos2 θ , the 
intensity of the resultant beam decreases to zero as the polarizer is rotated to 90°.  With polarizer 
#2 set at right angles, it measures with the same basis as polarizer #1, that is ↑  and → , but 
only passes photons with state → . 
 
When polarizer #3 is inserted, it is rotated to a 45° angle.  The vertically polarized, that is ↑ , 

photons from polarizer #1 can be considered to be in the superposition 


54cos45cos   + 




54sin45sin   = 21  + 21 .  So they have a 2121
2
=  chance of collapsing into state 

  and being passed.  These photons encounter polarizer #2, where they can be considered to be 

in the superposition 


54cos45cos ↑  + 


54sin45sin →  = ↑21  + →21 .  So they again have 

a 2121
2
=  chance of collapsing, now into state → , and being passed.  Thus the chance of 

an arbitrary photon passing through all three polarizers is 81212121 =××  agreeing with our 
observation. 
 
 
3.4 Expressing Entanglement 
 
In the Dirac or ket notation, the tensor product, ⊗ , distributes over addition, e.g., 

( )1210210 +⊗  = ( )01210021 + .  Another example is that the tensor product of 
equal superpositions is an equal superposition of the entire system:   
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






+ 1

2
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2
1  ⊗  
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2
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2
1   
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2
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2
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2
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2
10

2
10

2
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2
1  

= ( )11100100
2
1

+++  

 
Note that the square of each amplitude gives a 41  chance of each outcome, which is what we 
expect. 
 
If a state cannot be factored into products of simpler states, it is “entangled.”  For instance, 
neither 11430021 +  nor ( )HeadsTailsTailsHeads +21  can be factored into a product 
of states.  The latter state expresses the entangled coin tossing we discussed in Sect. 2.7.  When 
we toss the coins (do a measurement), we have equal chances of getting TailsHeads  (heads on 

the first coin and tails on the second) or HeadsTails  (tails on the first coin and heads on the 

                                                 
4 To double check consistency, note that the probability of seeing either state is cos2 θ   + sin2 θ  = 1. 



second).  If we observe the coins separately, they appear to be completely classical, fair coins: 
heads or tails appear randomly.  But the records of the two coins are correlated: when one comes 
up heads, the other comes up tails and vice versa. 
 
 
3.5 Unitary Transforms 
 
Postulate 2 states that all transformations of an isolated quantum system are unitary.  In 
particular, they are linear.  If a system undergoes decoherence or collapse because of some 
outside influence, the transformation is not necessarily unitary.  But when an entire system is 
considered in isolation from any other influence, all transformations are unitary. 
 
 
3.6 Proof of No-Cloning Theorem 
 
With postulate 2, we can prove a slightly simplified version of the No-Cloning Theorem.  (A 
comprehensive version allows for arbitrary ancillary or “work” qubits.)  We begin by 
formalizing the theorem.  We hypothesize that there is some operation, U, which exactly copies 
an arbitrary quantum state, Ψ , onto another particle.  Its operation would be written as follows. 
 

ΨΨ=Ψ 0U  
 
Does this hypothetical operator have a consistent definition for a state that is a superposition?  In 
Dirac notation, what is the value of ( ) 010 baU + ? 
 
Recall that tensor product distributes over superposition.  One derivation is to distribute the 
tensor product first, then distribute the clone operation, and finally perform the hypothetical 
clone operation. 
 

( ) 010 baU +  = ( )0100 baU +  
                         = 0100 UbUa +  
                         = 1100 bbaa +  
                         = 1100 22 ba +  

 
But if we evaluate the clone operation first then distribute, we get the following. 
 

( ) 010 baU +  = ( )( )1010 baba ++  
                         = 11011000 bbabbaaa +++  
                         = 11100100 22 bababa +++  

 
The derivations are different!  The mathematics should be consistent unless we’re trying 
something impossible, like dividing by zero.  Since the only questionable step was assuming the 
existence of a cloning operation, we conclude that a general cloning operation is inconsistent 
with the laws of quantum mechanics. 



 
Notice that if a is zero or b is zero, the two derivations do give the same result.  But a and b are 
amplitudes (like probabilities) of states in the superposition.  If one or the other is zero, there was 
actually no superposition to begin with, and this proof doesn’t apply.  In fact, in the absence of 
arbitrary superposition, we can clone.   
 
If we know that a particle is either in state 0 or in state 1 , we can simply measure the particle.  
We then set any number of other particles to that same state, effectively copying the state of the 
particle.  In this case we know something about the original state of the particle.  So this 
“loophole” does not invalidate the theorem that we cannot clone a completely unknown state.   
 
In Sect. 5.6 we explain how we can move, or “teleport”, an unknown state to a distant particle.  
But the state on the original particle is destroyed in the process.  So we still end up with just one 
instance of a completely unknown state. 
 
 
4 Quantum Computing 
 
We have seen that phenomena and effects at quantum scales can be quite different from those we 
are used to.  The richness of these effects tantalize us with the possibility of far faster computing, 
when we manage to harness these effects.  But how can we turn these effects in gates and 
computers?  How fast might they solve problems?  Are these merely theoretical ideals, like a 
frictionless surface or noiseless measurement, or is there hope of building an actual device?  This 
section discusses how quantum effects can be harnessed to create gates, assesses the potential for 
quantum algorithms, and outlines ways of dealing with imperfect operations and devices. 
 
 
4.1 Quantum Gates and Quantum Computers 
 
Digital computers, from microprocessors to supercomputers, from the tiny chips running your 
wristwatch or microwave to continent-spanning distributed systems that handle worldwide credit 
card transactions, are built of thousands or millions of simple gates.  Each gate does a single 
logical operation; such as producing a 1 if all its inputs are 1 (otherwise producing a 0 if any 
input is 0) or inverting a 1 to a 0 and a 0 to a 1.  From these simple gates, engineers build more 
complex circuits that add or multiply two numbers, select a location in memory, or choose which 
instructions to do next depending on the result of an operation.  From these circuits, engineers 
create more and more complex modules until we have computers, CD players, aircraft navigation 
systems, laser printers, and cell phones.  Although computer engineers still must deal with 
significant concerns, such as transmitting signals at gigahertz rates, getting a million gates to 
function in exact lockstep, or storing ten billion bits without losing a single one, conceptually 
once we can build simple gates, the rest is “merely” design. 
 
Quantum computing appears to be similar: we know how to use quantum effects to create 
quantum gates or operations, we have ideas about combining gates into meaningful modules, and 
we have an increasing body of work about how to do quantum computations reliably, even with 



imperfect components.  Researchers are optimistic because more work brings advances in both 
theory and practice. 
 
In classical computer design, one basic gate is the AND gate.  However, as we described in Sect. 
2.8, an AND gate is not reversible.  A basic, reversible quantum gate is the “controlled-not” or 
CNOT gate.  It is represented as in Fig. 7.  The two horizontal lines, labeled ϕ  and ψ , 
represent two qubits.  The gate is the vertical line with connections to the qubits. 
 

 
Figure 7.  A CNOT gate 

 
The top qubit, labeled ψ  and connected with the dot, is the gate’s control.  The bottom qubit, 

labeled ϕ  and connected with ⊕, is the “data”.  The data qubit is inverted if the control qubit is 
1.  If the control is 0, the data qubit is unchanged.  Table 1 shows the operation of CNOT.  
Typically we consider the inputs to be on the left (the ϕ  and ψ ), and the outputs to be on the 

right.  Since CNOT is reversible, it is not unreasonable to consider the right hand side (the ϕ′  

and ψ ′ ) the “inputs” and the left hand side the “outputs”!  That is, we can run the gate 
“backwards”.  The function is still completely determined: every possible “input” produces 
exactly one “output”. 
 

ψ  ϕ  ψ ′  ϕ′  

0  0  0  0  

0  1  0  1  

1  0  1  1  

1  1  1  0  
 

Table 1.  Function of the CNOT gate 
 
So far, this is just the classical exclusive-OR gate.  What happens when the control is a 
superposition?  The resultant qubits are entangled.  In the following, we apply a CNOT to the 
control qubit, an equal superposition of ψ0  and ψ1  (we use the subscript ψ to distinguish the 

control qubit), and the data qubit, 0 . 
 

( )( )01021CNOT ⊗+ ψψ  = ( )01CNOT00CNOT21 ψψ +  
 
                                                    = ( )110021 ψψ +  
 



What does this mean?  One way to understand it is to measure the control qubit.  If the result of 
the measurement is 0, the state has collapsed to 00ψ , so we will find the data qubit to be 0.  If 

we measure a 1, the state collapsed to 11ψ , and the data qubit is 1.  We could measure the data 
qubit first and get much the same result.  These results are consistent with Table 1. 
 
So how might we build a CNOT gate?  We review several possible implementations in Sect. 6, 
but sketch one here.  Suppose we use the state of the outermost electron of a sodium atom as a 
qubit.  An electron in the ground state is a logical 0, and an excited electron is a logical 1.  An 
appropriate pulse of energy will flip the state of the qubit.  That is, it will excite an outer electron 
in the ground state, and “discharge” an excited electron.  To make a CNOT gate, we arrange a 
coupling between two atoms such that if the outer electron of the control atom is excited, the 
outer electron of the data atom flips when we apply a pulse.  If the control atom is not excited, 
the pulse has no effect on the data atom. 
 
As can be guessed from this description, the notion of wires and gates, as represented 
schematically in Fig. 7, might not be used in an actual quantum computer.  Instead, different 
tuned and selected minute energy pulses may cause qubits to interact and change their states. 
 
A more easily used quantum gate is the controlled-controlled-not or C2NOT gate.  It has two 
control qubits and one data qubit, as represented schematically in Fig. 8.  It is similar to the 
CNOT: the data qubit is inverted if both the control qubits are 1.  If either is 0, the data qubit is 
unchanged.  We can easily make a reversible version of the classical AND gate.  To find A AND 
B, use A and B as the controls and use a constant 0 as the data.  If A and B are both 1, the 0 is 
flipped to a 1.  Otherwise it remains 0. 
 

