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Abstract 
 
Active-network technology envisions deployment of 
virtual execution environments within network elements, 
such as switches and routers. As a result, application-
specific processing can be applied to network traffic. To 
use such technology safely and efficiently, individual 
nodes must provide mechanisms to manage resource use. 
This implies that each node must understand the varying 
resource demands associated with specific network 
traffic. Well-accepted metrics exist for expressing 
bandwidth (bits per second) and memory (bytes) in units 
independent of the capabilities of particular nodes. 
Unfortunately, no well-accepted metric exists to express 
processing (i.e., CPU time) demands in a platform-
independent form. This paper describes and evaluates an 
approach to model the CPU demand of active packets in 
a form that can be interpreted among heterogeneous 
nodes in an active network. The paper applies the model 
in two applications: (1) controlling CPU use and (2) 
predicting CPU demand in an active-network node. The 
model yields improved performance when compared 
against the approach currently used in many active-
network execution environments. The paper also 
discusses the limits of the proposed model, and outlines 
future research that might lead to improved outcomes. 
 
Keywords: Active Networks, Resource Management, 
Computer System Benchmarking 
 
1. Introduction 
 

In classical packet-switched communication networks, 
when a packet transits through an intermediate node 
along the path from source to destination, the 
intermediate node examines the destination address, 
consults a routing table for the next hop, and then 
forwards the packet on appropriate links. The data 
transported within the packet remain opaque to the node. 
Since each intermediate node has a measured rating for 
per-message and per-byte throughput, a linear 
extrapolation from packet size and arrival rate should 
provide the node a reasonable estimate for the CPU 
demand associated with individual packets or with sets of 
packets. Unfortunately, this simple approach cannot work 
for active networks because individual packets can 
require substantially different processing. 

In active networks, when a packet arrives at an 
intermediate node, the data may include program code 
that can be accessed, interpreted, and executed by the 
node.  This code describes how to process the packet, and 
perhaps subsequent, related packets. For instance, the 
code may specify a compression algorithm to be applied 
on the data if congestion has been detected in the area of 
the node, or may specify which packets to drop first, or 
may modify the destination address to route around 
congestion. This implies that identical packets can require 
different CPU time on assorted nodes and under various 
conditions. Thus, in active networks, some more 
sophisticated technique is needed to estimate CPU 
demand associated with active packets.  

Inability to estimate the CPU demands of active 
packets can lead to some significant problems. First, a 
maliciously or erroneously programmed active packet 
might consume excessive CPU time at a node, causing the 
node to deny services to valid active packets. 
Alternatively, a node might terminate a valid active 
packet prematurely, wasting the CPU time used prior to 
termination, and ultimately denying service to a correctly 
programmed application. Second, an active node may be 
unable to schedule CPU resources to meet the 
performance requirements of packets. Third, an active 
packet may be unable to discover a path that can meet its 
performance requirements. This path selection problem 
occurs in part due to the node-scheduling problem, but 
also because the CPU time commitments of active nodes 
along a path cannot be determined. Devising a method for 
active packets to specify their CPU demands can help to 
resolve these problems, and can open up some new areas 
of research. Unfortunately, there exists no well-accepted 
metric for expressing CPU demands in a platform-
independent form. This is the problem that motivated our 
research. 

In Section 2, we discuss the problem in more detail, 
and we identify the outlines for a solution. In Section 3, 
we provide an overview and critique of some existing 
approaches to control CPU use in active applications. 
Further, we examine some ideas from the literature that 
stimulated our thinking. In Section 4, we describe a 
statistical black-box model for specifying CPU demand 
associated with active packets, and we show how we can 
generate such models by tracing packet executions. In 
addition, we compare estimates from our models against 
real executions. In Section 5, we outline our strategy for 
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calibrating active network nodes and for transforming 
CPU models for active packets among heterogeneous 
nodes in an active network.  We also compare predictions 
made by our transformed models against measured 
executions on a variety of nodes in an active network 
topology. In Section 6, we show how our CPU models 
can be applied in two sample applications. One 
application controls CPU usage by active packets, where 
our models achieve improved performance over one of 
the existing techniques implemented within active-
network nodes. The second application predicts CPU 
demand by active packets. Here, our models outperform 
estimators based on one of the simple techniques used by 
a number of active-network execution environments. In 
Section 7, we discuss the limits of our current approach, 
and we suggest some future research that might yield 
improved outcomes. We close in Section 8 with our 
conclusions. 
 
2. The Problem and Outlines of a Solution 
 

The growing ubiquity of the Internet is changing the 
nature of software design and deployment. Increasingly, 
Internet-based system architectures employ distributed 
components and use mobile code, such as applets, scripts, 
servlets, and dynamically linked libraries, to deliver new 
software to millions of users. Absent an understanding of 
the processor (CPU) time required by such dynamically 
injected software, computer operating systems cannot 
effectively manage system resources or control the 
execution of mobile code. Unfortunately, since mobile 
code can be injected and executed on a variety of 
computer platforms with a wide range of capabilities, 
software developers cannot precisely specify CPU 
requirements a priori. We set out to improve the ability of 
software developers to quantify CPU time requirements 
of mobile code in a form that can be understood readily 
on heterogeneous computing platforms. 

We conducted our research in the context of active 
networks, an emerging technology that exploits mobile 
code in an extreme form. Active-network technology 
augments traditional networking with the possibility that 
individual packets carry executable code, or references to 
executable code. Conventional (data-only) packets are 
forwarded on the so-called “fast path” of a router, while 
active packets, which invoke mobile code, are delivered 
to a higher-level execution environment that can identify 
and run a program specifically associated with the packet. 
Networking applications built with active packets are 
referred to as active applications. Figure 1 illustrates the 
architecture of an active-network node [1]. 

Underlying each active-network node is a node 
operating system, which transforms the node hardware 
into a software abstraction that provides execution 
environments with controlled access to resources such as 

CPU cycles, memory, input and output channels, and 
timers. In order to allow many possible operating systems 
to provide services to many possible execution 
environments, the active-network node architecture 
includes a standard specification of system calls (the 
Node OS Interface Layer in Figure 1) [2]. Execution 
environments, similar to virtual machines, can be loaded 
onto an active node using ANETD [3], a daemon that 
implements a load-and-go protocol for execution 
environments. Each execution environment accepts active 
packets that can initiate the execution of packet-specific 
code. Each related code base and flow of active packets is 
known as an active application. During the course of the 
Active-Networks research program, funded by DARPA, 
researchers developed a number of node operating 
systems [4-7], execution environments [8-12] and active 
applications [13-19]. 

While innovative and radical when considered for use 
inside networks, active-network execution environments 
share much in common with virtual machines used in 
Internet-based software architectures, and active 
applications appear quite similar to other forms of 
dynamically injected software, such as applets, scripts, 
servlets, and dynamically linked libraries. These 
similarities encourage us to believe our ideas apply 
generally to the problem of specifying CPU demand in 
distributed applications that rely on the use of mobile 
code. 

 
2.1. An Analysis of Variability in CPU Demand 
 

The amount of CPU time required by a computer 
program is a function of two factors: (1) the speed of the 
processor on which the program will execute and (2) the 
number of CPU cycles required for the program to 
complete its task. The first of these factors proves easy to 
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Fig. 1.  Schematic representation of the active-network architecture, 
revealing five levels of abstraction, from bottom to top: (1) node 
hardware, (2) node operating system, (3) node operating system 
interface, (4) execution environment, and (5) active application. 
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measure on any computer platform because a computer 
operating system can readily determine the speed of the 
processor on which it executes. In general, processor 
speeds are specified in cycles per second, or Hertz, where 
the time taken to execute a single instruction cycle can be 
represented as the inverse of the processor speed. For 
example, a processor that operates at the rate of one 
billion Hertz (a Gigahertz, or GHz) will execute a single 
instruction cycle in one billionth of a second (a 
nanosecond, or ns).  Unfortunately, the second factor, the 
number of instruction cycles required for a program to 
complete a task, proves very difficult to determine in any 
platform-independent manner. Below we consider some 
of the difficulties associated with providing an accurate 
measure of the count of instruction cycles required by a 
program. 

As shown in Figure 1, a mobile program, or active 
application, executes at the highest level in a five-level 
architecture of abstractions. At this highest level of 
abstraction, the number of instructions required to 
complete the program is a function of the paths taken 
through the code, which can depend on various 
conditions that exist on the node at the time the program 
executes.  The lowest level of abstraction consists of the 
node hardware, where program execution time is 
influenced directly by the raw speed of various 
components, such as the operating rate of the processor. 
Three additional levels of abstraction exist between the 
active application and the node hardware. Each of these 
levels of abstraction consists of its own set of computer 
code, and therefore instruction cycles, which may be 
traversed by specific executions of an active application. 
For example, consider the node operating system layer in 
Figure 1. 

When an active application calls for a system service, 
such as a read or write to a disk device, control passes to 
a device driver that executes some instruction cycles. The 
number of instruction cycles required depends upon the 
specific device driver underlying the system call, and the 
device driver typically depends upon the specific 
hardware. So, for example, if the disk is accessed through 
a SCSI (small-computer system interface) controller, a 
particular device driver will be used, while if the disk is 
accessed through an IDE (integrated drive electronics) 
controller, then a different device driver is required. 
Further, from time-to-time device manufactures update 
their device drivers. This implies that the number of 
instruction cycles required to access a device can also 
vary based on the specific version of the device driver 
loaded on the computer platform. A similar analysis 
applies to other devices, such as network interface cards, 
codecs (encoder-decoders), and encryption hardware. 

