
 1

Modeling CPU Demand in Heterogeneous Active Networks

Virginie Galtier, Kevin Mills, and Yannick Carlinet
National Institute of Standards and Technology

Gaithersburg, MD USA 20899
kmills@nist.gov

Abstract

Active-network technology envisions deployment of
virtual execution environments within network elements,
such as switches and routers. As a result, application-
specific processing can be applied to network traffic. To
use such technology safely and efficiently, individual
nodes must provide mechanisms to manage resource use.
This implies that each node must understand the varying
resource demands associated with specific network
traffic. Well-accepted metrics exist for expressing
bandwidth (bits per second) and memory (bytes) in units
independent of the capabilities of particular nodes.
Unfortunately, no well-accepted metric exists to express
processing (i.e., CPU time) demands in a platform-
independent form. This paper describes and evaluates an
approach to model the CPU demand of active packets in
a form that can be interpreted among heterogeneous
nodes in an active network. The paper applies the model
in two applications: (1) controlling CPU use and (2)
predicting CPU demand in an active-network node. The
model yields improved performance when compared
against the approach currently used in many active-
network execution environments. The paper also
discusses the limits of the proposed model, and outlines
future research that might lead to improved outcomes.

Keywords: Active Networks, Resource Management,
Computer System Benchmarking

1. Introduction

In classical packet-switched communication networks,
when a packet transits through an intermediate node
along the path from source to destination, the
intermediate node examines the destination address,
consults a routing table for the next hop, and then
forwards the packet on appropriate links. The data
transported within the packet remain opaque to the node.
Since each intermediate node has a measured rating for
per-message and per-byte throughput, a linear
extrapolation from packet size and arrival rate should
provide the node a reasonable estimate for the CPU
demand associated with individual packets or with sets of
packets. Unfortunately, this simple approach cannot work
for active networks because individual packets can
require substantially different processing.

In active networks, when a packet arrives at an
intermediate node, the data may include program code
that can be accessed, interpreted, and executed by the
node. This code describes how to process the packet, and
perhaps subsequent, related packets. For instance, the
code may specify a compression algorithm to be applied
on the data if congestion has been detected in the area of
the node, or may specify which packets to drop first, or
may modify the destination address to route around
congestion. This implies that identical packets can require
different CPU time on assorted nodes and under various
conditions. Thus, in active networks, some more
sophisticated technique is needed to estimate CPU
demand associated with active packets.

Inability to estimate the CPU demands of active
packets can lead to some significant problems. First, a
maliciously or erroneously programmed active packet
might consume excessive CPU time at a node, causing the
node to deny services to valid active packets.
Alternatively, a node might terminate a valid active
packet prematurely, wasting the CPU time used prior to
termination, and ultimately denying service to a correctly
programmed application. Second, an active node may be
unable to schedule CPU resources to meet the
performance requirements of packets. Third, an active
packet may be unable to discover a path that can meet its
performance requirements. This path selection problem
occurs in part due to the node-scheduling problem, but
also because the CPU time commitments of active nodes
along a path cannot be determined. Devising a method for
active packets to specify their CPU demands can help to
resolve these problems, and can open up some new areas
of research. Unfortunately, there exists no well-accepted
metric for expressing CPU demands in a platform-
independent form. This is the problem that motivated our
research.

In Section 2, we discuss the problem in more detail,
and we identify the outlines for a solution. In Section 3,
we provide an overview and critique of some existing
approaches to control CPU use in active applications.
Further, we examine some ideas from the literature that
stimulated our thinking. In Section 4, we describe a
statistical black-box model for specifying CPU demand
associated with active packets, and we show how we can
generate such models by tracing packet executions. In
addition, we compare estimates from our models against
real executions. In Section 5, we outline our strategy for

 2

calibrating active network nodes and for transforming
CPU models for active packets among heterogeneous
nodes in an active network. We also compare predictions
made by our transformed models against measured
executions on a variety of nodes in an active network
topology. In Section 6, we show how our CPU models
can be applied in two sample applications. One
application controls CPU usage by active packets, where
our models achieve improved performance over one of
the existing techniques implemented within active-
network nodes. The second application predicts CPU
demand by active packets. Here, our models outperform
estimators based on one of the simple techniques used by
a number of active-network execution environments. In
Section 7, we discuss the limits of our current approach,
and we suggest some future research that might yield
improved outcomes. We close in Section 8 with our
conclusions.

2. The Problem and Outlines of a Solution

The growing ubiquity of the Internet is changing the
nature of software design and deployment. Increasingly,
Internet-based system architectures employ distributed
components and use mobile code, such as applets, scripts,
servlets, and dynamically linked libraries, to deliver new
software to millions of users. Absent an understanding of
the processor (CPU) time required by such dynamically
injected software, computer operating systems cannot
effectively manage system resources or control the
execution of mobile code. Unfortunately, since mobile
code can be injected and executed on a variety of
computer platforms with a wide range of capabilities,
software developers cannot precisely specify CPU
requirements a priori. We set out to improve the ability of
software developers to quantify CPU time requirements
of mobile code in a form that can be understood readily
on heterogeneous computing platforms.

We conducted our research in the context of active
networks, an emerging technology that exploits mobile
code in an extreme form. Active-network technology
augments traditional networking with the possibility that
individual packets carry executable code, or references to
executable code. Conventional (data-only) packets are
forwarded on the so-called “fast path” of a router, while
active packets, which invoke mobile code, are delivered
to a higher-level execution environment that can identify
and run a program specifically associated with the packet.
Networking applications built with active packets are
referred to as active applications. Figure 1 illustrates the
architecture of an active-network node [1].

Underlying each active-network node is a node
operating system, which transforms the node hardware
into a software abstraction that provides execution
environments with controlled access to resources such as

CPU cycles, memory, input and output channels, and
timers. In order to allow many possible operating systems
to provide services to many possible execution
environments, the active-network node architecture
includes a standard specification of system calls (the
Node OS Interface Layer in Figure 1) [2]. Execution
environments, similar to virtual machines, can be loaded
onto an active node using ANETD [3], a daemon that
implements a load-and-go protocol for execution
environments. Each execution environment accepts active
packets that can initiate the execution of packet-specific
code. Each related code base and flow of active packets is
known as an active application. During the course of the
Active-Networks research program, funded by DARPA,
researchers developed a number of node operating
systems [4-7], execution environments [8-12] and active
applications [13-19].

While innovative and radical when considered for use
inside networks, active-network execution environments
share much in common with virtual machines used in
Internet-based software architectures, and active
applications appear quite similar to other forms of
dynamically injected software, such as applets, scripts,
servlets, and dynamically linked libraries. These
similarities encourage us to believe our ideas apply
generally to the problem of specifying CPU demand in
distributed applications that rely on the use of mobile
code.

2.1. An Analysis of Variability in CPU Demand

The amount of CPU time required by a computer
program is a function of two factors: (1) the speed of the
processor on which the program will execute and (2) the
number of CPU cycles required for the program to
complete its task. The first of these factors proves easy to

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •

Execution Environment Layer

NodeOS
Interface

Layer

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •• • •

Execution Environment Layer

NodeOS
Interface

Layer

Fig. 1. Schematic representation of the active-network architecture,
revealing five levels of abstraction, from bottom to top: (1) node
hardware, (2) node operating system, (3) node operating system
interface, (4) execution environment, and (5) active application.

 3

measure on any computer platform because a computer
operating system can readily determine the speed of the
processor on which it executes. In general, processor
speeds are specified in cycles per second, or Hertz, where
the time taken to execute a single instruction cycle can be
represented as the inverse of the processor speed. For
example, a processor that operates at the rate of one
billion Hertz (a Gigahertz, or GHz) will execute a single
instruction cycle in one billionth of a second (a
nanosecond, or ns). Unfortunately, the second factor, the
number of instruction cycles required for a program to
complete a task, proves very difficult to determine in any
platform-independent manner. Below we consider some
of the difficulties associated with providing an accurate
measure of the count of instruction cycles required by a
program.

As shown in Figure 1, a mobile program, or active
application, executes at the highest level in a five-level
architecture of abstractions. At this highest level of
abstraction, the number of instructions required to
complete the program is a function of the paths taken
through the code, which can depend on various
conditions that exist on the node at the time the program
executes. The lowest level of abstraction consists of the
node hardware, where program execution time is
influenced directly by the raw speed of various
components, such as the operating rate of the processor.
Three additional levels of abstraction exist between the
active application and the node hardware. Each of these
levels of abstraction consists of its own set of computer
code, and therefore instruction cycles, which may be
traversed by specific executions of an active application.
For example, consider the node operating system layer in
Figure 1.

When an active application calls for a system service,
such as a read or write to a disk device, control passes to
a device driver that executes some instruction cycles. The
number of instruction cycles required depends upon the
specific device driver underlying the system call, and the
device driver typically depends upon the specific
hardware. So, for example, if the disk is accessed through
a SCSI (small-computer system interface) controller, a
particular device driver will be used, while if the disk is
accessed through an IDE (integrated drive electronics)
controller, then a different device driver is required.
Further, from time-to-time device manufactures update
their device drivers. This implies that the number of
instruction cycles required to access a device can also
vary based on the specific version of the device driver
loaded on the computer platform. A similar analysis
applies to other devices, such as network interface cards,
codecs (encoder-decoders), and encryption hardware.

Similar reasoning applies at the other layers of
abstraction. For example, the active-networks architecture
(Figure 1) defines a standard node operating system

interface, which permits any execution environment to
run on any node operating system. This implies that some
mapping may be required to enable various node
operating systems to provide the standard interface. Each
such mapping will introduce additional instruction cycles
to the system calls made by an active application. The
number of additional instruction cycles will depend upon
the specific mapping code. Along similar lines, some
code will be required to map an execution environment
onto the standard interface provided by node operating
systems. This mapping will introduce additional code,
and therefore instruction cycles, that must be executed on
behalf of the active application. The specific mapping
will likely vary for each execution environment.

2.2. Some Supporting Measures

Above we argued that the processing demand of a
mobile program, such as an active application, depends
upon two factors: processor speed and number of
instruction cycles that must be executed. Further, we
suggested that the number of instruction cycles needed
depends on a variety of factors that will vary as a program
moves from node-to-node. In this section, we support our
theoretical discussion with some concrete evidence
obtained by measuring the operation of several computer
platforms, described in Table 1.

Table 1. Characteristics of three computer platforms selected for
investigation by measurements.