 
Figure 8.  A C2NOT gate 

 
Many other basic quantum gates have been proposed [NC00, Chapter 4].  Using these gates as 
building blocks, useful functions and entire modules have been designed.  In short, we can 
conceptually design complete quantum computing systems.  In practice there are still enormous, 
and perhaps insurmountable, engineering tasks before realistic quantum computing is available.  
For instance, energy pulses are never perfect, electrons don’t always flip when they are supposed 
to, and stray energy may corrupt data.  Sect. 4.3 explains a possible approach to handling such 
errors. 
 
 
4.2 Quantum Algorithms 
 
The preceding section outlines plans to turn quantum effects into actual gates and, eventually, 
into quantum computers.  But how much faster might quantum computers be?  After all, last 



year’s laptop computer seemed fast until this year’s computer arrived.  To succinctly address 
this, we introduce some complexity theory. 
 
To help answer whether one algorithm or computer is actually faster we count the number of 
basic operations a program executes, not (necessarily) the execution, or elapsed “wall clock” 
time.  Differences in elapsed time may be due to differences in the compiler, a neat programming 
trick, memory caching, or the presence of other running programs.  We want to concentrate on 
fundamental differences, if any, rather than judging a programming competition. 
 
In measuring algorithm performance we must consider the size of the input.  A computer running 
a program to factor a 10,000-digit number shouldn't be compared with a different computer that 
is only factoring a 10-digit number.  So we will compare performance in terms of the size of the 
problem or input.  We expect that larger problems take longer to solve than smaller instances of 
the same problem.  Hence, we express performance as a function of the problem size, e.g., f(n).  
We will see that performance functions fall into theoretically neat and practically useful 
“complexity classes.” 
 
4.2.1 Complexity Classes 
 
What are some typical complexity classes?  Consider the problem of finding a name in a 
telephone book.  If one took a dumb, but straightforward method where we check every entry, 
one at a time, from the beginning, the expected average number of checks is n/2 for a telephone 
book with n names.  (This is called “sequential search.”)  Interestingly, if one checks names 
completely at random, even allowing accidental rechecks of names, the expected average number 
of checks is still n/2.  Since telephone books are sorted by name, we can do much better.  We 
estimate where the name will be, and open the book to that spot.  Judging from the closeness to 
the name, we extrapolate again where the name will be and skip there.  (This is called 
“extrapolation search.”)  This search is much faster, and on average takes some constant multiple 
of the logarithm of the number of names, or c log n. 
 
Although it takes a little longer to estimate and open the book than just check the next name, as n 
gets big, those constant multipliers don't matter.  For large values of n the logarithm is so much 
smaller than n itself, it is clear that extrapolation search is far faster than linear search.  (When 
one is close to the name, that is, when n is small, one switches to linear searching, since the time 
to do a check and move to the next name is much smaller.) 
 
This is a mathematically clear distinction.  Since almost any reasonable number times a 
logarithm is eventually smaller than another constant times the number, we'll ignore constant 
multiples (in most cases) and just indicate what “order” they are.  We say that linear search is 
O(n), read “big-Oh of n”, and extrapolation search is O(log n), read “big-Oh of log n.” Since 
logarithms in different bases only differ by a constant multiple, we can (usually) ignore the detail 
of the logarithm’s base. 
 
Other common problems take different amounts of time, even by these high-level comparisons.  
Consider the problem of finding duplicates in an unordered list of names.  Comparing every 
name to every other name takes some multiple of 2n , or O( 2n ) time.  Even if we optimize the 



algorithm and only compare each name to those after it, the time is still a multiple of 2n .  
Compared with O(log n) or even O(n), finding duplicates will be much slower than finding a 
name, especially for very large values of n. 
 
It turns out we can sort names in time proportional to n log n.  Checking for duplicates in a 
sorted list only takes O(n), so sorting and then checking takes O(cn log n + dn), for some 
constants c and d.  Since the n log n term is significantly bigger than the n term for large n, we 
can ignore the lone n and say this method is O(n log n), much faster than the O(n2) time above. 
 
Although the difference between these methods is significant, both are still polynomial, meaning 
the run time is a polynomial of the size.  That is, they are both O(nk) for some constant k.  We 
find a qualitative difference in performance between polynomial algorithms and algorithms with 
exponential run time, that is, algorithms that are O(kn) for some constant k.  Polynomial 
algorithms are generally practical to run; even for large problems, the run time doesn’t increase 
too much, whereas exponential algorithms are generally intractable.  Even seemingly minor 
increases in the problem size can make the computation completely impractical. 
 
There is a mathematical reason to separate polynomial from exponential algorithms.  A 
polynomial of a polynomial is still a polynomial.  Thus even having polynomial algorithms use 
other polynomial algorithms still results in a polynomial algorithm.  Moreover any exponential 
function always grows faster than any polynomial function. 
 
4.2.2 A Formal Definition of big-Oh Complexity 
 
For the curious reader, we formally define big-Oh notation.  We say ( ) ( )( )ngOnf =  if there are 
two positive constants k  and 0n  such that ( ) ( )nkgnf ≤  for all 0nn > .  The constants k  and 0n  
must not depend on n .  Informally, there is a constant k  such that for large values (beyond 0n ), 

( )nkg  is greater than ( )nf . 
 
From this definition, we see that constant multipliers are absorbed into the k .  Also lower order 
terms, such as dn , are eventually dominated by higher order terms, like ncn log  or 2n .  Because a 
“faster” algorithm may have such large constants or lower order terms, it may perform worse 
than a “slower” algorithm for realistic problems.  If we are clearly only solving small problems, 
it may, in fact, be better to use the “slower” algorithm, especially if the slower algorithm is 
simpler.  However, experience shows that big-Oh complexity is usually an excellent measure to 
compare algorithms. 
 
4.2.3 Shor’s Factoring Algorithm 
 
We can now succinctly compare the speed of computations.  The security of a widely used 
encryption scheme, RSA, depends on the presumption that finding the factors of large numbers is 
intractable.  After decades of work, the best classical factoring algorithm is the Number Field 



Sieve [LL93].  With it, factoring an n-digit number takes about O ( )e n3  steps5, which is 
exponential in n.  What does this mean?  Suppose you use RSA to encrypt messages, and your 
opponent buys fast computers to break your code.  Multiplication by the Schönhage–Strassen 
algorithm [Schö82] takes O(n log n log log n) steps.  Using a key eight times longer means 
multiplications, and hence encrypting and decrypting time, takes at most 24 times longer to run, 
for n > 16.  However, the time for your opponent to factor the numbers, and hence break the 

code, increases to ( )eee nnn 333 228 == .  In other words, the time to factor is squared.  It doesn’t 
matter whether the time is in seconds or days: factoring was exponential.  Without too much 
computational overhead you can increase the size of your key beyond the capability of any 
conceivable computer your opponent could obtain.  At least, that was the case until 1994. 
 
In 1994, Peter Shor invented a quantum algorithm for factoring numbers that takes 
O ( )nnn logloglog2  steps. [Shor95]  This is polynomial, and, in fact, isn’t too much longer than 
the naïve time to multiply.  So if you can encrypt, a determined opponent can break the code, as 
long as a quantum computer is available.  With this breakthrough, the cryptography community 
in particular became very interested in quantum computing. 
 
Shor’s algorithm, like most factoring algorithms, uses “a standard reduction of the factoring 
problem to the problem of finding the period of a function.”  [RP00]  What is the period of, say, 
the function 3n mod 14?  Values of the function for increasing exponents are 31 = 3, 32 = 9, 33 = 
27 or 13 mod 14, 34 = 11 mod 14, 35 = 5 mod 14, and 36 = 1 mod 14.  Since the function has the 
value 1 when n=6, the period of 3n mod 14 is 6. 
 
The algorithm has five main steps to factor a composite number N with Shor’s algorithm. 

1. If N is even or there are integers a and b > 1 such that N=ab, 2 or a are factors. 
2. Pick a positive integer, m, which is relatively prime to N. 
3. Using a quantum computer, find the period of mP mod N, that is, the smallest positive 

integer P such that mP = 1 mod N. 
4. For number theoretic reasons, if P is odd or if mP/2 + 1 = 0 mod N, start over again with a 

new m at step 2. 
5. Compute the greatest common divisor of mP/2 – 1 and N.  This number is a divisor of N. 

For a concrete example, let N=323, which is 19 × 17.  N is neither even nor the power of an 
integer.  Suppose we choose 4 for m in step 2.  Since 4 is relatively prime to 323, we continue to 
step 3.  We find that the period, P, is 36, since 436 = 1 mod 323.  We do not need to repeat at step 
4 since 36 is not odd and 436/2 + 1 = 306 mod 323.  In step 5 we compute the greatest common 
divisor of 436/2 - 1 and 323, which is 19.  Thus we have found a factor of 323. 
 
The heart of Shor’s algorithm is quantum period finding, which can also be applied to a quantum 
Fourier transform and finding discrete logarithms.  These are exponentially faster than their 
classical counterparts. 
 

                                                 
5 More precisely, it takes ( )e nn3 964log

2
steps. 



4.2.4 Deutsch’s Function Characterization Problem 
 
To more clearly illustrate quantum computing’s potential speedup, let’s examine a contrived, but 
simple problem first presented and solved by Deutsch [Deu85].  Suppose we wish to find out 
whether an unknown boolean unary function is constant, either 0 or 1, or not.  Classically, we 
must apply the function twice, once with a 0 input and once with a 1.  If the outputs are both 0 or 
both 1, it is constant; otherwise, it is not.  A single classical application of the function, say 
applying a 1, can’t give us enough information.  However, a single quantum application of the 
function can. 
 