Similar reasoning applies at the other layers of 
abstraction. For example, the active-networks architecture 
(Figure 1) defines a standard node operating system 

interface, which permits any execution environment to 
run on any node operating system. This implies that some 
mapping may be required to enable various node 
operating systems to provide the standard interface. Each 
such mapping will introduce additional instruction cycles 
to the system calls made by an active application. The 
number of additional instruction cycles will depend upon 
the specific mapping code. Along similar lines, some 
code will be required to map an execution environment 
onto the standard interface provided by node operating 
systems. This mapping will introduce additional code, 
and therefore instruction cycles, that must be executed on 
behalf of the active application. The specific mapping 
will likely vary for each execution environment. 

 
2.2. Some Supporting Measures 
 

Above we argued that the processing demand of a 
mobile program, such as an active application, depends 
upon two factors: processor speed and number of 
instruction cycles that must be executed. Further, we 
suggested that the number of instruction cycles needed 
depends on a variety of factors that will vary as a program 
moves from node-to-node.  In this section, we support our 
theoretical discussion with some concrete evidence 
obtained by measuring the operation of several computer 
platforms, described in Table 1. 

 
Table 1. Characteristics of three computer platforms selected for 
investigation by measurements. 

 
To investigate our hypothesis that the same program 

will require different numbers of instruction cycles to 
execute on various computer platforms, we ran a small 
Java™1 benchmark program on the three computers 
outlined in Table 1. The benchmark program simply 
makes a series of 10,000 repetitive invocations of various 
system calls through the Java virtual machine to the 
operating system. In order to push our analysis to a limit, 
we installed the same versions of Linux (version 2.2.7) 
and the Java development kit (jdk 1.1.6) on three 
Pentium-based platforms. The three nodes differed only 
in the processor architecture and speed, the amount of 
                                                           
1 Commercial products are identified in this report to describe our study 
adequately. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology. 
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installed memory, and the characteristics of interface 
hardware, such as disk controllers, audio devices, and 
network cards. Using these three platforms, we 
investigated only the differences in instruction cycles that 
result from variations in node hardware, the lowest level 
of abstraction shown in Figure 1. Table 2 depicts the 
outcome from running our benchmark program repeatedly 
and averaging the results. 

 
Table 2. Results from executing the same Java benchmark program on 
three different Pentium-based platforms running Linux. 
 

 
The results shown in Table 2 support our analysis that 

different computer platforms can require significantly 
varying numbers of instruction cycles to execute the same 
program, even when using identical versions of an 
operating system and virtual machine. In fact, as Table 2 
illustrates, variation in the number of instruction cycles 
required may even lead to cases where a program takes 
longer to execute on a faster machine (Blue) than on a 
slower machine (Black). Our earlier analysis suggested 
that such results might be attributed to differences in the 
device drivers underlying the operating-system calls 
invoked by our benchmark program. Results given in 
Table 3 support the earlier analysis. 

 
Table 3. Results for selected system calls from executing the same Java 
benchmark program on three different Pentium-based platforms running 
the same version of Linux and identical versions of the Java 
development kit. Results measure average instruction cycles (AIC) and 
average CPU time (ACT) used to execute selected system calls on each 
node. 

 
 

Table 3 shows that for four system calls (included in 
our benchmark) the slowest node (Green – 199 MHz) 
requires the fewest number of instruction cycles, while 
the fastest node (Blue – 450 MHz) requires the largest 
number of instruction cycles. The intermediate node 
(Black – 333 MHz) requires fewer instruction cycles than 

Blue but more than Green. As a result, Black executes the 
benchmark faster than either Green or Blue, while Green 
executes the benchmark only slightly slower than Blue, 
but certainly not twice as slow. 

These results support our assertion that the CPU time 
required by a mobile program depends upon both the 
processor speed and the number of instruction cycles 
required to execute the program on a given computer 
platform. Since a platform operating system can easily 
determine processor speed, the main problem for 
modeling CPU demand in a mobile program, such as an 
active application, is to express the number of instruction 
cycles required to execute the program on a given 
platform. This is the problem that we attempted to solve. 
 
2.3. The Outlines of a Solution 
 

The outlines of a solution seem clear. The number of 
instruction cycles needed to execute an active application 
on a particular platform depend upon: (1) the path taken 
through the application code, (2) the path taken through 
the execution environment, (3) the path taken through the 
mapping between the execution environment and the 
node operating system interface, and (4) the path taken 
through the system calls (and related device drivers) in 
the node operating system.  Unfortunately, these factors 
can vary from platform-to-platform, based on the specific 
code implemented on each platform, and from node-to-
node, based on various node-dependent conditions that 
exist at the time an active packet arrives. Regarding node-
dependent conditions, two aspects seem relevant: (1) 
conditions at the node that affect the processing logic in 
an active application and (2) conditions at the node that 
affect resource sharing among multiple active 
applications and execution environments. While the 
outlines of a solution seem clear, achieving a practical 
result appears to be quite difficult. 

Any effective model of CPU demand by a mobile 
program, which we call an active-application model, 
seems likely to require delineating the processing paths 
through the program in terms of elements of a platform-
independent abstraction that the program will invoke on 
every node. We refer to such platform-independent 
abstractions as node models. In the context of active 
networks, two types of node model seem feasible: (1) 
white-box models and (2) black-box models. White-box 
models specify the functions offered to active 
applications by a specific execution environment. Black-
box models specify the system calls offered to execution 
environments by a standard node operating system 
interface. While we are investigating both approaches, in 
this paper we focus mainly on a black-box model 
because, if successful, such models can work across the 
full range of execution environments being developed by 
active-network researchers. White-box models, on the 
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other hand, must be developed for each execution 
environment that a node intends to support. 

Whether specifying the logic of an active application 
in terms of a black-box or white-box node model, a 
means is also needed to characterize the performance of 
specific nodes with respect to the model elements. We 
refer to this aspect of the solution as node calibration. The 
main idea behind node calibration is to determine a 
node’s performance in implementing the elements that 
comprise the node model. 

Through calibration, a node operating system can 
determine how many instruction cycles are required to 
execute each model element on the node.  Then, given 
any active-application model expressed in terms of the 
elements of a node model, an active-network platform 
should be able to estimate the number of instruction 
cycles that the active application will require on the node. 

Unfortunately, the processing logic in an active 
application does not consist solely of calls to elements in 
the node model. Instead, the active application also 
includes its own processing logic that is not carried out by 
functions in the execution environment or by system 
calls. This suggests that an active-application model must 
also express the number of instruction cycles used 
between calls to elements in the node model. As a result, 
some means is required to calibrate the performance of 
the active application on every node in the network. Such 
exhaustive calibration appears infeasible; however, the 
application-specific logic in an active application can 
certainly be measured on one node in the network. Such 
measurements provide an indication of the number of 
instruction cycles required by an active application on a 
specific node. Since an active application runs within an 
execution environment, we can imagine calibrating the 
ability of each execution environment to perform a 
representative workload on each node in the network. We 
call this process execution-environment calibration.  

Given an active-application model expressed as a 
combination of: (1) elements of a node model and (2) the 
number of instruction cycles used between elements of a 
node model, a network node receiving such a model can 
conceivably transform the model into terms that might be 
meaningful on the node. The techniques for performing 
such a transformation make up another part of the 
solution. 

To recap, the outlines of a solution to the problem of 
modeling CPU demand in mobile programs include at 
least the following components: (1) a node model 
expressed in terms of functions invoked by active 
applications, (2) an active-application model expressed in 
terms of paths through a node model and in terms of 
instruction cycles used between invocations of elements 
in the node model, (3) calibrations of a node with respect 
to the node model and the execution environments on the 
node, and (4) transformation techniques that can convert 

an active-application model sent between two nodes into 
terms meaningful on the destination. These are the 
portions of the solution that we investigated, and that we 
address in Sections 4 and 5 of this paper. 

Other issues must also be resolved for a complete 
solution. For example, we have not tackled the problem 
of node-dependent conditions in this paper. This means 
that in our work the CPU demands of an active 
application are modeled from measuring the application 
in numerous scenarios in the development laboratory 
before we release the application (and its model) into a 
network. Should the application encounter conditions not 
seen in the development laboratory, our models have no 
means of adjusting to such new conditions. We have also 
not tackled the problem of adjusting node and execution-
environment calibrations based on current conditions in a 
node or on new conditions that arise on a node over its 
lifetime. This implies our calibrations do not adapt to 
changes in a node or execution environment that arise 
after the calibration occurs. We discuss issues related to 
adaptation under future work.   
 
3. A Critique of Selected Approaches 
 

While the outlines of our solution appear complex, we 
believe that success along these lines will enable more 
effective control of CPU usage by mobile programs and 
will enable node operating systems to more efficiently 
manage CPU resources. Others also see a need to provide 
such capabilities. In this section we present and critique 
existing solutions to prevent excessive CPU resource 
consumption in active networks and in mobile agent 
systems. Next we examine research conducted outside of 
active networks that could help to provide effective 
resource management in active-network nodes. 

 
3.1. Existing Solutions to Control CPU Use  
 

In order to prevent malicious or erroneous active 
packets from consuming excessive CPU time, most 
execution environments implement specific control 
mechanisms. In this section, we discuss the most common 
mechanisms. 