To investigate our hypothesis that the same program

will require different numbers of instruction cycles to
execute on various computer platforms, we ran a small
Java™1 benchmark program on the three computers
outlined in Table 1. The benchmark program simply
makes a series of 10,000 repetitive invocations of various
system calls through the Java virtual machine to the
operating system. In order to push our analysis to a limit,
we installed the same versions of Linux (version 2.2.7)
and the Java development kit (jdk 1.1.6) on three
Pentium-based platforms. The three nodes differed only
in the processor architecture and speed, the amount of

1 Commercial products are identified in this report to describe our study
adequately. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology.

jdk / 1.1.6jdk / 1.1.6jdk / 1.1.6Java Virtual Machine/Version
Linux / 2.2.7Linux / 2.2.7Linux / 2.2.7Operating System/Version

12812864Memory Size (Megabytes)
Pentium IIPentium IIPentium ProProcessor Architecture

450333199Processor Speed (MHz)
BlueBlackGreenNode Name

Platform Description

jdk / 1.1.6jdk / 1.1.6jdk / 1.1.6Java Virtual Machine/Version
Linux / 2.2.7Linux / 2.2.7Linux / 2.2.7Operating System/Version

12812864Memory Size (Megabytes)
Pentium IIPentium IIPentium ProProcessor Architecture

450333199Processor Speed (MHz)
BlueBlackGreenNode Name

Platform Description

 4

installed memory, and the characteristics of interface
hardware, such as disk controllers, audio devices, and
network cards. Using these three platforms, we
investigated only the differences in instruction cycles that
result from variations in node hardware, the lowest level
of abstraction shown in Figure 1. Table 2 depicts the
outcome from running our benchmark program repeatedly
and averaging the results.

Table 2. Results from executing the same Java benchmark program on
three different Pentium-based platforms running Linux.

The results shown in Table 2 support our analysis that

different computer platforms can require significantly
varying numbers of instruction cycles to execute the same
program, even when using identical versions of an
operating system and virtual machine. In fact, as Table 2
illustrates, variation in the number of instruction cycles
required may even lead to cases where a program takes
longer to execute on a faster machine (Blue) than on a
slower machine (Black). Our earlier analysis suggested
that such results might be attributed to differences in the
device drivers underlying the operating-system calls
invoked by our benchmark program. Results given in
Table 3 support the earlier analysis.

Table 3. Results for selected system calls from executing the same Java
benchmark program on three different Pentium-based platforms running
the same version of Linux and identical versions of the Java
development kit. Results measure average instruction cycles (AIC) and
average CPU time (ACT) used to execute selected system calls on each
node.

Table 3 shows that for four system calls (included in
our benchmark) the slowest node (Green – 199 MHz)
requires the fewest number of instruction cycles, while
the fastest node (Blue – 450 MHz) requires the largest
number of instruction cycles. The intermediate node
(Black – 333 MHz) requires fewer instruction cycles than

Blue but more than Green. As a result, Black executes the
benchmark faster than either Green or Blue, while Green
executes the benchmark only slightly slower than Blue,
but certainly not twice as slow.

These results support our assertion that the CPU time
required by a mobile program depends upon both the
processor speed and the number of instruction cycles
required to execute the program on a given computer
platform. Since a platform operating system can easily
determine processor speed, the main problem for
modeling CPU demand in a mobile program, such as an
active application, is to express the number of instruction
cycles required to execute the program on a given
platform. This is the problem that we attempted to solve.

2.3. The Outlines of a Solution

The outlines of a solution seem clear. The number of
instruction cycles needed to execute an active application
on a particular platform depend upon: (1) the path taken
through the application code, (2) the path taken through
the execution environment, (3) the path taken through the
mapping between the execution environment and the
node operating system interface, and (4) the path taken
through the system calls (and related device drivers) in
the node operating system. Unfortunately, these factors
can vary from platform-to-platform, based on the specific
code implemented on each platform, and from node-to-
node, based on various node-dependent conditions that
exist at the time an active packet arrives. Regarding node-
dependent conditions, two aspects seem relevant: (1)
conditions at the node that affect the processing logic in
an active application and (2) conditions at the node that
affect resource sharing among multiple active
applications and execution environments. While the
outlines of a solution seem clear, achieving a practical
result appears to be quite difficult.

Any effective model of CPU demand by a mobile
program, which we call an active-application model,
seems likely to require delineating the processing paths
through the program in terms of elements of a platform-
independent abstraction that the program will invoke on
every node. We refer to such platform-independent
abstractions as node models. In the context of active
networks, two types of node model seem feasible: (1)
white-box models and (2) black-box models. White-box
models specify the functions offered to active
applications by a specific execution environment. Black-
box models specify the system calls offered to execution
environments by a standard node operating system
interface. While we are investigating both approaches, in
this paper we focus mainly on a black-box model
because, if successful, such models can work across the
full range of execution environments being developed by
active-network researchers. White-box models, on the

534479843Average CPU Time (microseconds)
240,269159,412167,830Average Number of Instruction Cycles

BlueBlackGreenJava Benchmark Results
Computer Node

534479843Average CPU Time (microseconds)
240,269159,412167,830Average Number of Instruction Cycles

BlueBlackGreenJava Benchmark Results
Computer Node

5022,6094314,3946212,362Write

5122,8004414,7316112,042Stat

6027,0665317,5917314,560Socket Call

4319,3213712,3626312,606Read

ACTAICACTAICACTAICSystem Call

BlueBlackGreen

Computer Node

5022,6094314,3946212,362Write

5122,8004414,7316112,042Stat

6027,0665317,5917314,560Socket Call

4319,3213712,3626312,606Read

ACTAICACTAICACTAICSystem Call

BlueBlackGreen

Computer Node

 5

other hand, must be developed for each execution
environment that a node intends to support.

Whether specifying the logic of an active application
in terms of a black-box or white-box node model, a
means is also needed to characterize the performance of
specific nodes with respect to the model elements. We
refer to this aspect of the solution as node calibration. The
main idea behind node calibration is to determine a
node’s performance in implementing the elements that
comprise the node model.

Through calibration, a node operating system can
determine how many instruction cycles are required to
execute each model element on the node. Then, given
any active-application model expressed in terms of the
elements of a node model, an active-network platform
should be able to estimate the number of instruction
cycles that the active application will require on the node.

Unfortunately, the processing logic in an active
application does not consist solely of calls to elements in
the node model. Instead, the active application also
includes its own processing logic that is not carried out by
functions in the execution environment or by system
calls. This suggests that an active-application model must
also express the number of instruction cycles used
between calls to elements in the node model. As a result,
some means is required to calibrate the performance of
the active application on every node in the network. Such
exhaustive calibration appears infeasible; however, the
application-specific logic in an active application can
certainly be measured on one node in the network. Such
measurements provide an indication of the number of
instruction cycles required by an active application on a
specific node. Since an active application runs within an
execution environment, we can imagine calibrating the
ability of each execution environment to perform a
representative workload on each node in the network. We
call this process execution-environment calibration.

Given an active-application model expressed as a
combination of: (1) elements of a node model and (2) the
number of instruction cycles used between elements of a
node model, a network node receiving such a model can
conceivably transform the model into terms that might be
meaningful on the node. The techniques for performing
such a transformation make up another part of the
solution.

To recap, the outlines of a solution to the problem of
modeling CPU demand in mobile programs include at
least the following components: (1) a node model
expressed in terms of functions invoked by active
applications, (2) an active-application model expressed in
terms of paths through a node model and in terms of
instruction cycles used between invocations of elements
in the node model, (3) calibrations of a node with respect
to the node model and the execution environments on the
node, and (4) transformation techniques that can convert

an active-application model sent between two nodes into
terms meaningful on the destination. These are the
portions of the solution that we investigated, and that we
address in Sections 4 and 5 of this paper.

Other issues must also be resolved for a complete
solution. For example, we have not tackled the problem
of node-dependent conditions in this paper. This means
that in our work the CPU demands of an active
application are modeled from measuring the application
in numerous scenarios in the development laboratory
before we release the application (and its model) into a
network. Should the application encounter conditions not
seen in the development laboratory, our models have no
means of adjusting to such new conditions. We have also
not tackled the problem of adjusting node and execution-
environment calibrations based on current conditions in a
node or on new conditions that arise on a node over its
lifetime. This implies our calibrations do not adapt to
changes in a node or execution environment that arise
after the calibration occurs. We discuss issues related to
adaptation under future work.

3. A Critique of Selected Approaches

While the outlines of our solution appear complex, we
believe that success along these lines will enable more
effective control of CPU usage by mobile programs and
will enable node operating systems to more efficiently
manage CPU resources. Others also see a need to provide
such capabilities. In this section we present and critique
existing solutions to prevent excessive CPU resource
consumption in active networks and in mobile agent
systems. Next we examine research conducted outside of
active networks that could help to provide effective
resource management in active-network nodes.

3.1. Existing Solutions to Control CPU Use

In order to prevent malicious or erroneous active
packets from consuming excessive CPU time, most
execution environments implement specific control
mechanisms. In this section, we discuss the most common
mechanisms.

3.1.1. Use a limit fixed by the packet. Some
execution environments, such as ANTS [8], assign a time-
to-live (TTL) to each active packet. An active node
decreases this TTL as a packet transits the node, or
whenever the node creates a new packet. In this way,
each active packet can only consume resources on a
limited number of nodes, but individual nodes receive no
protection. The current TTL recommendation for the
Internet protocol (IP) is 64 hops [20], which is supposed
to roughly correspond to the maximum diameter of the
Internet. This value might prove large enough for an

 6

active packet that propagates a configuration from node
to node between two videoconferencing machines. But if
the active packet creates numerous additional packets (to
which it delegates a part of its own TTL), then the
assigned TTL could prove insufficient. And it is usually
difficult to predict how many new packets will be
generated since these predictions might depend on
network parameters, such as congestion and topology,
which can rarely be known in advance. This TTL
mechanism could contribute to protect individual nodes if
the TTL is given in CPU time units instead of hop count.
But the problem remains: how to choose the initial value
for the TTL?

In the related context of mobile agents, Huber and
Toutain [21] propose to enable packets that did not
complete their “mission” to request additional credits.
The decision to grant more credit would be taken by the
originating node for its packets, or by the generating
packet for packets created while moving among nodes.
The decision must be made after examining a mission
report included with the request for more credits. The
proposed solution remains unimplemented, perhaps
because the reports proved difficult to generate and
evaluate.

3.1.2 Use a limit fixed by the node. In some
execution environments (e.g., ANTS), a node limits the
amount of CPU time any one packet can use. This
solution protects the node but does not allow optimal
management of resources. For instance, imagine that a
node limits each packet to 10 CPU time units. Suppose
that a packet requiring 11 CPU time units arrives when
the node is not busy. In this case, the node will stop the
execution of the packet just before it completes.

3.1.3 Use a restricted language. The SNAP language
[22] is designed with limited expressiveness so that a
SNAP program uses CPU in linear proportion to the
packet’s length. While this approach supports effective
management of resource usage, it could prove too
restrictive for expressing arbitrary processing in active
applications. For instance, only forward branches are
allowed; as a result, if repetitive processing is required,
the packet must be resent repeatedly in loop-back mode
until the task is completed.

3.1.4 Use a market-based approach. Yamamoto and
Leduc [23] describe a model for trading resources inside
an active-network node, based on the interaction between
a “reactive user agent” included in the packet, and
resource manager agents that reside in the network nodes.
The manager agents propose resources (such as link
bandwidth, memory, or CPU cycles) to the user agents at
a price that varies as a function of the demand for the
resource (the higher the demand, the higher the price).
Packets carry a budget that allows them to afford
resources on active nodes. Based on the posted price of
the resources and on its remaining credit, the user agent

of a packet makes decisions about the processing to
apply. For instance, if the CPU is in high demand and
thus expensive to use, then a packet may decide to apply a
simple compression algorithm to its data, instead of a
more efficient but more costly algorithm, which the
packet would have applied if the resource were more
affordable. This approach, which might prove appropriate
for mobile agent platforms, could increase the packet
complexity too much to be used efficiently in active
networks.