Using a superposition of 0 and 1 as the input, one quantum computation of the function yields 
the answer.  The solution of Cleve, Ekert, Macchiavello and Mosca [CEMM98] to Deutsch’s 
problem uses a common quantum computing operation, called a Hadamard6, which converts 0  

into the superposition ( )1021 +  and 1  into the superposition ( )1021 − .  The 
algorithm is shown schematically in Fig. 9.  The Hadamard is represented as a box with an “H” 
in it.  The function to be characterized is a box labeled “Uf”. 

 
Figure 9.  Solution to Deutsch’s Function Characterization Problem 

 
To begin, we apply a Hadamard to a 0  and another Hadamard to a 1 . 
 

10 HH  = ( )( )101021 −+  
 
                  = ( ) ( )( )10110021 −+−  
 
To be reversible, the function, Uf, takes a pair of qubits, yx , and produces the pair 

( )xfyx ⊕ .  The second qubit is the original second qubit, y, exclusive-or’d with the function 
applied to the first qubit, f(x).  We apply the function one time to the result of the Hadamards, 
and then apply another Hadamard to the first qubit, not the “result” qubit.  Below, the “I” 
represents the identity, that is, we do nothing to the second qubit. 
 
( ) ( ) ( )( )10110021 −+−⊗ fUIH  
 
                  = ( ) ( ) ( )( )10110021 −+−⊗ ff UUIH  
 
                  = ( ) ( ) ( )( ) ( ) ( )( )( )111010100021 ffffIH ⊕−⊕+⊕−⊕⊗  
 

                                                 
6 Also called Walsh transform, Walsh–Hadamard transform, or discrete Fourier transformation over n

2Z . 



                  = ( ) ( ) ( ) ( )( )11110101000021 fHfHfHfH ⊕−⊕+⊕−⊕  
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Case analysis and algebraic manipulations reduce this equation to the following.  (Details are in 
Appendix A.) 
 
                  = ( )10)1()0(21 −⊕ ff  
 
                  = ( )1021)1()0( −⊗⊕ ff  
 
We now measure the first qubit.  If it is 0, the function is a constant.  If we measure a 1, the 
function is not a constant.  Thus we can compute a property of a function’s range using only one 
function application. 
 
Although contrived, this example shows that using quantum entanglement and superposition, we 
can compute some properties faster than is possible with classical means.  This is part of the lure 
of quantum computing research. 
 
4.2.5 Grover’s Search Algorithm 
 
The requirement of searching for information is simple: find a certain value in a set of values 
with no ordering.  For example, does the name “John Smith” occur in a set of 1,000 names?  
Since there is no order to the names, the best classical solution is to examine each name, one at a 
time.  For a set of N names, the expected run time is O(N/2): on average we must examine half 
the names.   
 
There are classical methods to speed up the search, such as sorting the names and doing a binary 
search, or using parallel processing or associative memory.  Sorting requires us to assign an 
order to the data, which may be hard if we are searching data such as pictures or audio 
recordings.  To accommodate every possible search, say by last name or by first name, we would 
need to create separate sorted indices into the data, requiring O(N log N) preliminary 
computation and O(N) extra storage.  Parallel processing and associative memory takes O(N) 
resources.  Thus these classical methods speed up query time by taking time earlier or using 
more resources. 
 
In 1996 Lov K. Grover presented a quantum algorithm [G96a, G96b] to solve the general search 
problem in O( NN log ) time.  The algorithm proceeds by repeatedly enhancing the amplitude 
of the position in which the name occurs. 
 
Database searching, especially for previously unindexed information, is becoming more 
important in business operations, such as data mining.  However, Grover’s algorithm might have 
an impact that reaches even farther.  Although we present the algorithm in terms of looking for 



names, the search can be adapted to any recognizable pattern.  Solutions to problems currently 
thought to take more than polynomial time, that is, O(kn), may be solvable in polynomial time.  
A typical problem in this group is the Traveling Salesman Problem, which is, finding the shortest 
path between all points in a set.  This problem occurs in situations such as finding the best 
routing of trucks between pick up and drop off points, airplanes between cities, and the fastest 
path of a drill head making holes in a printed circuit board.  The search algorithm would 
initialize all possible solutions, and then repeatedly enhance the amplitude of the best solution.  
No published quantum algorithm exists to solve the Traveling Salesman, or any NP problem, in 
polynomial time.  However, improvements like Grover’s hint that it may be possible. 
 
4.2.6 Quantum Simulation 
 
Since a quantum system is the tensor product of its component systems, the amount of 
information needed to completely describe an arbitrary quantum system increases exponentially 
with the size.  This means that classical simulation of quantum systems with even a dozen qubits 
challenges the fastest supercomputers.  Research into protein folding to discover new drugs, 
evaluating different physical models of the universe, understanding new superconductors, or 
designing quantum computers may take far more classical computer power than could 
reasonably be expected to exist on Earth in the next decade.  However, since quantum computers 
can represent an exponential amount of information, they may make such investigations 
tractable. 
 
 
4.3 Quantum Error Correction 
 
One of the most serious problems for quantum information processing is that of decoherence, the 
tendency for quantum superpositions to collapse into a single, definite, classical state.  As we 
have seen, the power of quantum computing derives in large part from the ability to take 
advantage of the unique properties of quantum mechanics—superposition and entanglement.  
The qubits that comprise a quantum computer must inevitably interact with other components of 
the system, in order to perform a computation.  This interaction inevitably will lead to errors.   
To prevent the state of qubits from degrading to the point that quantum computations fail 
requires that errors be either prevented or corrected.   
 
In classical systems, errors are prevented to some degree by making the ratio of system size to 
error deviation very large.  Error correction methods are well known in conventional computing 
systems, and have been used for decades.  Classical error correction uses various types of 
redundancy to isolate and then correct errors.  Multiple copies of a bit or signal can be compared, 
with the assumption that errors are sufficiently improbable to never result in faulty bits or signals 
being more likely than valid ones, e.g., if three bits are used to encode a one-bit value, and two of 
three bits match, then the third is assumed to be faulty.   
 
In quantum systems it is not possible to measure qubit values without destroying the 
superposition that quantum computing needs, so at first there was doubt that quantum error 
correction would ever be feasible.  This is natural, especially considering the no-cloning theorem 
(Sect. 2.10).  Not only could qubits not be exactly measured, they cannot even be arbitrarily 



copied by any conceivable scheme for detecting and correcting errors.  It is perhaps surprising 
then that quantum error correction is not only possible, but also remarkably effective. 
 
The challenge in quantum error correction is to isolate and correct errors without disturbing the 
quantum state of the system.  It is in fact possible to use some of the same ideas employed for 
classical error correction in a quantum system; the trick is to match the redundancy to the type of 
errors likely to occur in the system.  Once we know what kinds of errors are most likely, it is 
possible to design effective quantum error correction mechanisms.  
 
4.3.1 Single Bit-flip Errors 
 
To see how this is possible, consider a simple class of errors:  single bit errors that affect qubits 
independently.  (In reality, of course, more complex problems occur, but this example illustrates 
the basic technique.)  Consider a single qubit, a two-state system with bases 0  and 1 .  We 
will use a simple “repetition code”, that is, we represent a logical zero with three zero qubits, 

0000 =L , and a logical one with three ones, 1111 =L . An arbitrary qubit in this system, 

written as a superposition LL ba 10 + , becomes 111000 ba +  with repetition coding.  Since 
we assume the system is stable in all ways except perhaps for single bit flips, there may be either 
no error or else one of three qubits flipped, as shown in Table 2. 
 
The strategy for detecting errors is to add three “temporary” qubits 210 ttt , set to 000 , which 
will hold “parity” results.  We then XOR various bits together, putting the results in the added 
three qubits: t0 is bit 0 XOR bit 1, t1 is bit 0 XOR bit 2, and t2 is bit 1 XOR bit 2.  This leaves a 
unique pattern, called a syndrome, for each error.  The third column of Table 2 shows the 
respective syndromes for each error. 
 

Error Error state Syndrome Correction 
No error 111000 ba +  000  none 
qubit 1 flipped 011100 ba +  110  IIX ⊗⊗  

qubit 2 flipped 101010 ba +  101  IXI ⊗⊗  

qubit 3 flipped 110001 ba +  011  XII ⊗⊗  

Table 2.  Bit-flip Errors, Syndromes, and Correctives. 
 
Measuring the added three qubits yields a syndrome, while maintaining the superpositions and 
entanglements we need.  Depending on which syndrome we find, we apply one of the three 
corrective operations given in the last column to the original three repetition encoding qubits.  
The operation X flips a bit, that is, it changes a 0 to a 1 and a 1 to a 0.  The identity operation is I.  
We illustrate this process in the following example. 
 
4.3.2 An Error Correction Example 
 



In fact, the repetition code can correct a superposition of errors.  This is more realistic than 
depending on an error affecting only one qubit.  It also illuminates some quantum behaviors.  
Like any other quantum state, the error may be a superposition, such as the following: 
 
 ( )( )1110002.8. baIXIIIX +⊗⊗+⊗⊗ . 
 
Informally the first factor may be read as, if we measured the state, we have an 80% chance of 
finding the first qubit flipped and a 20% chance of finding the second qubit flipped.  Multiplying 
the error state is  
 

( )( )1110002.8. baIXIIIX +⊗⊗+⊗⊗=Ψ  
 
        = ( ) ( )1010102.0111008. baba +++ .   
 