3.1.1. Use a limit fixed by the packet. Some 
execution environments, such as ANTS [8], assign a time-
to-live (TTL) to each active packet. An active node 
decreases this TTL as a packet transits the node, or 
whenever the node creates a new packet. In this way, 
each active packet can only consume resources on a 
limited number of nodes, but individual nodes receive no 
protection. The current TTL recommendation for the 
Internet protocol (IP) is 64 hops [20], which is supposed 
to roughly correspond to the maximum diameter of the 
Internet. This value might prove large enough for an 
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active packet that propagates a configuration from node 
to node between two videoconferencing machines. But if 
the active packet creates numerous additional packets (to 
which it delegates a part of its own TTL), then the 
assigned TTL could prove insufficient. And it is usually 
difficult to predict how many new packets will be 
generated since these predictions might depend on 
network parameters, such as congestion and topology, 
which can rarely be known in advance. This TTL 
mechanism could contribute to protect individual nodes if 
the TTL is given in CPU time units instead of hop count. 
But the problem remains: how to choose the initial value 
for the TTL? 

In the related context of mobile agents, Huber and 
Toutain [21] propose to enable packets that did not 
complete their “mission” to request additional credits. 
The decision to grant more credit would be taken by the 
originating node for its packets, or by the generating 
packet for packets created while moving among nodes. 
The decision must be made after examining a mission 
report included with the request for more credits. The 
proposed solution remains unimplemented, perhaps 
because the reports proved difficult to generate and 
evaluate. 

3.1.2 Use a limit fixed by the node. In some 
execution environments (e.g., ANTS), a node limits the 
amount of CPU time any one packet can use. This 
solution protects the node but does not allow optimal 
management of resources. For instance, imagine that a 
node limits each packet to 10 CPU time units. Suppose 
that a packet requiring 11 CPU time units arrives when 
the node is not busy. In this case, the node will stop the 
execution of the packet just before it completes. 

3.1.3 Use a restricted language. The SNAP language 
[22] is designed with limited expressiveness so that a 
SNAP program uses CPU in linear proportion to the 
packet’s length. While this approach supports effective 
management of resource usage, it could prove too 
restrictive for expressing arbitrary processing in active 
applications. For instance, only forward branches are 
allowed; as a result, if repetitive processing is required, 
the packet must be resent repeatedly in loop-back mode 
until the task is completed. 

3.1.4 Use a market-based approach. Yamamoto and 
Leduc [23] describe a model for trading resources inside 
an active-network node, based on the interaction between 
a “reactive user agent” included in the packet, and 
resource manager agents that reside in the network nodes. 
The manager agents propose resources (such as link 
bandwidth, memory, or CPU cycles) to the user agents at 
a price that varies as a function of the demand for the 
resource (the higher the demand, the higher the price). 
Packets carry a budget that allows them to afford 
resources on active nodes. Based on the posted price of 
the resources and on its remaining credit, the user agent 

of a packet makes decisions about the processing to 
apply. For instance, if the CPU is in high demand and 
thus expensive to use, then a packet may decide to apply a 
simple compression algorithm to its data, instead of a 
more efficient but more costly algorithm, which the 
packet would have applied if the resource were more 
affordable. This approach, which might prove appropriate 
for mobile agent platforms, could increase the packet 
complexity too much to be used efficiently in active 
networks. 

3.1.5 Our critique. The two most common approaches 
to resource control in active networks apply a fixed limit 
on the CPU time allocated to an active packet. In one 
approach, each node applies its own limit to each packet, 
while in the other approach each packet carries its own 
limit, a limit that might prove insufficient on some nodes 
a packet encounters and overly generous on other nodes. 
Neither approach provides a means to establish an 
appropriate limit for a variety of active packets, executing 
on a variety of nodes. Our research aims to solve this 
problem, while at the same time we intend to develop a 
solution that does not reduce the expressiveness of an 
active packet, nor make a packet too complex. 
 
3.2. Existing Attempts to Quantity CPU Demand 
 

While we are unaware of any other projects aiming to 
quantify the CPU requirements of an active application in 
a heterogeneous network, we did survey several related 
research initiatives that could help us to devise an 
effective solution. The following sections outline and 
discuss some of the ideas we found. 

3.2.1 Use RISC cycles. The active-network 
architecture documents specify that a node is responsible 
to allocate and schedule its resources, and more 
particularly CPU time. Calvert [1] emphasizes the need to 
quantify the processing demands of an active application 
in a context where such demands can vary greatly from 
one node to another, and he suggests using RISC 
(Reduced Instruction Set Computer) cycles as a unit to 
express processing demands. He does not address two 
crucial questions. First, for a given active application, 
how can a programmer evaluate the number of RISC 
cycles required to execute a packet on a given node? 
Second, how can this number be converted into a 
meaningful unit for non-RISC machines? 

3.2.2 Use extra information provided by the 
programmer. In the AppLeS (application-level 
scheduling) project [24], the programmer provides 
information about the application that she wishes to 
execute on a distributed system. She must indicate for 
instance whether the application is more communication-
oriented or computation-oriented or balanced, the type of 
communication (e.g., multicast or point-to-point), and the 
number of floating-point operations (in millions) 
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performed on each data structure. Using this information, 
a scheduling program produces a schedule expected to 
lead to the best performance for the application. This 
method can yield acceptable predictions only if the 
programmer is both willing and able to provide the 
required characteristics of the program. Discussions with 
software performance experts led us to think this is rarely 
the case. 

3.2.3 Use combined node-program 
characterization. Saavedra-Barrera and colleagues [25] 
attempted to predict the execution time of a given 
program on various computers. To describe a specific 
computer, they used a vector to indicate the CPU time 
needed to execute 102 well-defined Fortran operations. In 
addition, they provided a means to analyze a Fortran 
program, reducing it to the set of well-defined operations. 
The program execution time can then be predicted by 
combining the computer model with the program model. 
The approach yielded good results for predicting the CPU 
time needed to execute one specific run of a program on 
different computer nodes. These results encouraged us to 
model platforms separately from applications; however, 
we need to capture multiple execution paths through each 
application, rather than a single path. We are pursuing a 
separate thread of research, discussed under future work, 
which aims to apply insights from Saavedra-Barrera to 
the active-network environment. 

3.2.4 Use acyclic path models. To measure, explain, 
or improve program performance, a common technique is 
to collect profile information summarizing how many 
times each instruction was executed during a run. 
Compact and inexpensive to collect, this information can 
be used to identify frequently executed code portions. 
Unfortunately, such profiles provide no detail on the 
dynamic behavior of the program (for instance, these 
techniques do not capture and report iterations). To solve 
this problem a detailed execution trace must be produced, 
listing all instructions as they are executed. But as 
program runs become longer, the trace becomes larger 
and more difficult to manipulate. Ball and Larus [26] 
propose an intermediate solution: to list only loop-free 
paths, along with their number of occurrences. Among 
other things, the authors demonstrate how the use of these 
acyclic paths can improve the performance of branch 
predictors. We might be able to exploit such algorithms to 
efficiently capture looping behaviors; however, to collect 
acyclic path information we would need to instrument the 
program code for each application to be modeled. Given 
the variety of execution environments and active 
applications being devised by researchers, we decided to 
first evaluate some simpler approaches. 
 
 
 

4. A Black-Box Model of CPU Demand 
 

Recall from Figure 1 that an active application 
executes in user mode within an execution environment, 
but requests services periodically from the node operating 
system through specific system calls. An observer, 
situated at the boundary between an execution 
environment and a node operating system, would view 
the behavior of an active application as a series of 
transitions between specific system calls: from an idle 
state, the application executes in user mode for some 
number of instruction cycles within its execution 
environment and then executes in kernel mode for some 
number of instruction cycles within a system call, then 
again in the execution environment before transitioning to 
another system call, and so on until the active packet is 
processed and the active application has returned to the 
idle state. Because the point of observation provides no 
insight into the logic of the active application or the 
execution environment, we can consider them to be a 
black box. We denote each observed transition-sequence 
as a black-box execution trace.  

From a collection of execution traces, we can cluster 
together those that exhibit an identical sequence of system 
calls. We call each cluster a scenario.  For example, 
Figure 2 depicts two scenarios discovered in an execution 
trace. The shorter scenario occurs 2/3 of the time, while 
the longer scenario occurs 1/3 of the time. 

 

 
A black-box model for an active application consists 

of two types of information: scenario specifications and 
workload specifications. In the model, each scenario is 
specified by its sequence of system calls. Further, each 
system call is characterized by the distribution of the 
number of instruction cycles spent in the system call, and 
each transition between system calls is characterized by 
the distribution of instruction cycles spent in the 
execution environment during similar transitions. The 
instruction cycle estimates are derived from an analysis of 

Fig. 2.  An example of two scenarios discovered by clustering 
execution traces from a simple active application. The shorter trace 
occurs more frequently (probability is 0.67), while the longer trace 
occurs less frequently (probability is 0.33). 
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the same execution traces used to identify scenarios. In an 
earlier version of our model, we hoped to represent these 
distributions using classical probability distributions. Our 
goal was to produce an analytically tractable model. 
Unfortunately, the observed distributions exhibit a degree 
of discreteness and truncation not well represented by 
typical continuous distributions. For this reason, we chose 
to represent the distributions of instruction cycle 
estimates with histograms (see Figure 3). Note that this 
approach can require exchanging a large volume of 
information when active-application models are 
transferred among nodes in a network. (However, our 
experiments show that reasonably accurate results could 
be obtained with as few as five bins per histogram.) 

 

 
The remaining part of our model, the workload 

specification for an active application, consists of a list of 
the discovered scenarios, where each scenario is assigned 
a probability of occurrence (based on the frequency with 
which the scenario appeared in the execution trace). 
Taken together, the scenarios, their probability of 
occurrence, and the distributions of instruction cycles in 
user and system modes constitute a black-box model of 
CPU demand for an active application. 