3.1.5 Our critique. The two most common approaches
to resource control in active networks apply a fixed limit
on the CPU time allocated to an active packet. In one
approach, each node applies its own limit to each packet,
while in the other approach each packet carries its own
limit, a limit that might prove insufficient on some nodes
a packet encounters and overly generous on other nodes.
Neither approach provides a means to establish an
appropriate limit for a variety of active packets, executing
on a variety of nodes. Our research aims to solve this
problem, while at the same time we intend to develop a
solution that does not reduce the expressiveness of an
active packet, nor make a packet too complex.

3.2. Existing Attempts to Quantity CPU Demand

While we are unaware of any other projects aiming to
quantify the CPU requirements of an active application in
a heterogeneous network, we did survey several related
research initiatives that could help us to devise an
effective solution. The following sections outline and
discuss some of the ideas we found.

3.2.1 Use RISC cycles. The active-network
architecture documents specify that a node is responsible
to allocate and schedule its resources, and more
particularly CPU time. Calvert [1] emphasizes the need to
quantify the processing demands of an active application
in a context where such demands can vary greatly from
one node to another, and he suggests using RISC
(Reduced Instruction Set Computer) cycles as a unit to
express processing demands. He does not address two
crucial questions. First, for a given active application,
how can a programmer evaluate the number of RISC
cycles required to execute a packet on a given node?
Second, how can this number be converted into a
meaningful unit for non-RISC machines?

3.2.2 Use extra information provided by the
programmer. In the AppLeS (application-level
scheduling) project [24], the programmer provides
information about the application that she wishes to
execute on a distributed system. She must indicate for
instance whether the application is more communication-
oriented or computation-oriented or balanced, the type of
communication (e.g., multicast or point-to-point), and the
number of floating-point operations (in millions)

 7

performed on each data structure. Using this information,
a scheduling program produces a schedule expected to
lead to the best performance for the application. This
method can yield acceptable predictions only if the
programmer is both willing and able to provide the
required characteristics of the program. Discussions with
software performance experts led us to think this is rarely
the case.

3.2.3 Use combined node-program
characterization. Saavedra-Barrera and colleagues [25]
attempted to predict the execution time of a given
program on various computers. To describe a specific
computer, they used a vector to indicate the CPU time
needed to execute 102 well-defined Fortran operations. In
addition, they provided a means to analyze a Fortran
program, reducing it to the set of well-defined operations.
The program execution time can then be predicted by
combining the computer model with the program model.
The approach yielded good results for predicting the CPU
time needed to execute one specific run of a program on
different computer nodes. These results encouraged us to
model platforms separately from applications; however,
we need to capture multiple execution paths through each
application, rather than a single path. We are pursuing a
separate thread of research, discussed under future work,
which aims to apply insights from Saavedra-Barrera to
the active-network environment.

3.2.4 Use acyclic path models. To measure, explain,
or improve program performance, a common technique is
to collect profile information summarizing how many
times each instruction was executed during a run.
Compact and inexpensive to collect, this information can
be used to identify frequently executed code portions.
Unfortunately, such profiles provide no detail on the
dynamic behavior of the program (for instance, these
techniques do not capture and report iterations). To solve
this problem a detailed execution trace must be produced,
listing all instructions as they are executed. But as
program runs become longer, the trace becomes larger
and more difficult to manipulate. Ball and Larus [26]
propose an intermediate solution: to list only loop-free
paths, along with their number of occurrences. Among
other things, the authors demonstrate how the use of these
acyclic paths can improve the performance of branch
predictors. We might be able to exploit such algorithms to
efficiently capture looping behaviors; however, to collect
acyclic path information we would need to instrument the
program code for each application to be modeled. Given
the variety of execution environments and active
applications being devised by researchers, we decided to
first evaluate some simpler approaches.

4. A Black-Box Model of CPU Demand

Recall from Figure 1 that an active application
executes in user mode within an execution environment,
but requests services periodically from the node operating
system through specific system calls. An observer,
situated at the boundary between an execution
environment and a node operating system, would view
the behavior of an active application as a series of
transitions between specific system calls: from an idle
state, the application executes in user mode for some
number of instruction cycles within its execution
environment and then executes in kernel mode for some
number of instruction cycles within a system call, then
again in the execution environment before transitioning to
another system call, and so on until the active packet is
processed and the active application has returned to the
idle state. Because the point of observation provides no
insight into the logic of the active application or the
execution environment, we can consider them to be a
black box. We denote each observed transition-sequence
as a black-box execution trace.

From a collection of execution traces, we can cluster
together those that exhibit an identical sequence of system
calls. We call each cluster a scenario. For example,
Figure 2 depicts two scenarios discovered in an execution
trace. The shorter scenario occurs 2/3 of the time, while
the longer scenario occurs 1/3 of the time.

A black-box model for an active application consists

of two types of information: scenario specifications and
workload specifications. In the model, each scenario is
specified by its sequence of system calls. Further, each
system call is characterized by the distribution of the
number of instruction cycles spent in the system call, and
each transition between system calls is characterized by
the distribution of instruction cycles spent in the
execution environment during similar transitions. The
instruction cycle estimates are derived from an analysis of

Fig. 2. An example of two scenarios discovered by clustering
execution traces from a simple active application. The shorter trace
occurs more frequently (probability is 0.67), while the longer trace
occurs less frequently (probability is 0.33).

Idle Socket
Call

Write Write Socket
Call

Idle

Long
Stat Read Socket

Call
Socket

Call Write Write Socket
Call

Probability = 0.33

Probability = 0.67

Idle Socket
Call

Write Write Socket
Call

Idle

Long
Stat Read Socket

Call
Socket

Call Write Write Socket
Call

Probability = 0.33

Probability = 0.67

 8

the same execution traces used to identify scenarios. In an
earlier version of our model, we hoped to represent these
distributions using classical probability distributions. Our
goal was to produce an analytically tractable model.
Unfortunately, the observed distributions exhibit a degree
of discreteness and truncation not well represented by
typical continuous distributions. For this reason, we chose
to represent the distributions of instruction cycle
estimates with histograms (see Figure 3). Note that this
approach can require exchanging a large volume of
information when active-application models are
transferred among nodes in a network. (However, our
experiments show that reasonably accurate results could
be obtained with as few as five bins per histogram.)

The remaining part of our model, the workload

specification for an active application, consists of a list of
the discovered scenarios, where each scenario is assigned
a probability of occurrence (based on the frequency with
which the scenario appeared in the execution trace).
Taken together, the scenarios, their probability of
occurrence, and the distributions of instruction cycles in
user and system modes constitute a black-box model of
CPU demand for an active application.

4.1. Generating Execution Traces

We based our models on measurements taken from
execution traces. For various reasons, not recounted here,
we could not use existing execution tracing programs
available for typical operating systems, such as the Linux
systems we used as our test platforms. Instead, we
designed our own kernel modifications to provide exactly
the traces we needed, and at the granularity of individual
instruction cycles. Table 4 provides an example trace
from one execution cycle in one active application.

Table 4. An example execution trace from idle-to-idle for a single path
through an active application. Each row depicts a single instance of a
transition between two system calls. The transition columns show the
source and the sink system calls for the transition. The first column of
numbers counts the kernel-mode instruction cycles used in the source
system call, while the second column of numbers counts the user-mode
instruction cycles used in the execution environment between the return
from the source system call and the beginning of the sink system call.

To generate execution traces of this granularity and

accuracy, we used RDTSC (real-time stamp counter), a
hardware instruction provided by Intel in their Pentium
processors. This instruction records the number of
instruction clock cycles used since the last reboot of the
processor. The main difficulty we faced was attributing
the use of instruction cycles to particular processes. To
accomplish this, we designed and implemented
modifications for insertion into the Linux scheduler.

To account for the number of clock cycles spent by a
process in user and in kernel modes, we added two fields
to the process structure: "ucc" (number of clock cycles
spent in user mode) and "kcc" (for kernel mode). We also
added two working fields: "e" to record the entry time
into a new "state" (user or kernel) and "kflag" to indicate
whether or not the process was sleeping in kernel mode
when last exiting the scheduler. Indeed, with Linux, a
process cannot be preempted while executing in the
kernel. But when a process needs to wait for an event, it
relinquishes the CPU for another process to run. This
causes the waiting process to exit the scheduler. But it
will exit the kernel only later, after having been
rescheduled again and completing the execution of the
suspended system call.

We used the following algorithm to update the “ucc”
and “kcc” fields. On entering the scheduler:
the “e” field of the entering process is set to RDTSC (the
current value of the counter of instruction cycles since
last reboot). On entering the kernel: the “kflag” is set and
the value of “ucc” is updated: “ucc = ucc + RDTSC – e”,
where “RDTSC – e” gives the number of clock cycles
spent between the last time “e” was set (on entering the
scheduler) and the current time. This represents time
spent in user mode. Now the process is entering kernel
mode, so “e” is set to RDTSC. On exiting the kernel the
“kflag” is cleared and the value of “kcc” is updated: “kcc
= kcc + RDTSC – e”. Then, “e” is set to RDTSC. On
exiting the scheduler, if “kflag” is false, then “ucc = ucc +

Fig. 3. Two example specifications of instruction cycle usage: (a)
distribution of instruction cycles used by an active application in the
“write” system call and (b) distribution of instruction cycles used by an
active application in transitions between the “write” and “socket call”
system calls. Each bin of a histogram is labeled with the mid-point of
its value. The probabilities are the relative frequencies of observations
falling within specific bins.

CPU time

probability

14
,1

50

1 4
,8

00
1 5

,3
5 0

0.17

0.50
0.33

(a) “Write” system call

CPU time

probability

20
0,

05
0

2 6
7,

95
0

0.30

0.70

(b) “Write-to-Socket Call” transition

CPU time

probability

14
,1

50

1 4
,8

00
1 5

,3
5 0

0.17

0.50
0.33

(a) “Write” system call

CPU time

probability

20
0,

05
0

2 6
7,

95
0

0.30

0.70

(b) “Write-to-Socket Call” transition

1,056,1279,569IdleSocket Call
1,057,16513,247Socket CallWrite
1,004,92313,515WriteWrite
171,9689,675WriteSocket Call
17,7030Socket CallIdle

During TransitionIn SourceSinkSource
Instruction Cycles UsedTransition

1,056,1279,569IdleSocket Call
1,057,16513,247Socket CallWrite
1,004,92313,515WriteWrite
171,9689,675WriteSocket Call
17,7030Socket CallIdle

During TransitionIn SourceSinkSource
Instruction Cycles UsedTransition

 9

RDTSC – e”; otherwise “kcc = kcc + RDTSC – e”. Each
time “ucc” or “kcc” are updated, their new value indicates
how many clock cycles the process has spent in user or
kernel mode.