The error state is then augmented with 000  and the syndrome extraction, S, applied: 
 
( )000⊗ΨS   

 
      = ( ) ( )( )1010000100002.0110001000008. babaS +++  
 
      = ( ) ( )1011010101012.0111101001108. baba +++  
 
      = ( ) ( ) 1011010102.1100111008. ⊗++⊗+ baba  
 
Now we measure the last three qubits.  This measurement collapses them to 110  with 80% 

probability or 101 with 20% probability.  Since they are entangled with the repetition coding 

bits, the coding bits partially collapse, too.  The final state is ( ) 110011100 ⊗+ ba  with 80% 

probability or ( ) 101101010 ⊗+ ba  with 20% probability.  If we measured 1, 1, 0, the first 

collapse took place, and we apply IIX ⊗⊗  to 011100 ba +  producing 111000 ba + , the 
original coding.  On the other hand, if we measured 1, 0, 1, we apply IXI ⊗⊗  to 

101010 ba + .  In either case, the system is restored to the original condition, 111000 ba + , 
without ever measuring (or disturbing) the repetition bits themselves. 
 
This error correction model works only if no more than one of the three qubits experiences an 
error.  With an error probability of p, the chance of either no error or one error is 
( ) ( ) 3223 231131 ppppp +−=−+− .  This method improves system reliability if the chance of 
an uncorrectable error, which is 32 23 pp − , is less than the chance of a single error, p , in other 
words, if 5.0<p . 
 



4.3.3 From Error Correction to Quantum Fault Tolerance 
 
The replication code given above is simple, but has disadvantages.  First, it only corrects “bit 
flips”, that is, errors in the state of a qubit.  It cannot correct “phase errors”, such as the change of 
sign in ( )1021 +  to ( )1021 − .  Second, a replication code wastes resources.  The code 
uses three actual qubits to encode one logical qubit.  Further improvements in reliability take 
significantly more resources.  More efficient codes can correct arbitrary bit or phase errors while 
using a sublinear number of additional qubits. 
 
One such coding scheme is group codes.  Since the odds of a single qubit being corrupted must 
be low (or else error correction wouldn’t work at all), we can economize by protecting a group of 
qubits at the same time, rather than protecting the qubits one at a time.  In 1996 Ekert and 
Macchiavello pointed out [EM96] that such codes were possible and showed a lower bound.  To 
protect l logical qubits from up to t errors, they must be encoded in the entangled state of at least 
n physical qubits, such that the following holds. 
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An especially promising approach is the use of “concatenated” error correcting codes [KL96, 
KL97].  In this scheme, a single logical qubit is encoded as several qubits, but in addition the 
code qubits themselves are also encoded, forming a hierarchy of encodings.  The significance is 
that if the probability of error for an individual qubit can be reduced below a certain threshold, 
then quantum computations can be carried out to an arbitrary degree of accuracy. 
 
A new approach complements error correction.  Fault tolerant quantum computing avoids the 
need to actively decode and correct errors by computing directly on encoded quantum states.  
Instead of computing with gates and qubits, fault tolerant designs use procedures that execute 
encoded gates on encoded states that represent logical qubits.  Although many problems remain 
to be solved in the physical implementation of fault tolerant quantum computing, this approach 
brings quantum computing a little closer to reality. 
 
 
5 Quantum Communication and Cryptography 
 
Quantum computing promises a revolutionary advance in computational power, but applications 
of quantum mechanics to communication and cryptography may have equally spectacular results, 
and practical implementations may be available much sooner.  In addition, quantum 
communication is likely to be just as essential to quantum computing as networking is to today’s 
computer systems.  Most observers expect quantum cryptography to be the first practical 
application for quantum communications and computing. 
 
5.1 Why Quantum Cryptography Matters 
 



Cryptography has a long history of competition between code makers and code breakers.  New 
encryption methods appear routinely, and many are quickly cracked through lines of attack that 
their creators never considered.  During the first and second World Wars, both sides were 
breaking codes that the other side considered secure.  More significantly, a code that is secure at 
one time may fall to advances in technology.  The most famous example of this may be the 
World War II German Enigma code.  Some key mathematical insights made it possible to break 
Enigma messages encrypted with poorly selected keys, but only with an immense amount of 
computation.  By the middle of the war, Enigma messages were being broken using 
electromechanical computers developed first by Polish intelligence and later by faster British 
devices built under the direction of Alan Turing.  Although the Germans improved their 
encryption machines, Joseph Desch, at NCR Corporation, developed code breaking devices 20 
times faster than Turing’s, enabling the US Navy’s Op-20-G to continue cracking many Enigma 
messages.  Today, an average personal computer can break Enigma encryption in seconds. 
 
A quantum computer would have the same impact on many existing encryption algorithms.  
Much of modern cryptography is based on exploiting extremely hard mathematical problems, for 
which there are no known efficient solutions.  Many modern cipher methods are based on the 
difficulty of factoring (see Section 4.2.3) or computing discrete logarithms for large numbers 
(e.g., over 100 digits).  The best algorithms for solving these problems are exponential in the 
length of input, so a brute force attack would require literally billions of years, even on 
computers thousands of times faster than today’s machines.   
 
Quantum computers factoring large numbers or solving discrete logarithms would make some of 
the most widely used encryption methods obsolete overnight.  Although quantum computers are 
not expected to be available for at least the next decade, the very existence of a quantum 
factoring algorithm makes classical cryptography obsolete for some applications.  It is generally 
accepted that a new encryption method should protect information for 20 to 30 years, given 
expected technological advances.  Since it is conceivable that a quantum computer will be built 
within the next two to three decades, algorithms based on factoring or discrete logarithms are, in 
that sense, obsolete already.  Quantum cryptography, however, offers a solution to the problem 
of securing codes against technological advances. 
 
5.2 Unbreakable Codes 
 
An encrypted message can always be cryptanalyzed by brute force methods—trying every key 
until the correct one is found.  There is, however, one exception to this rule.  A cipher developed 
in 1917 by Gilbert Vernam of AT&T, is truly unbreakable.  A Vernam cipher, or “one-time pad”, 
uses a key with a random sequence of letters in the encryption alphabet, equal in length to the 
message to be encrypted.  A message, M, is encrypted by adding, modulo the alphabet length, 
each letter of the key K to the corresponding letter of M, i.e., iii KMC ⊕= , where C is the 
encrypted message, or ciphertext, and ⊕ is modular addition (see Table 3).  To decrypt, the 
process is reversed. 
 

Text Random key Ciphertext 
C (3) ⊕ U (21) X (24) 
A (1) ⊕ D (4) E (5) 



T (20) ⊕ I (9) C (3) 
Table 3.  One time pad 

 
The Vernam cipher is unbreakable because there is no way to determine a unique match between 
encrypted message C and key K.  Since the key is random and the same length as the message, 
an encrypted message can decrypt to any text at all, depending on the key that is tried.  For 
example, consider the ciphertext ‘XEC’.  Since keys are completely random, all keys are equally 
probable.  So it is just as likely that the key is ‘UDI’, which decrypts to ‘CAT’, or ‘TPW’, which 
decrypts to ‘DOG’.  There is no way to prove which is the real key, and therefore no way to 
know the original message. 
  
Although it is completely secure, the Vernam cipher has serious disadvantages.  Since the key 
must be the same length as the message, a huge volume of key material must be exchanged by 
sender and recipient.  This makes it impractical for high-volume applications such as day-to-day 
military communication.  However, Vernam ciphers may be used to transmit master keys for 
other encryption schemes.  Historically, Vernam ciphers have been used by spies sending short 
messages, using pads of random keys that could be destroyed after each transmission, hence the 
common name “one-time pad.”   
 
An equally serious problem is that if the key is ever reused, it becomes possible to decrypt two or 
more messages that were encrypted under the same key.  A spectacular example of this problem 
is the post-war decryption of Soviet KGB and GRU messages by US and British intelligence 
under the code name VENONA.  Soviet intelligence had established a practice of reusing one-
time pads after a period of years.  British intelligence analysts noticed a few matches in ciphers 
from a large volume of intercepted Soviet communications [Wri87].  Over a period of years, 
British and US cryptanalysts working at Arlington Hall in Virginia gradually decrypted hundreds 
of Soviet messages, many of them critical in revealing Soviet espionage against US atomic 
weapons research in the 1940s and early 1950s. 
 
Still another problem with implementing a Vernam cipher is that the key must be truly random.  
Using text from a book, for example, would not be secure.  Similarly, using the output of a 
conventional cipher system, such as DES, results in an encryption that is only as secure as the 
cipher system, not an unbreakable one-time pad system.  Pseudo-random number generator 
programs may produce sequences with correlations or the entire generation algorithm may be 
discovered; both these attacks have been successfully used.  Thus while the Vernam cipher is in 
theory unbreakable, in practice it becomes difficult and impractical for most applications.  
Conventional cryptosystems, on the other hand, can be broken but are much more efficient and 
easier to use. 
 
 
5.3 Quantum Cryptography 
 
Quantum cryptography offers some potentially enormous advantages over conventional 
cryptosystems, and may also be the only way to secure communications against the power of 
quantum computers.  With quantum methods, it becomes possible to exchange keys with the 
guarantee that any eavesdropper to intercept the key is detectable with arbitrarily high 



probability.  If the keys are used as one-time pads, complete security is assured.  Although 
special purpose classical hardware can generate keys that are truly random, it is easy to use the 
collapse of quantum superpositions to generate truly random keys.  This eliminates one of the 
major drawbacks to using one-time pads.  The ability to detect the presence of an eavesdropper is 
in itself a huge advantage over conventional methods.  With ordinary cryptography, there is 
always a risk that the key has been intercepted.  Quantum key distribution eliminates this risk 
using properties of quantum mechanics to reveal the presence of any eavesdropping.   
 
5.3.1  Quantum Key Distribution 
 
The first significant communications application proposed using quantum effects is quantum key 
distribution, which solves the problem of communicating a shared cryptographic key between 
two parties with complete security.  Classical solutions to the key distribution problem all carry a 
small, but real, risk that the encrypted communications used for sharing a key could be decrypted 
by an adversary.  Quantum key distribution (QKD) can, in theory, make it impossible for the 
adversary to intercept the key communication without revealing his presence.  The security of 
QKD relies on the physical effects that occur when photons are measured. 
 