 
4.1. Generating Execution Traces 
 

We based our models on measurements taken from 
execution traces. For various reasons, not recounted here, 
we could not use existing execution tracing programs 
available for typical operating systems, such as the Linux 
systems we used as our test platforms. Instead, we 
designed our own kernel modifications to provide exactly 
the traces we needed, and at the granularity of individual 
instruction cycles. Table 4 provides an example trace 
from one execution cycle in one active application. 

 

Table 4. An example execution trace from idle-to-idle for a single path 
through an active application. Each row depicts a single instance of a 
transition between two system calls. The transition columns show the 
source and the sink system calls for the transition. The first column of 
numbers counts the kernel-mode instruction cycles used in the source 
system call, while the second column of numbers counts the user-mode 
instruction cycles used in the execution environment between the return 
from the source system call and the beginning of the sink system call. 

 
To generate execution traces of this granularity and 

accuracy, we used RDTSC (real-time stamp counter), a 
hardware instruction provided by Intel in their Pentium 
processors. This instruction records the number of 
instruction clock cycles used since the last reboot of the 
processor. The main difficulty we faced was attributing 
the use of instruction cycles to particular processes. To 
accomplish this, we designed and implemented 
modifications for insertion into the Linux scheduler.  

To account for the number of clock cycles spent by a 
process in user and in kernel modes, we added two fields 
to the process structure: "ucc" (number of clock cycles 
spent in user mode) and "kcc" (for kernel mode). We also 
added two working fields: "e" to record the entry time 
into a new "state" (user or kernel) and "kflag" to indicate 
whether or not the process was sleeping in kernel mode 
when last exiting the scheduler. Indeed, with Linux, a 
process cannot be preempted while executing in the 
kernel. But when a process needs to wait for an event, it 
relinquishes the CPU for another process to run. This 
causes the waiting process to exit the scheduler. But it 
will exit the kernel only later, after having been 
rescheduled again and completing the execution of the 
suspended system call. 

We used the following algorithm to update the “ucc” 
and “kcc” fields. On entering the scheduler: 
the “e” field of the entering process is set to RDTSC (the 
current value of the counter of instruction cycles since 
last reboot). On entering the kernel: the “kflag” is set and 
the value of “ucc” is updated: “ucc = ucc + RDTSC – e”, 
where “RDTSC – e” gives the number of clock cycles 
spent between the last time “e” was set (on entering the 
scheduler) and the current time. This represents time 
spent in user mode. Now the process is entering kernel 
mode, so “e” is set to RDTSC. On exiting the kernel the 
“kflag” is cleared and the value of “kcc” is updated: “kcc 
= kcc + RDTSC – e”. Then, “e” is set to RDTSC. On 
exiting the scheduler, if “kflag” is false, then “ucc = ucc + 

Fig. 3.  Two example specifications of instruction cycle usage: (a)
distribution of instruction cycles used by an active application in the
“write” system call and (b) distribution of instruction cycles used by an
active application in transitions between the “write” and “socket call”
system calls. Each bin of a histogram is labeled with the mid-point of 
its value. The probabilities are the relative frequencies of observations
falling within specific bins. 
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RDTSC – e”; otherwise “kcc = kcc + RDTSC – e”. Each 
time “ucc” or “kcc” are updated, their new value indicates 
how many clock cycles the process has spent in user or 
kernel mode.  

Our Linux kernel modifications enable us to trace a 
process in a very fine manner. Now we need to be able to 
retrieve the results. We found that the approaches 
typically used to capture trace information for Linux 
processes cause a traced process to run slowly, and also 
lead to inaccurate results at our required level of 
granularity. To avoid such problems, we implemented our 
own monitoring of the process to generate traces in a 
manner that was quite straightforward after the kernel 
modifications discussed previously. We simply print a 
message (using printk) at every entry and exit of the 
kernel. Of course, our tracing mechanism is not the only 
one using printk, so the resulting trace file must be pre-
processed before analysis in order to extract only the trace 
lines of interest to us. To facilitate such pre-processing, 
we inserted tags into our trace lines to permit easy 
filtering. 
 
4.2. Generating Models from Execution Traces 
 

We wrote a model generator that can consume an 
execution trace and generate a black-box model for the 
program measured by the trace. First, the model generator 
clusters the traced executions into the scenarios 
contained, and assigns a probability of occurrence to each 
scenario. Then the model generator examines the 
instruction cycles used by each system call, and builds a 
corresponding histogram. Finally, the model generator 
examines the transitions between each pair of system calls 
and constructs a histogram describing the distribution of 
instruction cycles used. The model generator includes as 
an input parameter the number of bins to create in each 
histogram. 

To generate estimates from a black-box model created 
by the model generator, we use Monte-Carlo simulation. 
Each pass through the simulator represents the processing 
of an active packet. Using the probability of occurrence 
contained in the black-box model, the simulator selects a 
scenario. For each component of the scenario (system 
calls and transitions in user mode between two system 
calls), the simulator runs another Monte-Carlo test to 
choose a bin of the histogram describing the count of 
instruction cycles. The sum of the instruction cycles of 
each component in the scenario yields a simulated 
number of instruction cycles, which can be easily 
converted into an estimate for CPU time by multiplying 
by the cycle time of the processor. After repeated scenario 
executions, we obtain a distribution of estimates for CPU 
time demands of the active application represented by the 
model. The distribution can be characterized with 
statistics, such as the mean or percentiles (we used the 

80th, 85th, 90th, 95th, and 99th) of the CPU time demanded 
by the application. Of course, generating a large number 
of simulated executions can refine the estimates. 
Alternatively, selecting a small number of simulated 
executions can provide quick estimates. 
 
4.3. Evaluating Models Against Measurements 
 

To assess how well a particular model estimates the 
CPU demands of an active application, model predictions 
can be compared against measures for the relevant 
application. We conducted such measurements for 
numerous applications under a range of model conditions, 
including various bin granularities (from five to 100) and 
simulation repetitions (from 100 to 20,000). Table 5 
summarizes results comparing model predictions against 
measurements on various computing platforms for two 
execution environments, ANTS and Magician, and four 
active applications (two for each execution environment). 
The model histograms consist of five bins each. Each 
estimate is generated using 10,000 simulation iterations.  
Two comparisons are computed for each application: (1) 
error in predicting the mean and (2) error in predicting the 
average of the high percentiles (80th through 95th). 
Estimates for high percentiles can be useful in CPU 
control applications, while predictions of CPU demand 
can also benefit from estimates for the mean. 

 
Table 5. Comparing the percentage error in CPU demand between 
estimates from a black-box model and measurements of real applications 
for selected computer platforms, execution environments, and active 
applications.  The black-box model was generated with five bins per 
histogram. Model estimates consist of 10,000 simulated executions. 
Percentage error computed as the absolute value of 100 * (prediction – 
actual) / actual. The errors for the high percentile are averaged over the 
80th, 85th, 90th, 95th, and 99th percentiles. 

 
Table 5 indicates very accurate predictions for mean 

CPU demand on most platforms, across execution 
environments and active applications. The predictions for 
mean CPU demand in ANTS Multicast are somewhat 
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higher. Further, the predictions of high percentiles are 
less accurate than predictions for the mean, which can be 
expected because high percentiles represent extreme 
values that might not appear with great frequency. Still, 
for high percentiles, the predictions for the Magician 
execution environment appear significantly worst than the 
predictions for the ANTS execution environment. Table 5 
does not give the whole story, however. The percent 
error, when averaged across all runs, for particular 
statistics was: 3% (mean), 17% (80th percentile), 22% 
(85th percentile), 14% (90th percentile), 10% (95th 
percentile), and 17% (99th percentile). 

The predictions and measurements compared in Table 
5 consider each node running a mix of scenarios in all 
roles that a node might take on for an application. For 
example, in each application a node may serve as a 
source, a router, or a sink for active packets associated 
with the application. When we make comparisons 
between predictions and measurements while limiting a 
Magician node to hold one role (either source, router, or 
sink) for an active application, the predictions compare 
much more favorably with the measurements. Table 6 
illustrates this point for three Magician applications: 
Smart Ping, Smart Route, and Active Audio. For the 
Active Audio application, where measurements were 
taken in the process of some sample applications (see 
section 6), each node assumed only one role. 
 
5. Transforming CPU Models for Use Among  
Heterogeneous Nodes 
 

While the predictions made by our black-box models 
appear reasonably accurate in many situations, the more 
difficult part of our problem must still be solved. 
Particularly, given a model for the CPU demand of an 
active application running on one node, e.g., Green, can 
the model provide accurate estimates for the CPU demand 
of the application running on a different node, e.g., 
Black? To achieve this goal, we must transform the model 
generated on Green into form that will be meaningful on 
Black. In this section, we address our approach to model 
transformation. First, we describe our model 
transformation algorithm. Second, we discuss our 
technique to calibrate nodes and execution environments. 
Finally, we evaluate how well our transformation 
technique works in a variety of tests. 

 
5.1. Model Transformation Algorithm 
 

Recall that our black-box model of an active 
application consists of two parts: scenario specifications 
and a workload specification. The workload specification 
assigns a probability of occurrence to each scenario in the 
model. We consider this information to be fixed on each 

node that encounters the model (though see Section 7 for 
a discussion of the need to adapt the workload 
specification). Each scenario specification delineates a 
sequence of transitions between system calls, where the 
number of instruction cycles consumed in each system 
call and in each transition is defined by histograms. The 
information in these histograms is based on measurements 
taken on a particular node; thus, this information will be 
meaningless on other nodes. The goal of our 
transformation algorithm is to convert the information in 
the histograms into a form meaningful on any node that 
receives the active-application model. Figure 4 shows the 
results of transforming the histogram discussed earlier in 
Figure 3. 