Our Linux kernel modifications enable us to trace a
process in a very fine manner. Now we need to be able to
retrieve the results. We found that the approaches
typically used to capture trace information for Linux
processes cause a traced process to run slowly, and also
lead to inaccurate results at our required level of
granularity. To avoid such problems, we implemented our
own monitoring of the process to generate traces in a
manner that was quite straightforward after the kernel
modifications discussed previously. We simply print a
message (using printk) at every entry and exit of the
kernel. Of course, our tracing mechanism is not the only
one using printk, so the resulting trace file must be pre-
processed before analysis in order to extract only the trace
lines of interest to us. To facilitate such pre-processing,
we inserted tags into our trace lines to permit easy
filtering.

4.2. Generating Models from Execution Traces

We wrote a model generator that can consume an
execution trace and generate a black-box model for the
program measured by the trace. First, the model generator
clusters the traced executions into the scenarios
contained, and assigns a probability of occurrence to each
scenario. Then the model generator examines the
instruction cycles used by each system call, and builds a
corresponding histogram. Finally, the model generator
examines the transitions between each pair of system calls
and constructs a histogram describing the distribution of
instruction cycles used. The model generator includes as
an input parameter the number of bins to create in each
histogram.

To generate estimates from a black-box model created
by the model generator, we use Monte-Carlo simulation.
Each pass through the simulator represents the processing
of an active packet. Using the probability of occurrence
contained in the black-box model, the simulator selects a
scenario. For each component of the scenario (system
calls and transitions in user mode between two system
calls), the simulator runs another Monte-Carlo test to
choose a bin of the histogram describing the count of
instruction cycles. The sum of the instruction cycles of
each component in the scenario yields a simulated
number of instruction cycles, which can be easily
converted into an estimate for CPU time by multiplying
by the cycle time of the processor. After repeated scenario
executions, we obtain a distribution of estimates for CPU
time demands of the active application represented by the
model. The distribution can be characterized with
statistics, such as the mean or percentiles (we used the

80th, 85th, 90th, 95th, and 99th) of the CPU time demanded
by the application. Of course, generating a large number
of simulated executions can refine the estimates.
Alternatively, selecting a small number of simulated
executions can provide quick estimates.

4.3. Evaluating Models Against Measurements

To assess how well a particular model estimates the
CPU demands of an active application, model predictions
can be compared against measures for the relevant
application. We conducted such measurements for
numerous applications under a range of model conditions,
including various bin granularities (from five to 100) and
simulation repetitions (from 100 to 20,000). Table 5
summarizes results comparing model predictions against
measurements on various computing platforms for two
execution environments, ANTS and Magician, and four
active applications (two for each execution environment).
The model histograms consist of five bins each. Each
estimate is generated using 10,000 simulation iterations.
Two comparisons are computed for each application: (1)
error in predicting the mean and (2) error in predicting the
average of the high percentiles (80th through 95th).
Estimates for high percentiles can be useful in CPU
control applications, while predictions of CPU demand
can also benefit from estimates for the mean.

Table 5. Comparing the percentage error in CPU demand between
estimates from a black-box model and measurements of real applications
for selected computer platforms, execution environments, and active
applications. The black-box model was generated with five bins per
histogram. Model estimates consist of 10,000 simulated executions.
Percentage error computed as the absolute value of 100 * (prediction –
actual) / actual. The errors for the high percentile are averaged over the
80th, 85th, 90th, 95th, and 99th percentiles.

Table 5 indicates very accurate predictions for mean

CPU demand on most platforms, across execution
environments and active applications. The predictions for
mean CPU demand in ANTS Multicast are somewhat

301Blue
Smart
Route

71Black

461Green

351Green
221Blue

Smart Ping

Magician

88Black

80Black

911Green
1011Blue

Multicast

51Black
61Green
70Blue

Ping

ANTS

Average % Error
High Percentiles

% Error
Mean

NodeActive
Application

Execution
Environment

301Blue
Smart
Route

71Black

461Green

351Green
221Blue

Smart Ping

Magician

88Black

80Black

911Green
1011Blue

Multicast

51Black
61Green
70Blue

Ping

ANTS

Average % Error
High Percentiles

% Error
Mean

NodeActive
Application

Execution
Environment

 10

higher. Further, the predictions of high percentiles are
less accurate than predictions for the mean, which can be
expected because high percentiles represent extreme
values that might not appear with great frequency. Still,
for high percentiles, the predictions for the Magician
execution environment appear significantly worst than the
predictions for the ANTS execution environment. Table 5
does not give the whole story, however. The percent
error, when averaged across all runs, for particular
statistics was: 3% (mean), 17% (80th percentile), 22%
(85th percentile), 14% (90th percentile), 10% (95th
percentile), and 17% (99th percentile).

The predictions and measurements compared in Table
5 consider each node running a mix of scenarios in all
roles that a node might take on for an application. For
example, in each application a node may serve as a
source, a router, or a sink for active packets associated
with the application. When we make comparisons
between predictions and measurements while limiting a
Magician node to hold one role (either source, router, or
sink) for an active application, the predictions compare
much more favorably with the measurements. Table 6
illustrates this point for three Magician applications:
Smart Ping, Smart Route, and Active Audio. For the
Active Audio application, where measurements were
taken in the process of some sample applications (see
section 6), each node assumed only one role.

5. Transforming CPU Models for Use Among
Heterogeneous Nodes

While the predictions made by our black-box models
appear reasonably accurate in many situations, the more
difficult part of our problem must still be solved.
Particularly, given a model for the CPU demand of an
active application running on one node, e.g., Green, can
the model provide accurate estimates for the CPU demand
of the application running on a different node, e.g.,
Black? To achieve this goal, we must transform the model
generated on Green into form that will be meaningful on
Black. In this section, we address our approach to model
transformation. First, we describe our model
transformation algorithm. Second, we discuss our
technique to calibrate nodes and execution environments.
Finally, we evaluate how well our transformation
technique works in a variety of tests.

5.1. Model Transformation Algorithm

Recall that our black-box model of an active
application consists of two parts: scenario specifications
and a workload specification. The workload specification
assigns a probability of occurrence to each scenario in the
model. We consider this information to be fixed on each

node that encounters the model (though see Section 7 for
a discussion of the need to adapt the workload
specification). Each scenario specification delineates a
sequence of transitions between system calls, where the
number of instruction cycles consumed in each system
call and in each transition is defined by histograms. The
information in these histograms is based on measurements
taken on a particular node; thus, this information will be
meaningless on other nodes. The goal of our
transformation algorithm is to convert the information in
the histograms into a form meaningful on any node that
receives the active-application model. Figure 4 shows the
results of transforming the histogram discussed earlier in
Figure 3.

 We assume that each node has been calibrated with

respect to its performance executing each system call and
each execution environment. The calibration results are
represented as two vectors. One vector, the system-call
(SC) vector contains the average number of kernel-mode
instruction cycles for the node to execute each system
call. For example, Figure 4 shows the calibration for the
“Write” system call on two nodes. A second vector, the
execution-environment (EE) vector, contains the average
number of user-mode instruction cycles for the node to
execute a calibration benchmark for each execution
environment that runs on the node. Figure 4 reveals the
calibration information for the ANTS execution
environment on two nodes.

For purposes of discussion, assume that a node (Dest)
receiving an active-application model has access to its
own calibration vectors as well as the calibration vectors
of the source node (Source). Then, the destination can
scale the contents of the histograms in the active-
application model by multiplying each bin by TDest/TSource,
where TDest represents the number of instruction cycles
taken from the appropriate element in the appropriate

Table 6. Comparing the percentage error in CPU demand between
estimates from a black-box model and measurements of real active
applications for the Magician execution environment. In this case,
predictions and measurements were compared when the role of each
participant was restricted to that of source, router, or destination.

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active
Audio

Smart
Route

N/A

0
0
0
0
0
0

%
Error
Mean

Source

N/A

3
2
3
3
1
1

Avg.
% Error

High Perc.

3

3
0
0
3
0
1

%
Error
Mean

Router

7

4
1
3
4
3
3

Avg.
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart
Ping

Avg.
% Error

High Prec.

%
Error
Mean

NodeActive
Application

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active
Audio

Smart
Route

N/A

0
0
0
0
0
0

%
Error
Mean

Source

N/A

3
2
3
3
1
1

Avg.
% Error

High Perc.

3

3
0
0
3
0
1

%
Error
Mean

Router

7

4
1
3
4
3
3

Avg.
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart
Ping

Avg.
% Error

High Prec.

%
Error
Mean

NodeActive
Application

 11

calibration vector for the destination node and TSource
represents the comparable value taken from a calibration
vector for the source node. In Figure 4, applying this
ratio for the “Write” system call yields a scaling factor of
1.57, while applying this ratio to the ANTS execution
environment gives a scaling factor of 1.51. Applying
these factors to each element of an active-application
model has the effect of dilating or contracting the number
of instruction cycles in each bin of each histogram. For
example, Figure 4 shows the application of the
appropriate scaling factor to the “Write” system call and
to the “Write-to-Socket Call” transition.

Unfortunately, to enable our transformation algorithm,
a destination node must have access to calibration vectors
from the source node. This implies that the calibration
vectors must be transmitted along with an already large
model for the active-application. Alternatively, we can
select one node (Ref) as a reference, and flood its
calibration vectors to all nodes in the network. Then,
before transmitting an active-application model between
two nodes, Source and Dest, the model is subjected to a
“Node-to-Reference transform”: the values describing the
number of instruction cycles required to execute each
element in the each histogram are dilated or contracted
using the ratio TRef/TSource, where TRef is the average
number of instruction cycles taken to execute the
histogram element on the reference node and TSource is the
average number of instruction cycles taken to execute the
corresponding element on the source node. Upon arrival
at the destination node, the model is subjected to an
inverse (the ratio is TDest/TRef) “Reference-to-Node
transform”. The combination of these two transforms
scales the instruction cycle values within an active-
application model from a form meaningful on a source
node to a form understood on a destination node.

5.2. Calibration Techniques

Obtaining the calibration vectors for specific nodes
requires the execution of two calibration benchmarks, one
for system calls and one for execution environments. For
system-call calibration, we execute a program that
repeatedly invokes each system call under a range of
parameter settings and then computes the average number
of instruction cycles required to execute each system call.
We make our calibration measurements using the same
techniques we developed for tracing executions.
Comparing our measurements against similar
measurements taken with strace, using the –c option, we
discovered that our measurement technique introduces a
constant overhead into the system calls. We factor out this
measurement overhead when creating our calibration
vector for system calls.

Calibration of execution environments requires
running a benchmark workload of active applications on
each execution environment. By analogy with the
classical process of computer-system benchmarking, we
had two possible choices for a benchmark workload for
calibrating execution environments. We could use a
workload that includes a realistic mix of actual active-
applications implemented for each execution
environment, or we could define a workload of artificial
applications whose behavior mimics the major classes of
active-applications. The first option proved infeasible
because active-network technology remains experimental,
and few real applications exist. For now, we use an
artificial mix of active-applications, executed with each
node taking on variety of roles, such as source, router,
and sink. For example, for the Magician environment we
use three applications (Smart Ping, Smart Route, and
Active Audio) and for the ANTS execution environment
we use two applications (Ping and Multicast). As the pool
of applications grows, the calibration workload must be
updated to reflect new functionality or roles. Even so, the
ANTS Multicast application, while very basic, exercises
all the major functions of active networking: to send and
receive packets, and to store and modify information in
nodes.