As discussed in Section 3.3, a photon polarized in a given direction will not pass through a filter 
whose polarization is perpendicular to the photon’s polarization.  At any other angle than 
perpendicular, the photon may or may not pass through the filter, with a probability that depends 
on the difference between the direction of polarization of the photon and the filter.  At 45°, the 
probability of passing through the filter is 50%.   
 
The filter is effectively a measuring device.  According to the measurement postulate of quantum 
mechanics, measurements in a 2-dimensional system are made according to an orthonormal 
basis7.  Measuring the state transforms it into one or the other of the basis vectors.  In effect, the 
photon is forced to “choose” one of the basis vectors with a probability that depends on how far 
its angle of polarization is from the two basis vectors. For example, a diagonally polarized 
photon measured according to a vertical/horizontal basis will be in a state of either vertical or 
horizontal polarization after measurement.  Furthermore, any polarization angle can be 
represented as a linear combination, →+↑ ba  of orthogonal (i.e., perpendicular) basis 

vectors.   For QKD, two bases are used:  rectilinear, with basis vectors ↑and →, and diagonal, 
with basis vectors  and .  Measuring photons in these polarizations according to the basis 
vectors produces the results shown in Table 4. 
 
 

Polarization ↑ →   ↑ →   
Basis + + + + x x x x 
Result ↑ → ↑ or →  

(50/50) 
↑ or → 
(50/50) 

 or  
(50/50) 

 or  
(50/50) 

  

Table 4.  Photon measurement with different bases. 
                                                 
7 Recall from linear algebra that a basis for a vector space is a set of vectors that can be used in linear combination 
to produce any vector in the space.  A set of  k vectors is necessary and sufficient to define a basis for a k-
dimensional space.  A commonly used basis for a 2-dimensional vector space is (1,0) and (0,1). 



 
These results are the basis of a key distribution protocol devised by Bennett and Brassard 
[BB84].  Many other QKD protocols have been devised since, using similar ideas.  Suppose two 
parties, Alice and Bob, wish to establish a shared cryptographic key.  An eavesdropper, Eve, is 
known to be attempting to observe their communication; see Figure 10.  How can the key be 
shared without Eve intercepting it?  Traditional solutions require that the key be encrypted under 
a previously shared key, which carries the risk that the communication may be decrypted by 
cryptanalytic means, or that the previously shared key may have been compromised.  Either way, 
Eve may read the message and learn Alice and Bob’s new key.  QKD provides a method to 
establish the shared key that guarantees that either the key will be perfectly secure, or that Alice 
and Bob will learn that Eve is listening and therefore not use the key. 
 

Figur
e 10.  Quantum key distribution. 

 
 
The BB84 QKD protocol takes advantage of the properties shown in Table 4.  The protocol 
proceeds as follows: 
 
Alice and Bob agree in advance on a representation for 0 and 1 bits in each basis.  For example, 
they may choose → and  to represent 0 and ↑ and  to represent 1. 
Alice sends to Bob a stream of polarized photons, choosing randomly between ↑, →, , and  
polarizations.  When receiving a photon, Bob chooses randomly between + and x bases.  When 
the transmission is complete, Bob sends Alice the sequence of bases he used to measure the 
photons.  This communication can be completely public.  Alice tells Bob which of the bases 
were the same ones she used.  This communication can also be public.  Alice and Bob discard 
the measurements for which Bob used a different basis than Alice.  On average, Bob will guess 
the correct basis 50% of the time, and will therefore get the same polarization as Alice sent.  The 
key is then the interpretation of the sequence of remaining photons as 0s and 1s.  Consider the 
example in Table 5. 

Public channel 

Quantum channel 

Alice Bob 
Eve 



 
Sent by Alice → → ↑ ↑    → → ↑    ↑ →  
Basis used by Bob x + x x + x + + + x x + x + + x 
Bob’s result  →   →  ↑ → →   →  ↑ →  
Key  0    1  0 0  1   1 1 0 0 

Table 5.  Deriving a new key. 
 
Eve can listen to the messages between Alice and Bob about the sequences of bases they use and 
learn the bases that Bob guessed correctly.  But this tells her nothing about the key, because 
Alice’s polarizations were chosen randomly.  If Bob guessed + as the correct polarization, Eve 
does not know whether Alice sent a → (0) or a ↑ (1) polarized photon, and therefore knows 
nothing about the key bit the photon represents.   
 
What happens if Eve intercepts the stream sent by Alice and measures the photons?  On average, 
Eve will guess the correct basis 50% of the time, and the wrong basis 50% of the time, just as 
Bob does.  But when Eve measures a photon, its state is altered to conform to the basis Eve used, 
so Bob will get the wrong result in approximately half of the cases where he and Alice have 
chosen the same basis.  Since they choose the same basis half the time, Eve’s measurement adds 
an error rate of 25%.  Consider the elaborated example in Table 6. 
 

Sent by Alice → → ↑ ↑    → → ↑    ↑ →  
Basis used by Eve + + x + + + x + x x + + x + x + 
Eve’s result → →  ↑ → ↑  →   ↑ →  ↑  → 
Basis used by Bob X + x x + x + + + x x + x + + x 
Bob’s result  →   →  ↑ → →   →  ↑ →  
Key  0    err  0 0  err   1 1 0 0 

Table 6.  Quantum key distribution with eavesdropping. 
 
We describe details of real systems with some error rate and determining the error rate in Sect. 
5.4. 
 
5.3.2 Generating Random Keys 
 
Properly implemented, the BB84 protocol guarantees that Alice and Bob share a key that can be 
used either as a one-time pad, or as a key for a conventional cryptographic algorithm.  In either 
case, real security is only available if the key is truly random.  Any source of non-randomness is 
a potential weakness that might be exploited by a cryptanalyst.  This is one reason that ordinary 
pseudo-random number generator programs, such as are used for simulations, are hard to use for 
cryptography.  Some conventional cryptosystems rely on special purpose hardware to generate 
random bits, and elaborate tests [NIST00] are used to ensure randomness.   
 
One of the interesting aspects of quantum cryptography is that it provides a way to ensure a truly 
random key as well as allowing for detection of eavesdropping.  Recall from Section 3.2 that for 
a superposition Φ+Ψ ba , the probability of a measurement result of Ψ  is a2, and of Φ  is b2.  



Therefore when a series of superpositions of 10 ba +  is measured, 01 and 10 are measured 
with equal probability.  Measuring a series of particles in this state therefore establishes a truly 
random binary sequence. 
 
 
5.4 Prospects and Practical Problems 
 
Although in theory the BB84 protocol can produce a guaranteed secure key, a number of 
practical problems remain to be solved before quantum cryptography can fulfill its promise.  
BB84 and other quantum protocols are idealized, but current technology is not yet close enough 
to the idealized description to implement quantum protocols as practical products.  As of 2001, 
QKD has not been demonstrated over a distance of more than 50 kilometers, but progress has 
been steady.  Commercial products using quantum protocols may be available by 2005, if 
problems in generating and detecting single photons can be overcome. 
 
Single photon production is one of the greatest challenges for quantum communication.  To 
prevent eavesdropping, transmission of one photon per time slot is needed.  If multiple photons 
are produced in a time slot, it is possible for an adversary to count the number of photons without 
disturbing their quantum state.  Then, if multiple photons are present, one can be measured while 
the others are allowed to pass, revealing key information without betraying the presence of the 
adversary.  Current methods of generating single photons typically have an efficiency of less 
than 15%, leaving plenty of opportunity for Eve. 
 
One method of dealing with noise problems is to use privacy amplification techniques.  
Whenever noise is present, it must be assumed that Eve could obtain partial information on the 
key bits, since it is not possible for Alice and Bob to know for certain whether the error rate 
results from ordinary noise or from Eve’s intrusion.  Privacy amplification distills a long key, 
about which Eve is assumed to have partial information, down to a much shorter key that 
eliminates Eve’s information to an arbitrarily low level.   
 
For privacy amplification, the first part of the protocol works exactly as before:  Alice sends Bob 
qubits over a quantum channel, then the two exchange information over a public channel about 
which measurement bases they used.  As before, they delete the qubits for which they used 
different measurement bases.  Now, however, they also must delete bit slots in which Bob should 
have received a qubit, but didn’t, either because of Eve’s intrusion, or from dark counts at Bob’s 
detector.  Bob transmits the location of dark counts to Alice over the public channel. 
 
Next, Alice and Bob publicly compare small parts of their raw keys to estimate the error rate, 
then delete these publicly disclosed bits from their key, leaving the tentative final key.  If the 
error rate exceeds a pre-determined error threshold, indicating possible interception by Eve, they 
start over from the beginning to attempt a new key.  
 
If the error rate is below the threshold, they remove any remaining errors from the rest of the raw 
key, to produce the reconciled key by using parity checks of sub-blocks of the tentative final key.  
To do this, they partition the key into blocks of length l such that each block is unlikely to 
contain more than one error.  They each compute parity on all blocks and publicly compare 



results, throwing away the last bit of each compared block.  If parity does not agree for a block, 
they divide the block into two, then compare parity on the sub-blocks, continuing in this binary 
search fashion until the faulty bit is found and deleted.  This step is repeated with different 
random partitions until it is no longer efficient to continue.  After this process, they select 
randomly chosen subsets of the remaining key, computing parity, discarding faulty bits and the 
last bit of each partition as before.  This process continues for some fixed number of times to 
ensure with high probability that the key contains no error. 
 