 

 
 We assume that each node has been calibrated with 

respect to its performance executing each system call and 
each execution environment. The calibration results are 
represented as two vectors. One vector, the system-call 
(SC) vector contains the average number of kernel-mode 
instruction cycles for the node to execute each system 
call. For example, Figure 4 shows the calibration for the 
“Write” system call on two nodes. A second vector, the 
execution-environment (EE) vector, contains the average 
number of user-mode instruction cycles for the node to 
execute a calibration benchmark for each execution 
environment that runs on the node. Figure 4 reveals the 
calibration information for the ANTS execution 
environment on two nodes. 

For purposes of discussion, assume that a node  (Dest) 
receiving an active-application model has access to its 
own calibration vectors as well as the calibration vectors 
of the source node (Source). Then, the destination can 
scale the contents of the histograms in the active-
application model by multiplying each bin by TDest/TSource, 
where TDest represents the number of instruction cycles 
taken from the appropriate element in the appropriate 

Table 6. Comparing the percentage error in CPU demand between 
estimates from a black-box model and measurements of real active 
applications for the Magician execution environment. In this case, 
predictions and measurements were compared when the role of each 
participant was restricted to that of source, router, or destination. 

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active 
Audio

Smart 
Route

N/A

0
0
0
0
0
0

% 
Error 
Mean

Source

N/A

3
2
3
3
1
1

Avg. 
% Error

High Perc.

3

3
0
0
3
0
1

% 
Error 
Mean

Router

7

4
1
3
4
3
3

Avg. 
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart 
Ping

Avg. 
% Error

High Prec.

% 
Error 
Mean

NodeActive
Application

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active 
Audio

Smart 
Route

N/A

0
0
0
0
0
0

% 
Error 
Mean

Source

N/A

3
2
3
3
1
1

Avg. 
% Error

High Perc.

3

3
0
0
3
0
1

% 
Error 
Mean

Router

7

4
1
3
4
3
3

Avg. 
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart 
Ping

Avg. 
% Error

High Prec.

% 
Error 
Mean

NodeActive
Application



 11 

calibration vector for the destination node and TSource 
represents the comparable value taken from a calibration 
vector for the source node.  In Figure 4, applying this 
ratio for the “Write” system call yields a scaling factor of 
1.57, while applying this ratio to the ANTS execution 
environment gives a scaling factor of 1.51. Applying 
these factors to each element of an active-application 
model has the effect of dilating or contracting the number 
of instruction cycles in each bin of each histogram. For 
example, Figure 4 shows the application of the 
appropriate scaling factor to the “Write” system call and 
to the “Write-to-Socket Call” transition. 

Unfortunately, to enable our transformation algorithm, 
a destination node must have access to calibration vectors 
from the source node. This implies that the calibration 
vectors must be transmitted along with an already large 
model for the active-application. Alternatively, we can 
select one node (Ref) as a reference, and flood its 
calibration vectors to all nodes in the network. Then, 
before transmitting an active-application model between 
two nodes, Source and Dest, the model is subjected to a 
“Node-to-Reference transform”: the values describing the 
number of instruction cycles required to execute each 
element in the each histogram are dilated or contracted 
using the ratio TRef/TSource, where TRef is the average 
number of instruction cycles taken to execute the 
histogram element on the reference node and TSource is the 
average number of instruction cycles taken to execute the 
corresponding element on the source node. Upon arrival 
at the destination node, the model is subjected to an 
inverse (the ratio is TDest/TRef) “Reference-to-Node 
transform”. The combination of these two transforms 
scales the instruction cycle values within an active-
application model from a form meaningful on a source 
node to a form understood on a destination node. 

5.2. Calibration Techniques 
 

Obtaining the calibration vectors for specific nodes 
requires the execution of two calibration benchmarks, one 
for system calls and one for execution environments. For 
system-call calibration, we execute a program that 
repeatedly invokes each system call under a range of 
parameter settings and then computes the average number 
of instruction cycles required to execute each system call. 
We make our calibration measurements using the same 
techniques we developed for tracing executions. 
Comparing our measurements against similar 
measurements taken with strace, using the –c option, we 
discovered that our measurement technique introduces a 
constant overhead into the system calls. We factor out this 
measurement overhead when creating our calibration 
vector for system calls. 

Calibration of execution environments requires 
running a benchmark workload of active applications on 
each execution environment. By analogy with the 
classical process of computer-system benchmarking, we 
had two possible choices for a benchmark workload for 
calibrating execution environments. We could use a 
workload that includes a realistic mix of actual active-
applications implemented for each execution 
environment, or we could define a workload of artificial 
applications whose behavior mimics the major classes of 
active-applications. The first option proved infeasible 
because active-network technology remains experimental, 
and few real applications exist. For now, we use an 
artificial mix of active-applications, executed with each 
node taking on variety of roles, such as source, router, 
and sink.  For example, for the Magician environment we 
use three applications (Smart Ping, Smart Route, and 
Active Audio) and for the ANTS execution environment 
we use two applications (Ping and Multicast). As the pool 
of applications grows, the calibration workload must be 
updated to reflect new functionality or roles. Even so, the 
ANTS Multicast application, while very basic, exercises 
all the major functions of active networking: to send and 
receive packets, and to store and modify information in 
nodes. 

Since calibration is likely to require substantial 
computation on a node, we must consider appropriate 
means to perform the calibration. Several approaches 
should be investigated. In our case, we performed the 
calibration off-line, and then stored the results as 
parameters within a node operating system. This approach 
has the merit of requiring no resources from a node 
during operational execution. Of course, whenever a 
system configuration changes, the previously computed 
off-line calibration may no longer prove accurate. 

Fig. 4.  This figure shows two histograms in an active-application 
model, shown earlier in Figure 3, after those histograms have been
transformed from a form understood by the source node (Black) into a
form meaningful on the destination node (Blue). The relevant parts of
the calibration vectors are given for the source and destination nodes.
Two scaling factors are computed: (1) 1.57 for the “Write” system call
and (2) 1.51 for the “Write-to-Socket Call” transition. 
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As a second alternative, we could consider boot-time 
calibration. Here, the calibration programs would execute 
automatically as part of the startup process in the 
operating system. This approach has two advantages. 
First, since most operating systems must be re-booted 
after significant configuration changes, calibration at 
system boot is likely to account for the variability 
introduced by system alterations. Second, since 
calibration is completed prior to system execution, the 
calibration process will require no resources after the 
node becomes operational. One downside is that boot–
time calibration could considerably lengthen system 
startup time. Additionally, future operating systems seem 
destined to include dynamic configuration through 
components downloaded during execution. Boot-time 
calibration could not account for such dynamic run-time 
changes in an operating system. 

A third alternative is to execute an off-line calibration, 
and then to perform run-time calibration adjustments. 
Here boot-time would not be lengthened due to 
calibration requirements. In addition, configuration 
changes that affect the calibration can be accounted for 
during the run-time calibration adjustments. One might 
even consider altering automatically the frequency of run-
time calibration adjustments depending on the variance 
computed between successive calibrations. As the 
variance diminishes between successive calibrations, the 
calibration adjustment interval could be lengthened. 
Conversely, increasing variance would stimulate more 
frequent calibration adjustments. The approach has two 
drawbacks. First, run-time calibration adjustments would 
subtract resources from operational uses of a node. 
Second, it might prove difficult to design and implement 
an effective run-time calibration adjustment mechanism. 

 
5.3 Evaluating Transformed Models 
 

In this section, we evaluate how well our transformed 
black-box models can predict the CPU demands for an 
active application measured on one node and then 
executed on another node. In effect, here we are 
evaluating how much additional error is introduced into a 
model by our transformation technique, and the 
associated calibration processes. We also compare our 
transformation technique against a more naïve approach 
that uses the ratio of processor speeds to scale models. To 
widen our base of platforms, we introduce two new 
nodes, Yellow and Red, to augment those described in 
Table 1. Both Yellow and Red use the same versions of 
Linux and Java as the nodes shown in Table 1; however, 
the platform hardware differs. Yellow embodies a 
Pentium 75 running at 100 MHz, and has 80 MB of 
memory, while Red includes a Pentium II running at 266 
MHz with 128 MB of memory. Figure 5 shows all five 

nodes configured in a small active network in our 
laboratory. 

We ran selected active applications repeatedly on each 
node, measuring the actual CPU time required for each 
execution. We then computed the mean CPU time and the 
high percentiles (80th, 85th, 90th, 95th, and 99th) of CPU 
time used by each application on each node. These served  
as baseline measurements against which we compared 
estimates obtained using our black-box model and 
transformation techniques. We also generated estimates 
using a more naïve approach that multiplies the observed 
execution times on a source node by the ratio of the 
processor speed of the source node to the processor speed 
of a destination node. Using this ratio, we scale the CPU 
time requirements to match the relative speed of the 
processors on each node. Table 7 provides a subset of the 
percentage (absolute) error we achieved when using each 
method to predict the mean and high percentiles of CPU 
usage when moving active application models between 
nodes. In this table, we average the error across the five 
high percentiles. 