Since calibration is likely to require substantial
computation on a node, we must consider appropriate
means to perform the calibration. Several approaches
should be investigated. In our case, we performed the
calibration off-line, and then stored the results as
parameters within a node operating system. This approach
has the merit of requiring no resources from a node
during operational execution. Of course, whenever a
system configuration changes, the previously computed
off-line calibration may no longer prove accurate.

Fig. 4. This figure shows two histograms in an active-application
model, shown earlier in Figure 3, after those histograms have been
transformed from a form understood by the source node (Black) into a
form meaningful on the destination node (Blue). The relevant parts of
the calibration vectors are given for the source and destination nodes.
Two scaling factors are computed: (1) 1.57 for the “Write” system call
and (2) 1.51 for the “Write-to-Socket Call” transition.

CPU time

probability

22
,2

1 6

23
,2

36
2 4

, 1
0 0

0.17

0.50

0.33

(a) Transformed “Write” system call

CPU time

probability

30
2,

07
6

40
4 ,

6 0
5

0.30

0.70

(b) Transformed “Write-to-Socket Call” Transition

Source Node Calibration Vectors
System Calls: … Write 14,394 …
Execution Environments: …
ANTS 159,412 …

Destination Node Calibration Vectors
System Calls: … Write 22,609 …
Execution Environments: …
ANTS 240,269 …

TDestWrite/TSourceWrite = 1.57 TDestANTS/TSourceANTS = 1.51

CPU time

probability

22
,2

1 6

23
,2

36
2 4

, 1
0 0

0.17

0.50

0.33

(a) Transformed “Write” system call

CPU time

probability

30
2,

07
6

40
4 ,

6 0
5

0.30

0.70

(b) Transformed “Write-to-Socket Call” Transition

Source Node Calibration Vectors
System Calls: … Write 14,394 …
Execution Environments: …
ANTS 159,412 …

Destination Node Calibration Vectors
System Calls: … Write 22,609 …
Execution Environments: …
ANTS 240,269 …

TDestWrite/TSourceWrite = 1.57 TDestANTS/TSourceANTS = 1.51

 12

As a second alternative, we could consider boot-time
calibration. Here, the calibration programs would execute
automatically as part of the startup process in the
operating system. This approach has two advantages.
First, since most operating systems must be re-booted
after significant configuration changes, calibration at
system boot is likely to account for the variability
introduced by system alterations. Second, since
calibration is completed prior to system execution, the
calibration process will require no resources after the
node becomes operational. One downside is that boot–
time calibration could considerably lengthen system
startup time. Additionally, future operating systems seem
destined to include dynamic configuration through
components downloaded during execution. Boot-time
calibration could not account for such dynamic run-time
changes in an operating system.

A third alternative is to execute an off-line calibration,
and then to perform run-time calibration adjustments.
Here boot-time would not be lengthened due to
calibration requirements. In addition, configuration
changes that affect the calibration can be accounted for
during the run-time calibration adjustments. One might
even consider altering automatically the frequency of run-
time calibration adjustments depending on the variance
computed between successive calibrations. As the
variance diminishes between successive calibrations, the
calibration adjustment interval could be lengthened.
Conversely, increasing variance would stimulate more
frequent calibration adjustments. The approach has two
drawbacks. First, run-time calibration adjustments would
subtract resources from operational uses of a node.
Second, it might prove difficult to design and implement
an effective run-time calibration adjustment mechanism.

5.3 Evaluating Transformed Models

In this section, we evaluate how well our transformed
black-box models can predict the CPU demands for an
active application measured on one node and then
executed on another node. In effect, here we are
evaluating how much additional error is introduced into a
model by our transformation technique, and the
associated calibration processes. We also compare our
transformation technique against a more naïve approach
that uses the ratio of processor speeds to scale models. To
widen our base of platforms, we introduce two new
nodes, Yellow and Red, to augment those described in
Table 1. Both Yellow and Red use the same versions of
Linux and Java as the nodes shown in Table 1; however,
the platform hardware differs. Yellow embodies a
Pentium 75 running at 100 MHz, and has 80 MB of
memory, while Red includes a Pentium II running at 266
MHz with 128 MB of memory. Figure 5 shows all five

nodes configured in a small active network in our
laboratory.

We ran selected active applications repeatedly on each
node, measuring the actual CPU time required for each
execution. We then computed the mean CPU time and the
high percentiles (80th, 85th, 90th, 95th, and 99th) of CPU
time used by each application on each node. These served
as baseline measurements against which we compared
estimates obtained using our black-box model and
transformation techniques. We also generated estimates
using a more naïve approach that multiplies the observed
execution times on a source node by the ratio of the
processor speed of the source node to the processor speed
of a destination node. Using this ratio, we scale the CPU
time requirements to match the relative speed of the
processors on each node. Table 7 provides a subset of the
percentage (absolute) error we achieved when using each
method to predict the mean and high percentiles of CPU
usage when moving active application models between
nodes. In this table, we average the error across the five
high percentiles.

Table 8 shows comparative results for the percentage
error in each statistic (mean and each of the high
percentiles) when averaged over all runs. The table
compares prediction error in three situations: (1)
predicting performance on one node with our black-box
models, (2) predicting performance on other nodes by
scaling our black-box models, and (3) predicting
performance on other nodes by scaling with processor
speed ratios. Note that scaling the black-box models
yielded a fourfold improvement in accuracy over scaling
based solely on processor speed ratios. In addition, as
Table 8 shows, scaling our black-box models did not

Fig. 5. The five-node active-network test bed we set up in our
laboratory at NIST in order to conduct our experiments and to make
measurements. The nodes from left to right: Yellow, Black, Red,
Blue, and Green.

 13

introduce additional error beyond the error already
present in the models.

6. Sample Applications

 In this section, we illustrate how our CPU demand
models can be used in two sample applications. In one
application, we decide when to terminate an active packet
based on its consumption of CPU time. In a second
application, we predict the CPU demand for nodes in an
active network. In both applications, we compare results
obtained using our black-box models against results
obtained using CPU control and estimation techniques
typically available in execution environments.

6.1. CPU Usage Control

 As active packets traverse a series of nodes along a
path from source to destination, each active node will
wish to enforce CPU usage limits on each packet. This
permits a node to protect itself from malicious or
erroneously programmed active packets. Some execution
environments provide a fixed maximum limit for any
active packet, while some also permit each active packet
to specify its own limit. In this way, should the active
node choose to allow the packet to execute, the node will
also have an idea when the packet should be terminated.
In a small sample application, we show how the use of a
fixed time-to-live (TTL) in each packet can lead to stolen
and wasted CPU time in active nodes. We also show how
our black-box models can be used to adjust the TTL on
each active node; thus, saving CPU time and improving
the quality of service in applications. Our sample active-
audio application runs in the Magician [11] execution
environment over the topology shown in Figure 6.

In this topology the source node (Green – 200 MHz)

sends a stream of 2278 40-byte audio packets to the
destination node (Black – 450 MHz) across two routers.
The first router (Blue – 333 MHz) is faster than the
source, and the second router (Yellow – 100 MHz) is
slower than the source. Measurements of the application
running on the source reveal that 8.29 ms is the 99th
percentile of CPU time used to process active-audio
packets. In our sample application, the source selects this
value as the TTL for each active packet. Unfortunately, in
our case study, an intruder on the source node manages to
inject 455 malicious packets into the stream of valid
active-audio packets. Each malicious packet is
programmed to consume as much CPU time as possible
on each node.

During the experiment, each malicious packet is
allowed to use 8.29 ms on the first router before the
packet is killed. However, all malicious packets are
terminated on the first router. The CPU time allocated to
the malicious packets is stolen from other users. Worse,
as valid packets arrive at the second, slower, router, they

First
Router

(Fastest)

Second
Router

(Slowest)

Destination
Node

Source
Node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

First
Router

(Fastest)

Second
Router

(Slowest)

Destination
Node

Source
Node

Source
Node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

Fig. 6. A four-node active-network topology used to run an
active-audio application that relays audio packets between a
source and destination node over two intervening routers.

Table 7. Reporting the percentage absolute error in estimating the
mean and the average percentage absolute error in estimating the
high percentiles (80th, 85th, 90th, 95th, and 99th) using naïve scaling
based on processor speed ratios and using scaling based on
transformation of black-box models. The table presents a
representative subset of the results we obtained.

1039494YellowBlack

9548BlackRed

2428692RedBlue
Smart
Route

1094345RedYellow

1462132BlackGreen

957481BlackBlue
Smart
Ping

Magician

10582BlackYellow

1022511RedBlack

1224746BlueGreen

Multicast

776665BlackBlue

8255BlackRed

8062GreenYellow

Ping

ANTS

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Dest.
Node

Source
NodeAAEE

Scaled with
Black-Box

Model

Scaled with
Processor

Speed Ratio
EE is Execution Environment
AA is Active Application

1039494YellowBlack

9548BlackRed

2428692RedBlue
Smart
Route

1094345RedYellow

1462132BlackGreen

957481BlackBlue
Smart
Ping

Magician

10582BlackYellow

1022511RedBlack

1224746BlueGreen

Multicast

776665BlackBlue

8255BlackRed

8062GreenYellow

Ping

ANTS

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Dest.
Node

Source
NodeAAEE

Scaled with
Black-Box

Model

Scaled with
Processor

Speed Ratio
EE is Execution Environment
AA is Active Application

Table 8. Comparing the absolute percent error for selected statistics,
averaged across all runs, when predicting CPU demands in three
situations: (1) using black-box models to predict CPU demands for the
same node on which the model was generated, (2) scaling black-box
models to predict CPU demands on different nodes from that on which
the model was generated, and (3) scaling CPU demands based upon the
ratio of processor speeds between pairs of nodes.

384039394340Different NodeScaling with Speed Ratio
1010812144Different NodeScaling Black-box Model
17101422173Same NodeBlack-box Model

99th95th90th85th80th
Prediction

Target
Prediction
Method

PercentileMean

Average Percent Error Across All Runs
for Selected Statistics

384039394340Different NodeScaling with Speed Ratio
1010812144Different NodeScaling Black-box Model
17101422173Same NodeBlack-box Model

99th95th90th85th80th
Prediction

Target
Prediction
Method

PercentileMean

Average Percent Error Across All Runs
for Selected Statistics

 14

are each given up to 8.29 ms of CPU time. Unfortunately,
as Table 9 reveals, 23.99 ms is the actual 99th percentile
required by active-audio packets executing on the second
router. As a result of the poor TTL value, the second
router kills 96% of the valid packets. The time spent
processing the killed packets amounts to CPU time
wasted on the part of the second router, and the end user
receives an unacceptable quality of service.

Table 10 provides a summary of results from running

the active-audio application with two different
approaches to TTL assignment. The first approach
assigned a fixed TTL of 8.29 seconds, based on the
observed 99th percentile on the source node. The second
approach assigned a variable TTL on each node. In this
case, the TTL on each node was determined by scaling a
black-box model of the application that was generated on
the source node (using the techniques discussed in
Sections 4 and 5). During each run, the application
injected 2278 valid active-audio packets into the path, and
also injected 455 malicious packets, about one for every
fourth valid packet.