Because physical imperfections are inevitable in any system, it must be assumed that Eve may be 
able to obtain at least partial information.  Eavesdropping may occur, even with significantly 
improved hardware, through either multiple photon splitting or by intercepting and resending 
some bits, but not enough to reveal the presence of the eavesdropper.  To overcome this problem, 
Bennett, Brassard, Crépeau, and Maurer [BBCM95] developed a privacy amplification 
procedure that distills a secure key by removing Eve’s information with an arbitrarily high 
probability.   
 
During the privacy amplification phase of the protocol, Eve’s information is removed.  The first 
step in privacy amplification is for Alice and Bob to use the error rate determined above to 
compute an upper bound, b, on the number of bits in the remaining key that could be known to 
Eve.  Using the number of bits in the remaining, reconciled key, n, and an adjustable security 
parameter s, they select n-k-s subsets of the reconciled key. The subset selection is done publicly, 
but the contents of the subsets are kept secret.  Alice and Bob then compute parity on the subsets 
they selected, using the resulting parities as the final secret key.  On average, Eve now has less 
than 2ln2 s−  bits of information about the final key. 
 
Even if a reliable method of single photon production is developed, errors in transmission are as 
inevitable with quantum as with classical communication.  Because quantum protocols rely on 
measuring the error rate to detect the presence of an eavesdropper, it is critical that the 
transmission medium’s contribution to the error rate be as small as possible.  If transmission 
errors exceed 25%, secure communication is not possible, because a simple man-in-the-middle 
attack—measuring all bits and passing them on—will not be detected.   
 
 
5.5 Dense Coding 
 
As discussed in Section 2.6, a qubit can produce only one bit of classical information.  
Surprisingly it is possible to communicate two bits of information using only one qubit and an 
EPR pair in a quantum technique known as dense coding.  Dense coding takes advantage of 
entanglement to double the information content of the physically transmitted qubit. 
 
Initially, Alice and Bob must each have one of the entangled particles of an EPR pair: 
 

( )1100
2

1
0 +=Ψ  

 



To communicate two bits, Alice represents the possible bit combinations as 0 through 3.  Using 
the qubit in her possession, she then executes one of the transformations shown in Table 7. 

Bits Transform New State 
00 ( ) 00 Ψ⊗=Ψ II  ( )1100

2
1

+  

01 ( ) 01 Ψ⊗=Ψ IX  ( )0110
2

1
+  

10 ( ) 02 Ψ⊗=Ψ IZ  ( )1100
2

1
−  

11 ( ) 03 Ψ⊗=Ψ IY  ( )1001
2

1
−  

Table 7.  Dense coding, phase 1. 
 
After the transformation, Alice sends her qubit to Bob.  Now that Bob has both qubits, he can use 
a controlled-NOT (prior to this, Alice and Bob could apply transformations only to their 
individual particles.)  The controlled-NOT makes it possible to factor out the second bit, while 
the first remains entangled.  See Table 8. 
 

State C-NOT Result First Bit Second Bit 

( )1100
2

1
+  ( )1100

2
1

+  ( )10
2

1
+  0  

( )0110
2

1
+  ( )0111

2
1

+  ( )10
2

1
+  1  

( )1100
2

1
−  ( )1000

2
1

−  ( )10
2

1
−  0  

( )1001
2

1
−  ( )1101

2
1

−  ( )10
2

1
−  1  

Table 8.  Deriving second bit. 
 
Notice that after the controlled-NOT, it is possible to read off the values of the initial bits by 
treating ( )1021 +  as 0 and ( )1021 −  as 1.  All that remains is to reduce the first qubit 
to a classical value by executing a Hadamard transform.  The results are shown in Table 9. 
 
 

First Bit H(First Bit) 

( )10
2

1
+  ( ) ( ) ( ) 01010

2
110

2
110

2
1

2
1

=−++=







−++  

( )10
2

1
+  ( ) ( ) ( ) 01010

2
110

2
110

2
1

2
1

=−++=







−++  



( )10
2

1
−  ( ) ( ) ( ) 11010

2
110

2
110

2
1

2
1

=+−+=







−−+  

( )10
2

1
−  ( ) ( ) ( ) 11010

2
110

2
110

2
1

2
1

=+−+=







−−+  

Table 9.  Deriving first bit. 
 
The dense coding concept can also be implemented using three qubits in an entangled state 
known as a GHZ state [GZTY00, Cer01].  With this procedure, Alice can communicate three bits 
of classical information by sending two qubits.  Using local operations on the two qubits, Alice is 
able to prepare the GHZ particles in any of the eight orthogonal GHZ states.  Through 
entanglement, her operations affect the entire three-state system, just as her operation on one 
qubit of an entangled pair changes the state of the two qubits in the pair.  Similar to two-qubit 
dense coding, Bob measures his qubit along with the qubits received from Alice to distinguish 
one of the eight possible states encoded by three bits. 
 
 
5.6 Quantum Teleportation 
 
As shown in Sect. 3.6, it is impossible to clone, or copy, an unknown quantum state.  However, 
the quantum state can be moved to another location using classical communication.  The original 
quantum state is reconstructed exactly at the receiver, but the original state is destroyed.  The 
No-Cloning theorem thus holds because in the end there is only one state.  Quantum teleportation 
can be considered the dual of the dense coding procedure:  dense coding maps a quantum state to 
two classical bits, while teleportation maps two classical bits to a quantum state.  Both processes 
would not be possible without entanglement. 
 
Initially, Alice has a qubit in an unknown state, i.e.,  
 

10 ba +=Φ  
 
As with dense coding, Alice and Bob each have one of an entangled pair of qubits: 
 

( )1100
2

1
0 +=Ψ  

 
The combined state is 
 

( ) ( )





 +⊗++⊗=Ψ⊗Φ 1100

2
111100

2
100 ba  

              = ( ) ( )111001
2

1110000
2

1 bbaa +++  

              = ( )111100011000
2

1 bbaa +++  



 
At this point, Alice has the first two qubits and Bob has the third.  Alice applies a controlled-
NOT next: 
 

( )( ) =Ψ⊗Φ⊗ ICNOT ( )101110011000
2

1 bbaa +++  

 
Applying a Hadamard, IIH ⊗⊗ , then produces: 
 

( ) ( )( )101001110010111011100000
2
1

−+−++++ ba  

 
The objective is to retrieve the original state, so we rewrite the state to move the amplitudes a 
and b through the terms.  This shows it is possible to measure the first two bits, leaving the third 
in a superposition of a and b. 
 

( )110100011001111101010000
2
1 bbbbaaaa −+−++++  

 

= ( ) ( ) ( ) ( )( )0111101001011000
2
1 babababa −+−++++  

 
What does this equation mean?  When we measure the first two qubits, we get one of the four 
possibilities.  Since the third qubit is entangled, it will be in the corresponding state.  For 
instance, if we measure 00 , the system has collapsed to the first state, and the third qubit is the 

state 10 ba + .  Table 10 lists the four possible results.  In each case, we can recover the 
original quantum state by applying a transform determined by the first two qubits, leaving the 
third qubit in the state 10 ba +=φ .  
 

Left qubits 3rd qubit state Transform 3rd qubit new state 
00  10 ba +  I 10 ba +  

01  01 ba +  X 10 ba +  

10  10 ba −  Z 10 ba +  

11  01 ba −  Y 10 ba +  
Table 10.  Quantum teleportation. 

 
Just as quantum computing has required the development of new computing models beyond 
recursive function theory and Turing machines, quantum communication, teleportation, and 
dense coding show the need for new models of information beyond classical Shannon 
information theory.   
 
 



6 Physical Implementations 
 
Until now, we have talked primarily about theoretical possibilities and in general physical and 
mathematical terms.  To actually build a quantum computer a specific physical implementation 
will be required.  Several experimental systems have demonstrated that they can manipulate a 
few qubits, and in some restrictive situations very simple quantum calculations with limited 
fidelity have been performed.   But, a reliable, useful quantum computer is still far in the future. 
Moreover, we should recall that the first classical computers were large mechanical machines—
not electronic computers based on transistors on silicon chips.  Similarly, it is likely that the 
technology used to build the first useful quantum computer will be very different from the 
technology that eventually wins out. 
 
There are many different physical implementations that may satisfy all the necessary elements 
required for building a scalable quantum processor, but at the moment numerous technical and 
engineering constraints remain to be overcome.  In this section we will list the required 
properties that a successful physical implementation must have along with several different 
physical implementations that may possess these properties. 
 
 
6.1 General Properties Required to Build a Quantum Computer 
 
We will first describe briefly the general physical traits that any specific physical implementation 
must have.  Currently, there is a big gap between demonstrations in the laboratory and generally 
useful devices.  Moreover, most proposed laboratory implementations and the experiments 
carried out to date fail to completely satisfy all of the general characteristics.  Which system 
ultimately satisfies all these constraints at a level required to build a true extensible quantum 
processor is not known.  Here, we will comment on the general properties needed to build a 
useful quantum computing device. 
 
6.1.1 Well-Characterized Qubits 
 
The first requirement is that the qubits chosen must be well characterized.  This requires that 
each individual qubit must have a well-defined set of quantum states that will make up the 
“qubit”.  So far, we have assumed that we had a two level, or binary, quantum system.  In reality, 
most quantum systems have more than two levels.  In principle we could build a quantum 
computer whose individual elements or qubits consist of systems with four, five, ten, or any 
number of levels.  The different levels we use may be a subset of the total number of levels in 
individual elements.  Whatever the level structure of my qubit, we require that the levels being 
used have well defined properties, such as energy.   Moreover, a superposition of the levels of 
the qubit must minimize decoherence by hindering energy from moving into or out of the qubit. 
 
This general constraint requires that each individual qubit have the same internal level structure, 
regardless of its local external environment.  This also requires that the qubit is well isolated 
from its environment to hinder energy flow between the environment and the qubit.  Isolating 
information from the environment is easier for classical bits than quantum bits.  A classical bit or 
switch is either in the state “0” or the state “1”; on or off.  Except in special cases, such as 



communication, CCDs, or magnetic disks, we engineer classical systems to be in one of these 
two possibilities, never in between.  In those special cases interactions are kept to a few tens of 
devices. 
 