Table 8 shows comparative results for the percentage 
error in each statistic (mean and each of the high 
percentiles) when averaged over all runs. The table 
compares prediction error in three situations: (1) 
predicting performance on one node with our black-box 
models, (2) predicting performance on other nodes by 
scaling our black-box models, and (3) predicting 
performance on other nodes by scaling with processor 
speed ratios. Note that scaling the black-box models 
yielded a fourfold improvement in accuracy over scaling 
based solely on processor speed ratios. In addition, as 
Table 8 shows, scaling our black-box models did not 

Fig. 5.  The five-node active-network test bed we set up in our 
laboratory at NIST in order to conduct our experiments and to make 
measurements. The nodes from left to right: Yellow, Black, Red, 
Blue, and Green. 
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introduce additional error beyond the error already 
present in the models.  
 

 

 
 
6. Sample Applications 
 
 In this section, we illustrate how our CPU demand 
models can be used in two sample applications. In one 
application, we decide when to terminate an active packet 
based on its consumption of CPU time. In a second 
application, we predict the CPU demand for nodes in an 
active network. In both applications, we compare results 
obtained using our black-box models against results 
obtained using CPU control and estimation techniques 
typically available in execution environments.  
 

6.1. CPU Usage Control 
 
 As active packets traverse a series of nodes along a 
path from source to destination, each active node will 
wish to enforce CPU usage limits on each packet. This 
permits a node to protect itself from malicious or 
erroneously programmed active packets. Some execution 
environments provide a fixed maximum limit for any 
active packet, while some also permit each active packet 
to specify its own limit. In this way, should the active 
node choose to allow the packet to execute, the node will 
also have an idea when the packet should be terminated. 
In a small sample application, we show how the use of a 
fixed time-to-live (TTL) in each packet can lead to stolen 
and wasted CPU time in active nodes. We also show how 
our black-box models can be used to adjust the TTL on 
each active node; thus, saving CPU time and improving 
the quality of service in applications. Our sample active-
audio application runs in the Magician [11] execution 
environment over the topology shown in Figure 6. 

 
In this topology the source node (Green – 200 MHz) 

sends a stream of 2278 40-byte audio packets to the 
destination node (Black – 450 MHz) across two routers. 
The first router (Blue – 333 MHz) is faster than the 
source, and the second router (Yellow – 100 MHz) is 
slower than the source. Measurements of the application 
running on the source reveal that 8.29 ms is the 99th 
percentile of CPU time used to process active-audio 
packets. In our sample application, the source selects this 
value as the TTL for each active packet. Unfortunately, in 
our case study, an intruder on the source node manages to 
inject 455 malicious packets into the stream of valid 
active-audio packets. Each malicious packet is 
programmed to consume as much CPU time as possible 
on each node. 

During the experiment, each malicious packet is 
allowed to use 8.29 ms on the first router before the 
packet is killed. However, all malicious packets are 
terminated on the first router. The CPU time allocated to 
the malicious packets is stolen from other users. Worse, 
as valid packets arrive at the second, slower, router, they 
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Fig. 6.  A four-node active-network topology used to run an 
active-audio application that relays audio packets between a 
source and destination node over two intervening routers. 

Table 7. Reporting the percentage absolute error in estimating the
mean and the average percentage absolute error in estimating the
high percentiles (80th, 85th, 90th, 95th, and 99th) using naïve scaling
based on processor speed ratios and using scaling based on
transformation of black-box models. The table presents a
representative subset of the results we obtained. 
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Table 8. Comparing the absolute percent error for selected statistics,
averaged across all runs, when predicting CPU demands in three
situations: (1) using black-box models to predict CPU demands for the
same node on which the model was generated, (2) scaling black-box 
models to predict CPU demands on different nodes from that on which
the model was generated, and (3) scaling CPU demands based upon the
ratio of processor speeds between pairs of nodes. 
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are each given up to 8.29 ms of CPU time. Unfortunately, 
as Table 9 reveals, 23.99 ms is the actual 99th percentile 
required by active-audio packets executing on the second 
router. As a result of the poor TTL value, the second 
router kills 96% of the valid packets. The time spent 
processing the killed packets amounts to CPU time 
wasted on the part of the second router, and the end user 
receives an unacceptable quality of service. 

 
Table 10 provides a summary of results from running 

the active-audio application with two different 
approaches to TTL assignment. The first approach 
assigned a fixed TTL of 8.29 seconds, based on the 
observed 99th percentile on the source node. The second 
approach assigned a variable TTL on each node. In this 
case, the TTL on each node was determined by scaling a 
black-box model of the application that was generated on 
the source node (using the techniques discussed in 
Sections 4 and 5). During each run, the application 
injected 2278 valid active-audio packets into the path, and 
also injected 455 malicious packets, about one for every 
fourth valid packet. 

Using a fixed TTL, the malicious packets stole 3,772 
ms (455 malicious packets X 8.29 ms TTL) from the first 
router. Using a variable TTL, the malicious packets stole 
only 1,606 ms (455 malicious packets X 4.76 ms) from 
the first router.  This amounts to a saving of 3.53 ms per 
malicious packet, which could provide the breathing 
room needed to activate defensive mechanisms in the 
router. 

On the second router, where only valid packets arrive, 
the use of a fixed TTL leads to an unfortunate outcome, 
where 96% (2,168 / 2,278) of the packets are terminated, 
each after consuming 8.29 ms of CPU time. This amounts 
to wastage of 18,122 CPU milliseconds, and presents an 
untenable audio channel to the end user. When a variable 
TTL is used, the situation improves greatly. First, the 

second router terminates less than 1% (19 / 2,278) of the 
valid packets. This improves the quality of service to an 
acceptable level, and limits the wasted CPU time to only 
456 ms. These results confirm that improved models for 
CPU demand enable better control as mobile code 
traverses heterogeneous nodes in a network. 

 
 
6.2. CPU Demand Prediction 
 
 In a second sample application, we demonstrate how 
improved models for CPU demand can lead to better 
predictions about the capacity available among nodes in 
an active-network topology. In this case, we concern 
ourselves with predictions for average CPU demand, 
rather than predictions for the 99th percentile. To conduct 
our case study, we use the Active Virtual Network 
Management Prediction (AVNMP) system [27] 
developed by researchers at the General Electric 
Corporate Research and Development Center. AVNMP 
uses active-network technology to inject simulation 
models into network nodes, and to run those models 
concurrently with corresponding applications. AVNMP 
then compares estimated performance against measured 
performance, and maintains predictions from the 
simulation within specified error bounds, when compared 
against measurements from the application. 

To predict traffic load in a network, AVNMP 
constructs a shadow topology that overlays the 
operational network and then runs a simulation in the 
shadow topology. Figure 7 illustrates the relationship 
between the operational network and the shadow, 
prediction-overlay network. Using Magician as an 
execution environment, AVNMP deploys driving 
processes (DP) at each source node and logical processes 
(LP) at each intermediate and destination node in the 
topology of the operational network. DPs and LPs are 
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 7). Each DP 
contains a model that simulates message sources, 
generating virtual messages that flow along links in the 
virtual-overlay network, which share physical links 

Table 9. Comparing the measured 99th percentile for the CPU time
used by an active-audio application running on nodes in an active-
network topology. The table shows the Time-To-Live (TTL) and the
equivalent number of instruction clock cycles on each node for three
cases: (1) measurements taken on each node, (2) a fixed TTL assigned
based on measurements taken on the source node, and (3) predictions
generated by scaling a black-box model generated from measurements
taken on the source node. 
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Table 10. Comparing CPU time stolen or wasted on routers in an active-
network topology when running an active-audio application. The table 
shows two situations: (1) fixed TTL and (2) variable TTL. 
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between nodes but remain logically isolated from 
operational traffic. As virtual messages arrive, the LP 
updates variables in the node’s management information 
base (MIB) [28]. Each LP updates the future state of 
relevant MIB variables, providing the MIB with predicted 
state to complement the current and past state maintained 
for the operational network. After updating predicted 
MIB variables, the LP consults the node’s routing table 
and forwards incoming virtual messages on to other LPs, 
if required. 

 

The prediction-overlay network then generates and 
routes simulated network traffic that attempts to run 
ahead in virtual time of operational network traffic (time 
dimension in Figure 7). While the operational network 
advances in real time, the LP in the prediction-overlay 
network advances in virtual time, receiving virtual 
messages and estimating future load. Periodically, the LP 
compares the actual and predicted MIB values for 
corresponding intervals in real and virtual time. If the 
values agree within an error tolerance, then the simulation 
remains ahead of real time and continues to advance. If 
not, then the LP rolls virtual time back to the current real 
time, discarding predictions for future MIB state, and 
then simulation resumes. AVNMP contains some special 
processing to cancel virtual messages that might be in 
transit across the prediction-overlay network during a 
rollback, but we omit these details. 

As shown in Figure 8, we constructed a four-node, 
heterogeneous active network, consisting of the same 
topology and nodes used for the active-audio case study 
(see Section 6.1). The operational active network 
comprised these nodes connected to a switched 10-Mbps 
Ethernet, which included a few other nodes that were not 
part of the experiment. We configured the experiment 
nodes to run the active-audio application discussed 
earlier. The prediction overlay network included AVNMP 
deployed as an active application on each node, with a DP 
injected into the source node and an LP injected into the 
destination and each intermediate node. The DP included 
a message model to generate virtual message traffic and a 
CPU model to estimate the processor demand associated 

with each virtual message. Each LP also included a copy 
of the CPU model to estimate processor demand for each 
arriving virtual message. 

 

 
We conducted two experiment runs. In the first run 

the DP and LPs predict a fixed average CPU time for 
each virtual message on every node. In the second run, 
the average CPU time predicted for each virtual message 
differs on each node, based on predictions made by 
scaling our black-box model of the active-audio 
application. Table 11 shows the relevant experiment 
parameters at each router node. 