Using a fixed TTL, the malicious packets stole 3,772
ms (455 malicious packets X 8.29 ms TTL) from the first
router. Using a variable TTL, the malicious packets stole
only 1,606 ms (455 malicious packets X 4.76 ms) from
the first router. This amounts to a saving of 3.53 ms per
malicious packet, which could provide the breathing
room needed to activate defensive mechanisms in the
router.

On the second router, where only valid packets arrive,
the use of a fixed TTL leads to an unfortunate outcome,
where 96% (2,168 / 2,278) of the packets are terminated,
each after consuming 8.29 ms of CPU time. This amounts
to wastage of 18,122 CPU milliseconds, and presents an
untenable audio channel to the end user. When a variable
TTL is used, the situation improves greatly. First, the

second router terminates less than 1% (19 / 2,278) of the
valid packets. This improves the quality of service to an
acceptable level, and limits the wasted CPU time to only
456 ms. These results confirm that improved models for
CPU demand enable better control as mobile code
traverses heterogeneous nodes in a network.

6.2. CPU Demand Prediction

 In a second sample application, we demonstrate how
improved models for CPU demand can lead to better
predictions about the capacity available among nodes in
an active-network topology. In this case, we concern
ourselves with predictions for average CPU demand,
rather than predictions for the 99th percentile. To conduct
our case study, we use the Active Virtual Network
Management Prediction (AVNMP) system [27]
developed by researchers at the General Electric
Corporate Research and Development Center. AVNMP
uses active-network technology to inject simulation
models into network nodes, and to run those models
concurrently with corresponding applications. AVNMP
then compares estimated performance against measured
performance, and maintains predictions from the
simulation within specified error bounds, when compared
against measurements from the application.

To predict traffic load in a network, AVNMP
constructs a shadow topology that overlays the
operational network and then runs a simulation in the
shadow topology. Figure 7 illustrates the relationship
between the operational network and the shadow,
prediction-overlay network. Using Magician as an
execution environment, AVNMP deploys driving
processes (DP) at each source node and logical processes
(LP) at each intermediate and destination node in the
topology of the operational network. DPs and LPs are
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 7). Each DP
contains a model that simulates message sources,
generating virtual messages that flow along links in the
virtual-overlay network, which share physical links

Table 9. Comparing the measured 99th percentile for the CPU time
used by an active-audio application running on nodes in an active-
network topology. The table shows the Time-To-Live (TTL) and the
equivalent number of instruction clock cycles on each node for three
cases: (1) measurements taken on each node, (2) a fixed TTL assigned
based on measurements taken on the source node, and (3) predictions
generated by scaling a black-box model generated from measurements
taken on the source node.

8.29
(1,650,084)

8.29
(1,650,084)

8.29
(1,650,084)

Source
Node

8.29
(829,187)

8.29
(2,769,487)Fixed TTL

23.99
(2,398,702)

4.76
(1,589,382)

TTL Derived from Scaled
Black-box Model

23.99
(2,398,702)

4.76
(1,589,382)

Measured Value

99th Percentile CPU Usage
Second
Router

First
Router

All values given in:
milliseconds

(clock cycles)

8.29
(1,650,084)

8.29
(1,650,084)

8.29
(1,650,084)

Source
Node

8.29
(829,187)

8.29
(2,769,487)Fixed TTL

23.99
(2,398,702)

4.76
(1,589,382)

TTL Derived from Scaled
Black-box Model

23.99
(2,398,702)

4.76
(1,589,382)

Measured Value

99th Percentile CPU Usage
Second
Router

First
Router

All values given in:
milliseconds

(clock cycles)

Table 10. Comparing CPU time stolen or wasted on routers in an active-
network topology when running an active-audio application. The table
shows two situations: (1) fixed TTL and (2) variable TTL.

1,606 ms
[455 * 4.76 ms]

3,772 ms
[455 * 8.29ms]

CPU Time
Stolen

on First Router

18,122 ms
[2,186 * 8.29 ms]

Fixed TTL

456 ms
[19 * 23.99 ms]

TTL Derived from Scaled
Black-box Model

CPU Time
Wasted

on Second
Router

2278 Valid Packets
455 Malicious Packets

1,606 ms
[455 * 4.76 ms]

3,772 ms
[455 * 8.29ms]

CPU Time
Stolen

on First Router

18,122 ms
[2,186 * 8.29 ms]

Fixed TTL

456 ms
[19 * 23.99 ms]

TTL Derived from Scaled
Black-box Model

CPU Time
Wasted

on Second
Router

2278 Valid Packets
455 Malicious Packets

 15

between nodes but remain logically isolated from
operational traffic. As virtual messages arrive, the LP
updates variables in the node’s management information
base (MIB) [28]. Each LP updates the future state of
relevant MIB variables, providing the MIB with predicted
state to complement the current and past state maintained
for the operational network. After updating predicted
MIB variables, the LP consults the node’s routing table
and forwards incoming virtual messages on to other LPs,
if required.

The prediction-overlay network then generates and
routes simulated network traffic that attempts to run
ahead in virtual time of operational network traffic (time
dimension in Figure 7). While the operational network
advances in real time, the LP in the prediction-overlay
network advances in virtual time, receiving virtual
messages and estimating future load. Periodically, the LP
compares the actual and predicted MIB values for
corresponding intervals in real and virtual time. If the
values agree within an error tolerance, then the simulation
remains ahead of real time and continues to advance. If
not, then the LP rolls virtual time back to the current real
time, discarding predictions for future MIB state, and
then simulation resumes. AVNMP contains some special
processing to cancel virtual messages that might be in
transit across the prediction-overlay network during a
rollback, but we omit these details.

As shown in Figure 8, we constructed a four-node,
heterogeneous active network, consisting of the same
topology and nodes used for the active-audio case study
(see Section 6.1). The operational active network
comprised these nodes connected to a switched 10-Mbps
Ethernet, which included a few other nodes that were not
part of the experiment. We configured the experiment
nodes to run the active-audio application discussed
earlier. The prediction overlay network included AVNMP
deployed as an active application on each node, with a DP
injected into the source node and an LP injected into the
destination and each intermediate node. The DP included
a message model to generate virtual message traffic and a
CPU model to estimate the processor demand associated

with each virtual message. Each LP also included a copy
of the CPU model to estimate processor demand for each
arriving virtual message.

We conducted two experiment runs. In the first run

the DP and LPs predict a fixed average CPU time for
each virtual message on every node. In the second run,
the average CPU time predicted for each virtual message
differs on each node, based on predictions made by
scaling our black-box model of the active-audio
application. Table 11 shows the relevant experiment
parameters at each router node.

We assigned 7 ms per packet as the average CPU

demand in the fixed prediction models. This figure was
obtained by measuring the active-audio application
executing on the source node. Note that 7 ms equates to a
different number of clock cycles on each node, depending

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Fig. 7. An illustration of the time-space relationship between an
operational network and a prediction-overlay network constructed
by the Active Virtual Network Management Prediction (AVNMP)
system.

AVNMP AA

Source
Node

First
Router

(Fastest)

Destination
Node

Second
Router

(Slowest)

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

AVNMP AA

Source
Node

First
Router

(Fastest)

Destination
Node

Second
Router

(Slowest)

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Logical

Process

CPU
Model

Driver

Process

Message
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

Fig. 8. A four-node topology supporting both an operational active
network and a prediction-overlay network. The figure indicates how
the various components of the AVNMP prediction-overlay network
were deployed to estimate resource demand for an active-audio
application.

Table 11. The average CPU estimates used by AVNMP for each
router in the prediction-overlay network, reported as milliseconds and
as the equivalent instruction clock cycles. The table also indicates the
number of clock cycles that comprise the 10% error tolerance on each
node, and the average interval at which measurements were sampled.

163,34790,00069,300234,075Error Tolerance (+-
10%) (clock cycles)

710.112.18.8Avg. Measurement
Interval (s)

16.5
(1,633,478)

3
(900,000)

7
(693,000)

7
(2,340,750)

Avg. CPU Time
(ms and clock cycles)

Average CPU Time
Scaled with Black-box

Model

Fixed Average CPU
Time Scaled with Speed

Ratio
Second
Router

First
Router

Second
Router

First
Router

Experiment
Parameter

163,34790,00069,300234,075Error Tolerance (+-
10%) (clock cycles)

710.112.18.8Avg. Measurement
Interval (s)

16.5
(1,633,478)

3
(900,000)

7
(693,000)

7
(2,340,750)

Avg. CPU Time
(ms and clock cycles)

Average CPU Time
Scaled with Black-box

Model

Fixed Average CPU
Time Scaled with Speed

Ratio
Second
Router

First
Router

Second
Router

First
Router

Experiment
Parameter

 16

on processor speed. By scaling our black-box model, we
estimated 3 ms per packet as the average CPU demand on
the first router and 16.5 ms on the second router. Our
hypothesis: because our scaled black-box model more
accurately represents CPU demand in the active-audio
application, as compared against the fixed-time estimate,
AVNMP should require fewer tolerance rollbacks; thus,
the prediction-overlay network should provide better
look-ahead into virtual time. We ran two experiments to
evaluate this hypothesis.

For each experiment run we fixed the relative error
tolerance at 10 %, which means that AVNMP initiates
tolerance rollbacks whenever the measured CPU use
(averaged over 20 messages) differs from the predicted
CPU use by more than 10 %. This tolerance, computed
relative to predicted CPU use, equates to a different
number of instruction clock cycles for each node and run.
Using a wider error tolerance would likely mask any
improvements from improved CPU demand predictions.

In conducting each run, the active-audio application
emitted a stream of 91,105 bytes (2277 40-byte packets
followed by one 25-byte packet), and the intermediate
nodes periodically measured the cumulative tolerance
rollbacks and the virtual time. As shown in Table 11, the
average measurement interval varied on each node due to
the stochastic nature of thread scheduling in Java. Table
12 compares the results we obtained from our experiment
runs.

Over the audio streaming period, we can compare

AVNMP performance for the same nodes when using the
fixed CPU-demand model vs. the adapted CPU-demand
model. For both the fastest and slowest intermediate node,
the adapted CPU-demand model induces fewer tolerance
rollbacks. This permits AVNMP to reach a greater
maximum look ahead into virtual time on each
intermediate node. Figures 9 and 10 provide a view of
cumulative rollbacks and virtual time, respectively, on an
interval-by-interval basis for the first router. The graphs
compare progress with the fixed CPU-demand model
against progress with the adapted CPU-demand model.
These results support our hypothesis, suggesting that use
of an adaptive CPU-demand model can improve the

ability of AVNMP to predict resource usage in
heterogeneous active networks.

7. Future Work

 While our black-box models of CPU demand, and the
associated scaling techniques, appear promising, more
research remains before the models can be practically
applied. In this section, we outline some of the open
issues in three main categories: (1) improving our existing
black-box models, (2) investigating white-box models as
an alternative to black-box models, and (3) exploring
continuous improvement strategies that would enable
models and node calibrations to monitor their own

0

20

40

60

80

100

1 11 21 31 41
Sample Interval - Advancing in Time

C
um

ul
at

iv
e

R
ol

lb
ac

ks

Fixed CPU-demand Model

Adapted CPU-demand Model

0

20

40

60

80

100

1 11 21 31 41
Sample Interval - Advancing in Time

C
um

ul
at

iv
e

R
ol

lb
ac

ks

Fixed CPU-demand Model

Adapted CPU-demand Model

Fig. 9. An interval-by-interval comparison of the change in
cumulative rollbacks for the fixed CPU-demand model versus the
adapted CPU-demand model.