A quantum system or qubit is inherently a much more delicate system.  Although we may 
prepare the system in some excited state 1 , most quantum systems will decay to 0  or an 
arbitrary superposition because of interactions with the environment.  Interaction with the 
environment must be controllable to build a large quantum processor.  Moreover, in some 
proposed physical implementations, individual qubits may have slightly different internal level 
structure resulting either from the manufacturing process or the interaction of the qubit with its 
environment.  This slight difference in level structure must be compensated and should not 
change during the computation. 
 
The physical nature of the qubit may be any one of a number of properties, such as, electron 
spin, nuclear spin, photon polarization, the motional or trapping state of a neutral atom or ion, or 
the flux or charge in a superconducting quantum interference device (SQUID).  For instance, in 
the particular case of ion traps, it is the ground state of the hyperfine states that result from 
actually coupling the electron and nuclear spin together.  Further, it is only a specific pair of the 
magnetic sublevels of those hyperfine states.  In a quantum dot one again uses the complex 
structure of the device to come up with two states to act as the qubit.  In this case, it corresponds 
more to an excitation of an electron or an electron-hole pair. 
 
6.1.2 Scalable Qubit Arrays and Gates 
 
This requirement is a logical extension of the previous requirement.  Since individual qubits 
must be able to interact to build quantum gates, they must be held in some type of replicated trap 
or matrix.  In the very early days of computing mechanical switches or tubes in racks held 
information instead of microscopic transistors etched in silicon and mounted in integrated 
circuits. Thus the specific nature of the supporting infrastructure depends on the nature of the 
qubit.  Regardless of the matrix or environment holding individual qubits, it is essential that we 
can add more qubits without modifying the properties of the previous qubits and having to 
reengineer the whole system.  Because quantum systems are so sensitive to their environment, 
scalability is not trivial. 
 
Scalability also requires that qubits are stable over periods that are long compared to both single 
qubit operations and two-qubit gates.  In other words, the states of the qubits must not decohere 
on a time scale that is long compared to one and two qubit operations.   This is increasingly 
important in larger quantum computers where larger portions of the computer must wait for some 
parts to finish.  
 
6.1.3 Stability and speed 
 
Physical implementations of a qubit are based on different underlying physical effects.  In 
general these physical effects have very different decoherence times.  For example, nuclear spin 
relaxation can be from one-tenth of a second to a year, whereas the decoherence time is more 
like 10-3 seconds in the case of electron spin.  It is approximately 10-6 s for a quantum dot, and 



around 10-9 s for an electron in certain solid state implementations. Although one might conclude 
that nuclear spins are the best, decoherence time is not the only concern. 
 
A qubit must interact with external agencies so two qubits can interact.  The stronger the external 
interactions, the faster two-qubit gates could operate.  Because of the weak interaction of the 
nuclear spin with its environment, gates will likely take from 10-3 to  10-6 seconds to operate, 
giving “clock speeds” of from 1 kHz to 1 MHz.  The interaction for electron spin is stronger, so 
gates based on electron spin qubits may operate in 10-6 to 10-8 seconds or at 1 to 100 MHz.  Thus 
electron spin qubits are likely to be faster, but less stable. 
 
Since quantum error correction, presented in Sect. 4.3, requires gates like those used for 
computations, error correction only helps if we can expect more than about 10,000 operations 
before decoherence, that is, an error.  Reaching this level of accuracy with a scalable method is 
the current milestone.  Therefore it is really the ratio of gate operation time to decoherence time, 
or operations until decoherence, that is the near term goal. 
  
Dividing decoherence times by operation times we may have from 102 to 1013 nuclear spin 
operations before a decoherence or between 103 and 105 electron spin operations before a 
decoherence.  Although decoherence and operation times are very different, the number of 
operations may be similar.  This is not surprising since, in general, the weaker the underlying 
interactions, the slower the decoherence and the slower the one- and two-qubit operations.  We 
see that many schemes offer the possibility of more than 10,000 operations between decoherence 
events.  The primary problem is engineering the systems to get high gate speeds and enough 
operations before decoherence. 
 
It is not clear which physical implementation will provide the best qubits and gates.  If we 
examine the state of the art in doing one-qubit operations while controlling decoherence, ions in 
an ion trap and single nuclear spins look the most promising.  However the weak interaction with 
the environment, and thus potentially other qubits, makes 2-qubit gates significantly slower than 
some solid-state implementations. 
 
6.1.4 Good Fidelity 
 
Fidelity is a measurement of the decoherence or decay of my qubits relative to one and two qubit 
gate times.  Another aspect of fidelity is that when we perform an operation such as a CNOT, we 
do not expect to do it perfectly, but nearly perfectly.  As an example, when we flip a classical bit 
from “0” to “1”, it either succeeds or it fails—there is no in between.  Even at a detailed view, it 
is relatively straightforward to strengthen classical devices to add more charge, increase voltage, 
etc., driving the value to a clean “0” or “1”, charged or uncharged, on or off state.  When we flip 
a quantum bit, we intend to exchange the amplitudes of the “0” and “1” states: 

0 1 0 1α β β α+ → + .  Since most physical effects we use are continuous values, the result 

of the operation is likely to have a small distortion: 0 1 0 1ie εα β β α′ ′+ → + .  The error, ε, 
is nearly zero, and the primed quantities are almost equal to the unprimed quantities.  But they 
are not perfectly equal.  In this case, we require that the overlap between our expected result and 
the actual result be such that the net effect is to have a probability of error for a gate operation on 
the order of 10-4. 



 
6.1.5 Universal family of unitary transformations  
 
In general, to build a true quantum computer it is only necessary to be able to perform an 
arbitrary one-qubit operations and almost any single two-qubit gate.  If one can do arbitrary 
single qubit operations and almost any single two-qubit gate, one can combine these operations 
to perform single qubit operations, such as the Hadamard, and multi-qubit operations, such as a 
CNOT or C2NOT gate (see Sect. 4.1).  [DBE95]  From these, we know we can construct any 
boolean function. 
 
6.1.6 Initialize values 
 
Another important operation is the initialization of all the qubits into a well defined and 
characterized initial state.  This is essential if one wishes to perform a specific algorithm since 
the initial state of the system must typically be known and be un-entangled.  The initializing of 
the qubits corresponds to putting a quantum system into a completely coherent state that 
basically requires removing all thermal fluctuations and reduces the entropy (lack of order) of the 
system to zero.  This is an extremely difficult task. 
 
6.1.7 Readout 
 
Another important requirement is the ability to reliably read resultant qubits.  In many 
experimental situations, this is a technically challenging problem because one needs to either 
detect a quantum state of a system that has been engineered to only weakly interact with its 
environment. But this same system at “readout time” must interact sufficiently strongly that we 
can ascertain whether it is in the state 0  or 1 , while simultaneously insuring that the result is 
not limited by our measurement or detection efficiency.  Readout, along with single-qubit gates, 
implies we need to be able to uniquely address each qubit. 
 
6.1.8 Types of Qubits 
 
We must be able to store quantum information for relatively long times: the equivalent of main 
memory, or RAM, in classical computers.  There are two general possibilities: material qubits, 
such as atoms or electrons, and “flying” qubits, or photons.  Each has its own strengths and 
weaknesses.  Material qubits can have decoherence times on the order of days, while photons 
move very fast and interact weakly with their environment.  A quantum memory will likely be 
made of material systems consisting of neutral atoms or ions held in microtraps, solid state 
materials involving electron or nuclear spins, or artificial atoms like quantum dots.  These 
material qubits are ideal for storing information if decoherence can be controlled.  For example, 
single ions can be coherently stored for several days.  However, manipulating individual photons 
or trying to build a two-qubit gate using photons appears quite difficult.  A quantum processor is 
likely to use material qubits, too, to build the equivalent of registers and to interact well with the 
quantum memory. 
 
6.1.9 Communication 
 



When we wish to transmit or move quantum information, we typically want to use photons: they 
travel very fast and interact weakly with their environment.  To build a successful quantum 
communication system will likely require the ability to move quantum information between 
material qubits and photons.  This is another relatively difficult task, but several experiments 
have been successfully performed.  However, different implementations of material qubits will 
likely need different solutions to moving entangled or superposed information from particles to 
photons and back. 
 
 
6.2 Realizations 
 
Just as there are many subatomic properties that may be exploited for quantum effects, 
realizations range from brand new technologies to decades old technologies harnessed and 
adapted for quantum computing.  These technologies can be categorized into two basic classes.  
First, a top down approach where we take existing technology from the material science and 
solid state fields and adapt it to produce quantum systems.  This top down approach involves 
creative ideas such as: implementing single ion impurities in silicon; designing very uniform 
quantum dots whose electronic properties are well characterized and controllable; using 
superconducting quantum interference devices, and several others. 
 
A second contrasting approach is a bottom up approach.  The idea here is to start with a good, 
natural qubit, such as an atom or ion, and trap the particle in a benign environment.  This latter 
concept provides very good single qubits but leaves open the question of scalability—especially 
when one begins to examine the mechanical limits of current traps.  The benefit of this approach 
is excellent, uniform, decoherence-free qubits with great readout and initialization capabilities.  
The hard problem will be scaling these systems and making the gate operations fast. 
 
The top down approach suffers from decoherence in some cases or a dramatic failure of 
uniformity in the individual qubits: “identical qubits” are not truly uniform, decoherence-free 
individual qubits.  The bottom up approach has the benefit of good quality qubits and starting 
with a basic understanding of decoherence processes.  Below we will briefly discuss some of 
these possible technologies. 
 