 
We assigned 7 ms per packet as the average CPU 

demand in the fixed prediction models. This figure was 
obtained by measuring the active-audio application 
executing on the source node. Note that 7 ms equates to a 
different number of clock cycles on each node, depending 
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application.

Table 11.  The average CPU estimates used by AVNMP for each 
router in the prediction-overlay network, reported as milliseconds and 
as the equivalent instruction clock cycles. The table also indicates the 
number of clock cycles that comprise the 10% error tolerance on each 
node, and the average interval at which measurements were sampled. 
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on processor speed. By scaling our black-box model, we 
estimated 3 ms per packet as the average CPU demand on 
the first router and 16.5 ms on the second router. Our 
hypothesis: because our scaled black-box model more 
accurately represents CPU demand in the active-audio 
application, as compared against the fixed-time estimate, 
AVNMP should require fewer tolerance rollbacks; thus, 
the prediction-overlay network should provide better 
look-ahead into virtual time. We ran two experiments to 
evaluate this hypothesis. 

For each experiment run we fixed the relative error 
tolerance at 10 %, which means that AVNMP initiates 
tolerance rollbacks whenever the measured CPU use 
(averaged over 20 messages) differs from the predicted 
CPU use by more than 10 %. This tolerance, computed 
relative to predicted CPU use, equates to a different 
number of instruction clock cycles for each node and run. 
Using a wider error tolerance would likely mask any 
improvements from improved CPU demand predictions. 

In conducting each run, the active-audio application 
emitted a stream of 91,105 bytes (2277 40-byte packets 
followed by one 25-byte packet), and the intermediate 
nodes periodically measured the cumulative tolerance 
rollbacks and the virtual time. As shown in Table 11, the 
average measurement interval varied on each node due to 
the stochastic nature of thread scheduling in Java. Table 
12 compares the results we obtained from our experiment 
runs. 

 
Over the audio streaming period, we can compare 

AVNMP performance for the same nodes when using the 
fixed CPU-demand model vs. the adapted CPU-demand 
model. For both the fastest and slowest intermediate node, 
the adapted CPU-demand model induces fewer tolerance 
rollbacks. This permits AVNMP to reach a greater 
maximum look ahead into virtual time on each 
intermediate node. Figures 9 and 10 provide a view of 
cumulative rollbacks and virtual time, respectively, on an 
interval-by-interval basis for the first router. The graphs 
compare progress with the fixed CPU-demand model 
against progress with the adapted CPU-demand model. 
These results support our hypothesis, suggesting that use 
of an adaptive CPU-demand model can improve the 

ability of AVNMP to predict resource usage in 
heterogeneous active networks. 
 

7. Future Work 
 
 While our black-box models of CPU demand, and the 
associated scaling techniques, appear promising, more 
research remains before the models can be practically 
applied. In this section, we outline some of the open 
issues in three main categories: (1) improving our existing 
black-box models, (2) investigating white-box models as 
an alternative to black-box models, and (3) exploring 
continuous improvement strategies that would enable 
models and node calibrations to monitor their own 
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Fig. 9.  An interval-by-interval comparison of the change in 
cumulative rollbacks for the fixed CPU-demand model versus the 
adapted CPU-demand model.  
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Fig. 10.  An interval-by-interval comparison of the change in 
look-ahead in virtual time for the fixed CPU-demand model 
versus the adapted CPU-demand model. 

Table 12.  Reports the results measured at two routers during two
different experiment runs. The results include the cumulative number
of rollbacks and the maximum look-ahead observed over all
measurement intervals. 
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performance and to adapt to new conditions. We begin by 
considering the state of our black-box models. 
 
7.1. Improving the Black-Box Model 
 

The performance of our black-box models can be 
considered along three dimensions. Along the dimension 
of accuracy, our existing models assume that all 
application behavior can be measured prior to injecting a 
model into network nodes. Unfortunately, application 
behaviors often reflect conditions that cannot be known 
before a program reaches a node. For this reason, our 
application model must be enhanced to account for such 
node-dependent conditions. Two particular issues occur 
in this regard. First, some behaviors may appear more or 
less often on a particular node than the model would 
predict, based on the scenarios observed in the laboratory 
where a model is created. Given the restriction of black-
box models, this becomes a statistical question 
surrounding whether or not the behavior measured in 
generating the model represents the behavior in actual 
use. Attacking this problem on a black-box basis requires 
some ability for continuous improvement (see Section 7.3 
below). Removing the black-box restriction opens up the 
model and permits strategies more suited for white-box 
analysis (see Section 7.2 below). Second, selected 
scenarios in our black-box models might be repeated at a 
node, based on conditions at the time of execution. For 
example, in a multicast application a packet might be 
forward a number of times that depends on the current 
number of subscribers to a multicast group. We might be 
able to parameterize looping behavior in our black-box 
models (making them grey-box models, perhaps). If we 
can do this, then an arriving model might query the 
execution environment on a node for the current values of 
key behavioral parameters, and then could modify its 
CPU demand estimates accordingly. 

Along the dimension of cost, our models consist of 
histograms, which must be exercised with Monte-Carlo 
simulations in order to predict CPU demand. As a result, 
specific application models can be large and could require 
substantial computation to produce predictions. To some 
degree the space-time properties of our model can be 
modulated; however, the prediction error also varies 
accordingly. We discuss these points in more detail. 

In our research, we found that the size of a model can 
vary depending in the first order on three parameters: the 
execution environment, the active application, and the 
granularity of the histograms. The execution environment, 
and its mapping to a node operating system, appears to 
affect the number of system calls made by an active 
application. Further, an active application may consist of 
a number of different roles (such as source, router, and 
sink), where a node may take on one or more of the 
available roles. The number and nature of roles in an 

active application affect (in the second order) the number 
of scenarios, and the number of scenarios can affect (in 
the third order) the number of transitions and the number 
of distinct system calls taken. To determine a model size, 
the number of bins in each histogram multiplies the 
number of transitions and system calls. Tables 13 and 14 
provide, for ANTS and Magician, respectively, some 
statistics regarding the size of the models generated 
during our research. 

 

 
Tables 13 and 14 support the observation that the 

execution environment and the active application affect 
the size of the model. For example, notice that the various 
applications in each table require different numbers of 
bytes to describe a model. Further, note that two similar 
applications, “Ping” (Table 13) and “Smart Ping” (Table 
14), required different sizes based on being written for 
different application environments. Tables 13 and 14 also 
provide some indication of the size of the models that 

Table 14.  Some statistics about the size of black-box models 
generated for various possible roles that can be taken by two different 
active applications running in the Magician execution environment. 
Note that both applications can adopt one or more of three roles. The 
role “All” denotes the application executing in all available roles.  

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart 
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart 
Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart 
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart 
Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

Table 13.  Some statistics about the size of black-box models 
generated for various possible roles that can be taken by two different 
active applications running in the ANTS execution environment. Note 
that both applications can adopt one or more of three roles. The role 
“All” denotes the application executing in all available roles. For the 
Multicast application, the table includes a row showing a combined 
role, “Router-Sink”. 

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes
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would be shipped among nodes. But model size is only 
part of the story. 

 

 
Once a model arrives on a node, a Monte-Carlo 

simulation must execute to generate a sample population 
of CPU demands from which prediction statistics can be 
determined. In our experiments, we implemented the 
models in Java, which is not the most efficient choice. 
Table 15 shows the CPU seconds required to execute a 
number of our five-bin histogram models for varying 
repetition counts. As shown in Table 16, the larger the 
number of repetitions, the better the accuracy of the 
predictions. Of course, the larger the number of 
repetitions, the more CPU time is needed to generate the 
predictions. Table 16 shows the increasing accuracy of 
the predictions as the number of repetitions increases 
from 500 to 20,000. On the other hand, Table 16 also 
shows that at 20,000 repetitions, increasing the number of 
bins from 50 to 100 does not appreciably improve the 
accuracy of the predictions.  

Along the dimension of operational effectiveness, our 
models would benefit from inclusion of an associated 
error bounds. Before taking decisions based on 
predictions from CPU-time models, an operating system 
must consider the possible range of prediction error. 
While we have yet to characterize the error properties of 
our models, Table 17 provides another look at how 
scaling our black-box models compares against scaling 

predictions based on the ratio of processor speeds. For 
sake of discussion, assume that these results hold across 
all models of each type. Then, upon receiving predictions 
from a scaled black-box model, an operating system 
could realize that the predictions for the mean might be 
incorrect by up to 5% and that predictions for the higher 
percentiles might prove inaccurate by as much as 15%. 
On the other hand, when working with a model scaled 
based on the ratio of processor speeds, the operating 
system would realize that all predictions could be around 
35% in error. 

 
7.2. Investigating White-Box Models 
 

In addition to seeking techniques to improve black-box 
models, we have begun to investigate white-box models 
as an alternative approach. In our conception, white-box 
models represent the processing logic within an active 
application as it invokes services offered by an execution 
environment. Figure 11 (a), for example, shows mobile, 
an active application written for the ANTS execution 
environment, while Figure 11 (b) shows a corresponding 
white-box model for mobile.  