-1000

-800

-600

-400

-200

0

200

400

600

1 11 21 31 41

Sample Interval - Advancing in Time

Lo
ok

 A
he

ad
 (s

)

Fixed CPU-demand Model

Adapted CPU-demand Model

-1000

-800

-600

-400

-200

0

200

400

600

1 11 21 31 41

Sample Interval - Advancing in Time

Lo
ok

 A
he

ad
 (s

)

Fixed CPU-demand Model

Adapted CPU-demand Model

Fig. 10. An interval-by-interval comparison of the change in
look-ahead in virtual time for the fixed CPU-demand model
versus the adapted CPU-demand model.

Table 12. Reports the results measured at two routers during two
different experiment runs. The results include the cumulative number
of rollbacks and the maximum look-ahead observed over all
measurement intervals.

0028124292Cumulative Rollbacks

31310243254-20-101Maximum Look Ahead (s)

Dest.
Node

Second
Router

First
Router

Dest.
Node

Second
Router

First
Router

Avg. CPU Time from
Scaled Black-box Model

Fixed Avg. CPU Time
Source Node is Green.
First Router is Black.
Second Router is Yellow.
Destination Node is Blue.

0028124292Cumulative Rollbacks

31310243254-20-101Maximum Look Ahead (s)

Dest.
Node

Second
Router

First
Router

Dest.
Node

Second
Router

First
Router

Avg. CPU Time from
Scaled Black-box Model

Fixed Avg. CPU Time
Source Node is Green.
First Router is Black.
Second Router is Yellow.
Destination Node is Blue.

 17

performance and to adapt to new conditions. We begin by
considering the state of our black-box models.

7.1. Improving the Black-Box Model

The performance of our black-box models can be
considered along three dimensions. Along the dimension
of accuracy, our existing models assume that all
application behavior can be measured prior to injecting a
model into network nodes. Unfortunately, application
behaviors often reflect conditions that cannot be known
before a program reaches a node. For this reason, our
application model must be enhanced to account for such
node-dependent conditions. Two particular issues occur
in this regard. First, some behaviors may appear more or
less often on a particular node than the model would
predict, based on the scenarios observed in the laboratory
where a model is created. Given the restriction of black-
box models, this becomes a statistical question
surrounding whether or not the behavior measured in
generating the model represents the behavior in actual
use. Attacking this problem on a black-box basis requires
some ability for continuous improvement (see Section 7.3
below). Removing the black-box restriction opens up the
model and permits strategies more suited for white-box
analysis (see Section 7.2 below). Second, selected
scenarios in our black-box models might be repeated at a
node, based on conditions at the time of execution. For
example, in a multicast application a packet might be
forward a number of times that depends on the current
number of subscribers to a multicast group. We might be
able to parameterize looping behavior in our black-box
models (making them grey-box models, perhaps). If we
can do this, then an arriving model might query the
execution environment on a node for the current values of
key behavioral parameters, and then could modify its
CPU demand estimates accordingly.

Along the dimension of cost, our models consist of
histograms, which must be exercised with Monte-Carlo
simulations in order to predict CPU demand. As a result,
specific application models can be large and could require
substantial computation to produce predictions. To some
degree the space-time properties of our model can be
modulated; however, the prediction error also varies
accordingly. We discuss these points in more detail.

In our research, we found that the size of a model can
vary depending in the first order on three parameters: the
execution environment, the active application, and the
granularity of the histograms. The execution environment,
and its mapping to a node operating system, appears to
affect the number of system calls made by an active
application. Further, an active application may consist of
a number of different roles (such as source, router, and
sink), where a node may take on one or more of the
available roles. The number and nature of roles in an

active application affect (in the second order) the number
of scenarios, and the number of scenarios can affect (in
the third order) the number of transitions and the number
of distinct system calls taken. To determine a model size,
the number of bins in each histogram multiplies the
number of transitions and system calls. Tables 13 and 14
provide, for ANTS and Magician, respectively, some
statistics regarding the size of the models generated
during our research.

Tables 13 and 14 support the observation that the

execution environment and the active application affect
the size of the model. For example, notice that the various
applications in each table require different numbers of
bytes to describe a model. Further, note that two similar
applications, “Ping” (Table 13) and “Smart Ping” (Table
14), required different sizes based on being written for
different application environments. Tables 13 and 14 also
provide some indication of the size of the models that

Table 14. Some statistics about the size of black-box models
generated for various possible roles that can be taken by two different
active applications running in the Magician execution environment.
Note that both applications can adopt one or more of three roles. The
role “All” denotes the application executing in all available roles.

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart
Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart
Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

Table 13. Some statistics about the size of black-box models
generated for various possible roles that can be taken by two different
active applications running in the ANTS execution environment. Note
that both applications can adopt one or more of three roles. The role
“All” denotes the application executing in all available roles. For the
Multicast application, the table includes a row showing a combined
role, “Router-Sink”.

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

 18

would be shipped among nodes. But model size is only
part of the story.

Once a model arrives on a node, a Monte-Carlo

simulation must execute to generate a sample population
of CPU demands from which prediction statistics can be
determined. In our experiments, we implemented the
models in Java, which is not the most efficient choice.
Table 15 shows the CPU seconds required to execute a
number of our five-bin histogram models for varying
repetition counts. As shown in Table 16, the larger the
number of repetitions, the better the accuracy of the
predictions. Of course, the larger the number of
repetitions, the more CPU time is needed to generate the
predictions. Table 16 shows the increasing accuracy of
the predictions as the number of repetitions increases
from 500 to 20,000. On the other hand, Table 16 also
shows that at 20,000 repetitions, increasing the number of
bins from 50 to 100 does not appreciably improve the
accuracy of the predictions.

Along the dimension of operational effectiveness, our
models would benefit from inclusion of an associated
error bounds. Before taking decisions based on
predictions from CPU-time models, an operating system
must consider the possible range of prediction error.
While we have yet to characterize the error properties of
our models, Table 17 provides another look at how
scaling our black-box models compares against scaling

predictions based on the ratio of processor speeds. For
sake of discussion, assume that these results hold across
all models of each type. Then, upon receiving predictions
from a scaled black-box model, an operating system
could realize that the predictions for the mean might be
incorrect by up to 5% and that predictions for the higher
percentiles might prove inaccurate by as much as 15%.
On the other hand, when working with a model scaled
based on the ratio of processor speeds, the operating
system would realize that all predictions could be around
35% in error.

7.2. Investigating White-Box Models

In addition to seeking techniques to improve black-box
models, we have begun to investigate white-box models
as an alternative approach. In our conception, white-box
models represent the processing logic within an active
application as it invokes services offered by an execution
environment. Figure 11 (a), for example, shows mobile,
an active application written for the ANTS execution
environment, while Figure 11 (b) shows a corresponding
white-box model for mobile.

As shown in Figure 11 (a), an active application
consists of a combination of sequences, selections, and
iterations that invoke specific primitives provided by an
execution environment. In this example, such primitives
include: getCache, getDst, intValue, getAddress,
routeForNode, and deliverToApp. Given a specific active
packet and a determinable state for relevant node-
dependent conditions, an active-network node can
determine, prior to executing the packet, the precise
sequence of primitives that an active application will call
to process the packet. Further, if the node can determine
the time taken by the execution environment to execute
each primitive, then the node can compute an estimate for
the CPU time required to process the packet. To

Table 15. Shows the average number of CPU seconds (and the
standard deviation) required to execute four different models through
various repetitions. All models, implemented in Java, were composed
of five-bin histograms.

0.823.820.080.740.100.64Smart
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard
Deviation

MeanStandard
Deviation

MeanStandard
Deviation

MeanActive
Application

Execution
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in

Java

0.823.820.080.740.100.64Smart
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard
Deviation

MeanStandard
Deviation

MeanStandard
Deviation

MeanActive
Application

Execution
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in

Java

Table 16. This table reports the percent absolute error predicting the
mean and high percentiles for two active-applications running in the
ANTS execution environment. The results give the error measured for
three combinations of histogram granularity and simulation repetition
count.

3
2

% Error
Avg. High
Percentile

0
1

%
Error
Mean

50 Bins and
20,000 Repetitions

100 Bins and
20,000

Repetitions

50 Bins and
500 RepetitionsModels of

Active
Applications
Running in
ANTS

20165Multicast
11103Ping

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

3
2

% Error
Avg. High
Percentile

0
1

%
Error
Mean

50 Bins and
20,000 Repetitions

100 Bins and
20,000

Repetitions

50 Bins and
500 RepetitionsModels of

Active
Applications
Running in
ANTS

20165Multicast
11103Ping

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Table 17. Comparison of error bounds associated with predictions
made from scaling models based on the ratio of processor speeds
against predictions made from scaling black-box models.

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling
Black-box

Model

Scaling with
Processor

Speed Ratio

Standard Deviation in
% Absolute Error for
Selected Statistics

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling
Black-box

Model

Scaling with
Processor

Speed Ratio

Standard Deviation in
% Absolute Error for
Selected Statistics

 19

determine the amount of time taken to execute each
primitive, an execution environment must be calibrated
on the node. Calibration involves the execution of a
synthetic workload that will repeatedly call the various
primitives implemented by the execution environment.
The calibration process yields estimates for various
statistics (e.g., mean and variance) associated with CPU
use by each primitive.

We imagine that an execution environment can
generate a white-box model for an active application,
once the source code arrives at a node. Figure 11 (b), for
example, provides a possible white-box model derived
from the source code for mobile. Then, assuming that
each delay in the model represents the CPU time required
for an associated primitive, the model can be evaluated
for each arriving active packet to estimate the CPU
demand for that packet. In our preliminary work, the
calibration process yields estimates for the first two
moments (mean and variance) of CPU time used for each
primitive in the execution environment. We estimate the
mean execution time for a packet as the sum of the mean
primitive times in the processing path for the packet.
Similarly, we use an appropriate formula for summing the
variance of random variables to derive an estimate for the
variance in CPU demand by the active packet. Finally,
assuming a normally distributed random variable, we use
the mean plus an appropriate multiple of the standard
deviation to estimate specific percentiles. While we
already know that CPU usage is not a normally
distributed random variable, we used such an assumption
in order to explore the effectiveness of a simple analytical
approach to computing estimates for CPU demands.

Table 18 illustrates some results from applying this
technique to predict CPU demand for five active
applications running under the ANTS execution
environment. The table compares predictions against

measurements for three statistics: mean, standard
deviation, and 99th percentile. The prediction errors are
neither as accurate nor as well bounded as those obtained
with our black-box models. We believe that this poor
performance results from our assumption that CPU
demand is normally distributed (which our measures
demonstrate is clearly not the case). Regardless of these
preliminary results, our work with black-box models
leads us to believe that white-box models could be
combined with histograms and Monte-Carlo simulations
to yield reasonably accurate estimates. In the case of
white-box models, the histograms would represent the
CPU usage observed during calibration for each primitive
provided by the execution environment. We have plans to
investigate these ideas in the context of resource-
management for mobile code loaded into call-processing
servers.