6.2.1 Charged Atoms in an Ion Trap  
 
The one system that has had great success is ions in an ion trap.  Dave Wineland’s group at 
NIST, Boulder has  

• entangled four ions,  
• shown exceedingly long coherence times for a single qubit,  
• demonstrated high efficiency readout,  
• initialized four atoms into their ground state, and 
• multiplexed atoms between two traps. 

They have also shown violations of the Bell’s inequalities [Bell64] and had many other 
successes.  Their remarkable success and leadership of this effort blazes new frontiers in the 
experimental approaches to quantum computation, and their progress shows no signs of slowing. 
 



Ions of beryllium are held single file.  Laser pulses flip individual ions.  To implement a CNOT 
gate, the motion of the ions “sloshing” back and forth in the trap is coupled to the electron levels.  
That is, if ions are in motion, the electron level is flipped.  Otherwise the electron level is 
unchanged.  This is the operation described abstractly in Sect. 4.1. 
 
6.2.2 Neutral Atoms in Optical Lattices or Microtraps 
 
Several groups are attempting to repeat the ion trap success using neutral atoms in optical 
lattices, where a trapping potential results from intersecting standing waves of light from four or 
more laser beams in free space, or micro-magnetic or micro-optical traps.  These efforts are just 
getting seriously underway and appear to have many of the advantages of the ion scheme.  One 
major difference is that the atoms interact less strongly with each other than with the ions.  This 
could lead to better decoherence, but is also likely to lead to slower 2-qubit gate operations 
because of the weaker interactions.  Much of the promise of the neutral atom approach is based 
on the remarkable advances made in the past two decades in laser cooling of atoms and the 
formation of neutral atom Bose-Einstein condensates where thousands of atoms are “condensed 
into” a single quantum state with temperatures of a few nanokelvins, or billionth of a degree 
above absolute zero.  These advances have allowed scientist to manipulate large number of 
atoms in extremely controlled and exotic ways.  The tools, techniques, and understandings 
developed over these past two decades may prove very useful in these current attempts to create 
quantum gates with these systems. 
 
6.2.3 Solid State 
 
Many different approaches fall under the realm of solid state.  One general approach is to use 
quantum dots—so-called artificial atoms—as qubits.  If it can be done in a controlled and 
decoherence free way, then one has the advantages of the atom and ion approach while having 
the controlled environment and assumed scalability that comes with solid state material 
processing.  Another variant is embedding single atom impurities, such as 31P, in silicon.  The 31P 
nuclear spin serves as a qubit while using basic semiconductor technology to build the required 
scalable infrastructure.  Alternative approaches based on excitons in quantum dots or electronic 
spins in semiconductors are also being investigated.  The primary difficulty of these approaches 
is building the artificial atoms or implanting the 31P impurities precisely where required.   
 
6.2.4 NMR 
 
Nuclear magnetic resonance (NMR) has shown some remarkable achievements in quantum 
computing.  However, it is widely believed that the current NMR approach will not scale to 
systems with more than 15 or 20 qubits.  NMR uses ingenious series of radio frequency pulses to 
manipulate the nuclei of atoms in molecules.  Although all isolated atoms of a certain element 
resonant at the same frequency, their interactions with other atoms in a molecule cause slight 
changes in resonance.  The NMR approach is extremely useful in coming up with a series of 
pulses to manipulate relatively complex systems atoms in a molecule in situations where 
individual qubit rotations or gates might appear problematic.  Thus this work provides useful 
knowledge into how to manipulate complex quantum systems.  Low temperature solid state 
NMR is one possible way forward.  Like the previous section, a single atom impurity—such as 



31P in Silicon—is a qubit, but NMR attempts to perform single site addressability, detection, and 
manipulation on nuclear spins. 
 
6.2.5 Photon 
 
Photons are clearly the best way to transmit information, since they move at the speed of light 
and do not strongly interact with their environment.  This near-perfect characteristic for quantum 
communication makes photons problematic for quantum computation.  In fact, early approaches 
to using photons for quantum computation suffered from a requirement of exponential number of 
optical elements and resources as one scaled the system.  A second problem was that creating 
conditional logic for two-qubit gates appeared very difficult since two photons do not interact 
strongly even in highly nonlinear materials.  In fact, most nonlinear phenomena involving light 
fields result only at high intensity.   
 
Recently, new approaches for doing quantum computation with photons have appeared that 
depend on using measurement in a “dual-rail” approach to create entanglement.  This approach 
removes many of the constraints of early approaches, but provides an alternative approach to 
creating quantum logic.  Experimental efforts using this approach are just beginning.  The 
approach will still have to solve the technically challenging problems caused by high-speed 
motion of their qubits, a benefit in communication and a possible benefit in computational speed, 
and by the lack of high efficient, single photon detectors that are essential to the success of this 
approach. 
 
6.2.6 Optical Cavity Quantum Electrodynamics 
 
Other atomic type approaches involve strongly coupling atoms or ions to photons using high 
finesse optical cavities.  Similar type of approaches may be possible using tailored quantum dots, 
ring resonators, or photonic materials.  One advantage of these types of approaches is the ability 
to move quantum information from photons to material qubits and back.  This type of technology 
appears to be essential anyway since material qubits (e.g., atoms, ions, electrons, etc.) are best 
for storing quantum information while photons, i.e., flying qubits, are best for transmitting 
quantum information.  It is possible that these approaches may provide very fast quantum 
processors as well.  Numerous efforts are underway to investigate these schemes. 
 
6.2.7 Superconducting Qubits 
 
Superconducting quantum interference devices (SQUID) can provide two types of qubits: either 
flux based qubits, corresponding to bulk quantum circulation, or charge based qubits responsible 
for superconductivity.   SQUID based science has been a field of investigation for several 
decades but have only recently shown an ability to observe Rabi-flopping—a key experiment 
that shows the ability to do single qubit operations.  This approach to quantum computation has 
great potential but also will have to overcome numerous technical difficulties.  One major issue 
is the need to operate a bulk system at liquid helium temperatures. 
 
In summary, numerous physical approaches to quantum computing have been proposed and 
many are under serious research.  Which of these approaches will ultimately be successful is not 



clear.  In the near term, the ions and atomic systems will likely show the most progress, but the 
final winner will be the system that meets all of the technical requirements.  This system may not 
even be among those listed above.  What is important is that each of these approaches is 
providing us with an increased understanding of complex quantum systems and their coupling to 
the environment.  This knowledge is essential to tackling the broad range of technical barriers 
that will have to be overcome to bring this exciting, perhaps revolutionary, field to fruition.  
 
 
7 Conclusions 
 
It will be at least a decade, and probably longer, before a practical quantum computer can be 
built.  Yet the introduction of principles of quantum mechanics into computing theory has 
resulted in remarkable results already.  Perhaps most significantly, it has been shown that there 
are functions that can be computed on a quantum computer that cannot be effectively computed 
with a conventional computer (i.e., a classical Turing machine.)  This astonishing result has 
changed the understanding of computing theory that has been accepted for more than 50 years.  
Similarly, the application of quantum mechanics to information theory has shown that the 
accepted Shannon limit on the information carrying capacity of a bit can be exceeded.  The field 
of quantum computing has produced a few algorithms that vastly exceed the performance of any 
conventional computer algorithm, but it is unclear whether these algorithms will remain rare 
novelties, or if quantum methods can be applied to a broad range of computing problems.   The 
future of quantum communication is less uncertain, but a great deal of work is required before 
quantum networks can enter mainstream computing.  Regardless of the future of practical 
quantum information systems, the union of quantum physics and computing theory has 
developed into a rich field that is changing our understanding of both computing and physics. 
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Appendix A. 
 
The jump in the derivation of the answer to Deutsch’s function characterization problem in Sect. 
4.2.4 started after the application of the Hadamard, leaving us with the following equation. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 











⊕−−⊕−

+⊕+−⊕+

11101010

01100010
221

ff

ff
 

 
The easiest way to follow the result is to do case analysis.  Here we have four cases: each 
possible result of )0(f  and )1(f .  The exclusive-or operation is aa =⊕0  and aa =⊕1 . 
 
Case I: 0)1(0)0( == ff  

    
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 











⊕−−⊕−

+⊕+−⊕+

11101010

01100010
221

ff

ff
 

        = 
( ) ( )
( ) ( ) 











−−−

++−+

110010

110010
221  

Distributing the second qubit across the superposition of the first yields: 
        = ( )1110010011100100221 +−−+−−+  
Collecting and canceling like terms, we get: 
        = ( )102002221 −  
We now factor out the 2 and the first qubit. 
        = ( )10021 −  
Generalizing, we get the final result for this case. 
        = ( )10)1()0(21 −⊕ ff  
 
Case II: 1)1(0)0( == ff  

    
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 
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
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


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        = 
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

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

−−−

++−+

010110

110010
221  

        = ( )0100111011100100221 +−−+−−+  
The reader can verify that collecting, canceling, and factoring gives: 
        = ( )10121 −  
This generalizes to case II’s final result. 
        = ( )10)1()0(21 −⊕ ff  
 
Case III: 0)1(1)0( == ff  



    
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 
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221  

        = ( )1110010001001110221 +−−+−−+  

        = ( )01121 −  

        = ( )01)1()0(21 −⊕ ff  
 
Case IV: 1)1(1)0( == ff  

    
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 










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221
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        = 
( ) ( )
( ) ( ) 











−−−

++−+

010110

010110
221  

        = ( )0100111001001110221 +−−+−−+  

        = ( )01021 −  

        = ( )01)1()0(21 −⊕ ff  
 
We compute the second qubit to be 01 −  in cases I and II, and 10 −  in cases III and IV.  
This extra multiplication by 1− is called a “global phase.”  A global phase is akin to rotating a 
cube in purely empty space: without a reference, it is merely a mathematical artifact and has no 
physical meaning. 
 
Thus all the cases result in ( )10)1()0(21 −⊕ ff . 
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