7.3. Continuous Improvement Strategies

Regardless of the type of model chosen to provide
estimates for CPU demand, strategies for continuous
improvement will be required. We envision additional
work on techniques for continuous calibration of system
calls and execution environments, for experiential
improvements in active-application models, and, possibly,
for real-time competition among various models. We
discuss each of these topics below.

7.3.1. Continuous Calibration. Calibration of a node
and execution environment, even when carefully
conducted, yields accurate information only so long as no
change occurs in relevant elements of the calibrated
system. Once a configuration changes, e.g., through
introduction of new hardware or an updated version of
some software component, a previous calibration might
no longer prove accurate. In addition, to the extent that a

Integer f = (Integer)n.getCache().get(getDst());
if (f != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Integer f = (Integer)n.getCache().get(getDst());
if (f != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Fig. 11. Example code for an active application, ANTS mobile, and a
corresponding white-box model.

Table 18. Prediction error for three different statistics (mean, standard
deviation, and 99th percentile) estimated for five active applications.
These predictions relied on white-box models, combined with
analytical approximations appropriate for normally distributed random
variables.

67520Multicast

673227Multicast
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard
Deviation

MeanANTS Active
Application

% Absolute Error in Prediction
for Selected Statistics

Predictions from
white-box models

67520Multicast

673227Multicast
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard
Deviation

MeanANTS Active
Application

% Absolute Error in Prediction
for Selected Statistics

Predictions from
white-box models

 20

calibration depends upon usage patterns associated with
the calibrated components, the accuracy of a calibration
might drift. For these reasons, research is needed to
develop and validate techniques to recalibrate a system
over time. In particular, techniques might be needed to
track changes in calibration values, and then to vary the
rate of calibration adjustment based on the rate of change
in calibration accuracy.

7.3.2. Learning Models. The accuracy of statistical
models of program behavior depends upon successfully
obtaining samples of representative behavior. Our black-
box modeling approach assumes that representative
application behavior can be measured sufficiently, during
a tracing phase, prior to injecting a model into network
nodes. Unfortunately, application behaviors often reflect
conditions that cannot be known before a program
reaches a node. Such conditions can alter the probability
of executing various paths in a program, and can change
the number of times particular paths are executed. For this
reason, additional research is needed to investigate
techniques to continuously improve the representation of
statistical behaviors in black-box models. Can methods be
found to enable a model to evolve as it gains experience
while traveling through the network? Can new scenarios
be identified and added to a model? Can the probability
of execution and the distribution of the CPU times be
adjusted as the application experiences more executions?
Can models be parameterized based on conditions at a
node? For example, to solve the problem of a loop
executed an unpredictable number of times, can we
design a holes-model, complete except for some
parameters that would be included on arrival at the node
where local conditions are known?

7.3.3. Competitive Models. Our existing research
assumes that we can develop one class of model that best
predicts CPU demands for a mobile program. This
assumption might prove wrong. We might be unable to
find a single class of predictor that will yield the best
estimates for all active applications. For example, one
model might produce estimates through analytical
computation, while another provides predictions using
simulation. Perhaps one estimation technique gives better
results than another under certain conditions. If so, then it
could prove useful to continuously evaluate which of the
available co-existing models or prediction systems is the
most accurate. In this way, good predictors can be
reinforced, and bad predictors can be de-emphasized, and
the value of predictors can be assessed independently in
time and space. Active-network technology provides a
suitable basis to experiment with such competitive
modeling techniques.

8. Conclusions

In this paper, we argued that some means is needed to
accurately specify CPU demand in order to safely and
efficiently deploy mobile code among heterogeneous
platforms in a network. We showed that commonly used
approaches, which are based on a fixed time-to-live, do
not work effectively. We argued that CPU demand in a
mobile program is a function of the speed of the
processor on which the program runs and of the number
of instruction cycles that must be executed. Further, we
showed that it is quite difficult to estimate the number of
instruction cycles demanded by a mobile program.

We proposed a class of statistical black-box models to
estimate the number of instruction cycles required by a
mobile program, and we evaluated how well the
predictions from some instances of these models matched
measured values. Further, we proposed mechanisms to
transform instances of black-box models to provide
estimates for CPU demand on a range of nodes. We
evaluated how well predictions made by transformed
models matched measured values. We also compared the
accuracy of our transformed black-box models against
transformation techniques that take into account only the
differences in processor speed among nodes. In most
cases, the black-box models proved accurate within 15%,
while the more naïve models proved accurate within 40%.

In addition to evaluating our black-box models, we
applied one of them in two sample applications: CPU
control and CPU prediction. In the control application, we
demonstrated that better models of CPU demand could
reduce the amount of CPU time stolen or wasted when
malicious or erroneous code is injected into a node. We
also showed that more accurate models of CPU demand
can lead to better quality of service provided to end users.
In the prediction application, we demonstrated that better
models of CPU demand allowed AVNMP, a resource-
usage prediction system, to estimate resource demand
farther into the future with lower overhead.

Despite the successes reported in this paper, the
problem of accurate prediction of CPU demand among
heterogeneous nodes remains largely unsolved for mobile
programs. We identified several open issues that require
additional research. We hope that our analysis of the
problem, our evaluation of results, and our demonstration
of the benefits of an effective solution, will all encourage
other researchers to tackle this important and difficult
problem.

Acknowledgments

We thank Hilarie Orman for recognizing the potential
impact of our wild ideas. We particularly appreciate the
support and encouragement of Doug Maughan, DARPA’s

 21

program manager for Active Networks, and Scott Shyne,
from the Air Force Research Laboratory (AFRL). Our
work benefited greatly from collaboration with
colleagues, Stephen Bush and Amit Kulkarni, from the
General Electric Corporate R&D Center. Working with
Steve and Amit enabled us to demonstrate that better
estimates for CPU demand can yield practical benefits.
We also value the contributions of Stefan Leigh and
Andrew Rukhin, colleagues who helped us early in the
project to explore the potential accuracy of a wide range
of statistical models. The work reported in this paper
would not have been possible without funding from the
National Institute of Standards and Technology (NIST)
and from the Defense Advanced Research Projects
Agency (DARPA).

9. References

[1] K. L. Calvert (ed), Architectural Framework for

Active Networks, Version 1.0, Draft, July 27, 1999.

[2] L. Peterson (ed.), NodeOS Interface Specification,
January 24, 2000.

[3] S. Dawson, M. Molteni, L. Ricculli, and S. Tsui, User

Guide to ANETD 1.6.3, Sept. 28, 2000.

 [4] S. Bhattacharjee, K. L. Calvert and E. W. Zegura.

"An Architecture for Active Networking",
Proceedings High Performance Networking
(HPN'97), White Plains, NY, April 1997.

[5] D. Mosberger and L. L. Perterson, "Making Paths

Explicit in the Scout OS", Proceedings of the Second
Symposium on Operating System Design and
Implementation, ACM Press, New York, 1997, pp.
153-168.

[6] F. Kaashoek at al., "Application Performance and
Flexibility on Exokernel Systems", 16th Symposium on
Operating System Principles, ACM Press, New York,
1997, pp. 52-65.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin and

O. Shivers, "The Flux OSKit: A Substrate for OS and
Language Research", Proceedings of the 16th ACM
Symposium on Operating Systems Principles, ACM
Press, October 1997.

[8] D. Wetherall, J. Guttag and D. Tennenhouse, "ANTS:

Network Services Without the Red Tape", IEEE
Computer, April 1999, pp. 42-48.

[9] Y. Yemini and S. da Silva, “Towards Programmable

Networks”, IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management,
October 1996.

[10] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter and

S. Nettles, “PLAN: A Packet Language for Active
Networks”, International Conference on Functional
Programming (ICFP), 1998.

[11] A. B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, A.

Gopinath, S. Sheth, F. Wahhab, H. Pindi and A.
Nagarajan, “Implementation of a Prototype Active
Network”, Proceedings of OpenArch 98, 1998.

[12] B. Schwartz, A. W. Jackson, W. T. Strayer, W.

Zhou, D. Rockwell and C. Partridge, "Smart Packets
for Active Networks", Proceedings of OpenArch 99,
March 1999.

[13] D.C.Feldmeier, A.J. McAuley, J.M. Smith, D. Bakin,

W.S. Marcus, T. Raleigh, "Protocol Boosters", IEEE
JSAC, Special Issue on Protocol Architectures for
21st Century, vol. 16, no. 3, pp. 437-444, April
1998.

[14] S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior,

J. Kurose, D. Towsley, and S. Zabele, “Scalable Fair
Reliable Multicast Using Active Services”. IEEE
Network Magazine (Special Issue on Multicast),
January/February 2000.

[15] S. Zabele, T. Stanzione, J. Kurose, and D. Towsley,

“Improving Distributed Simulation Performance
Using Active Networks”, Invited Paper,
Proceedings of World Multi Conference 2000,
January 23-27, 2000, San Diego, CA

[16] S. Gribble, E. Brewer, J. Hellterstein, and D. Culler,

“Scalable, Distributed Data Structures for Internet
Service Construction”, Proceedings Fourth
Symposium on Operating Systems Design and
Implementation (OSDI 2000), 2000.

[17] S. Bhattacharjee, K. Calvert, and E. Zegura, “Self-

Organizing Wide-Area Network Caches”, Infocom
98

[18] K. L. Calvert, J. Griffioen, B. Mullins, A. Sehgal and

S. Wen. “Concast: Design and Implementation of an
Active Network Service”. IEEE Journal on Selected
Area in Communications (JSAC). Volume 19, No.
3. March, 2001.

[19] T. Faber, "ACC: Active Congestion Control," IEEE

Network, IEEE, May/June 1998, pp. 61-65.

 22

[20] J. Reynolds and J. Postel. RFC 1700 Assigned
Numbers, October 1994.

[21] O.r J. Huber and L. Toutain, "Mobile Agents in

Active Networks", ECOOP'97 Workshop Mobile
Object Systems, June 1997.

[22] J. T. Moore, M. Hicks, and S. Nettles. Practical

programmable packets. In IEEE InfoCom 2001,
April 2001.

[23] L. Yamamoto and G. Leduc. “An agent-inspired

active network resource-trading model applied to
congestion control”. In MATA 2000, pages 151–169,
September 2000.

[24] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.

Shao. “Application-level scheduling on distributed
heterogeneous networks”. In Supercomputing ’96,
September, 1996.

[25] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya.

“Machine characterization based on an abstract high-level
language machine”. IEEE Transactions on Computers,
December 1989.

[26] T. Ball and J. R. Larus. “Using paths to measure, explain,

and enhance program behavior”. IEEE Computer, July
2000.

[27] S. F. Bush and A. B. Kulkarni, Active Networks and Active

Virtual Network Management Prediction: A Proactive
Management Framework. ISBN 0-306-46560-4. Kluwer
Academic / Plenum Publishers, 2001.

[28] M. T. Rose, The Simple Book: An Introduction to the

Management of TCP/IP Based Internets, Prentice-Hall,
1991.