As shown in Figure 11 (a), an active application 
consists of a combination of sequences, selections, and 
iterations that invoke specific primitives provided by an 
execution environment. In this example, such primitives 
include: getCache, getDst, intValue, getAddress, 
routeForNode, and deliverToApp. Given a specific active 
packet and a determinable state for relevant node-
dependent conditions, an active-network node can 
determine, prior to executing the packet, the precise 
sequence of primitives that an active application will call 
to process the packet. Further, if the node can determine 
the time taken by the execution environment to execute 
each primitive, then the node can compute an estimate for 
the CPU time required to process the packet. To 

Table 15.  Shows the average number of CPU seconds (and the 
standard deviation) required to execute four different models through
various repetitions. All models, implemented in Java, were composed
of five-bin histograms. 

0.823.820.080.740.100.64Smart 
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard 
Deviation

MeanStandard 
Deviation

MeanStandard 
Deviation

MeanActive 
Application

Execution 
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in 

Java

0.823.820.080.740.100.64Smart 
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard 
Deviation

MeanStandard 
Deviation

MeanStandard 
Deviation

MeanActive 
Application

Execution 
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in 

Java

Table 16. This table reports the percent absolute error predicting the
mean and high percentiles for two active-applications running in the
ANTS execution environment. The results give the error measured for
three combinations of histogram granularity and simulation repetition
count. 

3
2

% Error 
Avg. High 
Percentile

0
1

% 
Error 
Mean

50 Bins and 
20,000 Repetitions

100 Bins and 
20,000 

Repetitions

50 Bins and 
500 RepetitionsModels of 

Active 
Applications 
Running in 
ANTS 

20165Multicast
11103Ping

% Error 
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Percentile
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Avg. High 
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% 
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2

% Error 
Avg. High 
Percentile

0
1

% 
Error 
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50 Bins and 
20,000 Repetitions

100 Bins and 
20,000 

Repetitions

50 Bins and 
500 RepetitionsModels of 

Active 
Applications 
Running in 
ANTS 

20165Multicast
11103Ping

% Error 
Avg. High 
Percentile

% 
Error 
Mean

% Error 
Avg. High 
Percentile

% 
Error 
Mean

Table 17.  Comparison of error bounds associated with predictions 
made from scaling models based on the ratio of processor speeds 
against predictions made from scaling black-box models.  

53499th Percentile
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determine the amount of time taken to execute each 
primitive, an execution environment must be calibrated 
on the node. Calibration involves the execution of a 
synthetic workload that will repeatedly call the various 
primitives implemented by the execution environment. 
The calibration process yields estimates for various 
statistics (e.g., mean and variance) associated with CPU 
use by each primitive. 

We imagine that an execution environment can 
generate a white-box model for an active application, 
once the source code arrives at a node. Figure 11 (b), for 
example, provides a possible white-box model derived 
from the source code for mobile. Then, assuming that 
each delay in the model represents the CPU time required 
for an associated primitive, the model can be evaluated 
for each arriving active packet to estimate the CPU 
demand for that packet. In our preliminary work, the 
calibration process yields estimates for the first two 
moments (mean and variance) of CPU time used for each 
primitive in the execution environment. We estimate the 
mean execution time for a packet as the sum of the mean 
primitive times in the processing path for the packet. 
Similarly, we use an appropriate formula for summing the 
variance of random variables to derive an estimate for the 
variance in CPU demand by the active packet. Finally, 
assuming a normally distributed random variable, we use 
the mean plus an appropriate multiple of the standard 
deviation to estimate specific percentiles. While we 
already know that CPU usage is not a normally 
distributed random variable, we used such an assumption 
in order to explore the effectiveness of a simple analytical 
approach to computing estimates for CPU demands. 

Table 18 illustrates some results from applying this 
technique to predict CPU demand for five active 
applications running under the ANTS execution 
environment. The table compares predictions against 

measurements for three statistics: mean, standard 
deviation, and 99th percentile. The prediction errors are 
neither as accurate nor as well bounded as those obtained 
with our black-box models. We believe that this poor 
performance results from our assumption that CPU 
demand is normally distributed (which our measures 
demonstrate is clearly not the case). Regardless of these 
preliminary results, our work with black-box models 
leads us to believe that white-box models could be 
combined with histograms and Monte-Carlo simulations 
to yield reasonably accurate estimates. In the case of 
white-box models, the histograms would represent the 
CPU usage observed during calibration for each primitive 
provided by the execution environment. We have plans to 
investigate these ideas in the context of resource-
management for mobile code loaded into call-processing 
servers. 

 
7.3. Continuous Improvement Strategies 
 

Regardless of the type of model chosen to provide 
estimates for CPU demand, strategies for continuous 
improvement will be required. We envision additional 
work on techniques for continuous calibration of system 
calls and execution environments, for experiential 
improvements in active-application models, and, possibly, 
for real-time competition among various models. We 
discuss each of these topics below. 

7.3.1. Continuous Calibration. Calibration of a node 
and execution environment, even when carefully 
conducted, yields accurate information only so long as no 
change occurs in relevant elements of the calibrated 
system. Once a configuration changes, e.g., through 
introduction of new hardware or an updated version of 
some software component, a previous calibration might 
no longer prove accurate. In addition, to the extent that a 

Integer f = (Integer)n.getCache().get(getDst());
if (f  != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Integer f = (Integer)n.getCache().get(getDst());
if (f  != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Fig. 11.  Example code for an active application, ANTS mobile, and a
corresponding white-box model. 

Table 18.  Prediction error for three different statistics (mean, standard 
deviation, and 99th percentile) estimated for five active applications. 
These predictions relied on white-box models, combined with 
analytical approximations appropriate for normally distributed random 
variables.
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673227Multicast 
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62611Mobile
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for Selected Statistics

Predictions from 
white-box models
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62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard 
Deviation

MeanANTS Active 
Application

% Absolute Error in Prediction 
for Selected Statistics

Predictions from 
white-box models
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calibration depends upon usage patterns associated with 
the calibrated components, the accuracy of a calibration 
might drift. For these reasons, research is needed to 
develop and validate techniques to recalibrate a system 
over time. In particular, techniques might be needed to 
track changes in calibration values, and then to vary the 
rate of calibration adjustment based on the rate of change 
in calibration accuracy. 

7.3.2. Learning Models. The accuracy of statistical 
models of program behavior depends upon successfully 
obtaining samples of representative behavior. Our black-
box modeling approach assumes that representative 
application behavior can be measured sufficiently, during 
a tracing phase, prior to injecting a model into network 
nodes. Unfortunately, application behaviors often reflect 
conditions that cannot be known before a program 
reaches a node. Such conditions can alter the probability 
of executing various paths in a program, and can change 
the number of times particular paths are executed. For this 
reason, additional research is needed to investigate 
techniques to continuously improve the representation of 
statistical behaviors in black-box models. Can methods be 
found to enable a model to evolve as it gains experience 
while traveling through the network? Can new scenarios 
be identified and added to a model? Can the probability 
of execution and the distribution of the CPU times be 
adjusted as the application experiences more executions? 
Can models be parameterized based on conditions at a 
node? For example, to solve the problem of a loop 
executed an unpredictable number of times, can we 
design a holes-model, complete except for some 
parameters that would be included on arrival at the node 
where local conditions are known? 

7.3.3. Competitive Models. Our existing research 
assumes that we can develop one class of model that best 
predicts CPU demands for a mobile program. This 
assumption might prove wrong. We might be unable to 
find a single class of predictor that will yield the best 
estimates for all active applications.  For example, one 
model might produce estimates through analytical 
computation, while another provides predictions using 
simulation. Perhaps one estimation technique gives better 
results than another under certain conditions. If so, then it 
could prove useful to continuously evaluate which of the 
available co-existing models or prediction systems is the 
most accurate. In this way, good predictors can be 
reinforced, and bad predictors can be de-emphasized, and 
the value of predictors can be assessed independently in 
time and space. Active-network technology provides a 
suitable basis to experiment with such competitive 
modeling techniques. 
 
 
 

8. Conclusions 
 

In this paper, we argued that some means is needed to 
accurately specify CPU demand in order to safely and 
efficiently deploy mobile code among heterogeneous 
platforms in a network. We showed that commonly used 
approaches, which are based on a fixed time-to-live, do 
not work effectively. We argued that CPU demand in a 
mobile program is a function of the speed of the 
processor on which the program runs and of the number 
of instruction cycles that must be executed. Further, we 
showed that it is quite difficult to estimate the number of 
instruction cycles demanded by a mobile program. 

We proposed a class of statistical black-box models to 
estimate the number of instruction cycles required by a 
mobile program, and we evaluated how well the 
predictions from some instances of these models matched 
measured values. Further, we proposed mechanisms to 
transform instances of black-box models to provide 
estimates for CPU demand on a range of nodes. We 
evaluated how well predictions made by transformed 
models matched measured values. We also compared the 
accuracy of our transformed black-box models against 
transformation techniques that take into account only the 
differences in processor speed among nodes. In most 
cases, the black-box models proved accurate within 15%, 
while the more naïve models proved accurate within 40%. 

In addition to evaluating our black-box models, we 
applied one of them in two sample applications: CPU 
control and CPU prediction. In the control application, we 
demonstrated that better models of CPU demand could 
reduce the amount of CPU time stolen or wasted when 
malicious or erroneous code is injected into a node. We 
also showed that more accurate models of CPU demand 
can lead to better quality of service provided to end users. 
In the prediction application, we demonstrated that better 
models of CPU demand allowed AVNMP, a resource-
usage prediction system, to estimate resource demand 
farther into the future with lower overhead. 

Despite the successes reported in this paper, the 
problem of accurate prediction of CPU demand among 
heterogeneous nodes remains largely unsolved for mobile 
programs. We identified several open issues that require 
additional research. We hope that our analysis of the 
problem, our evaluation of results, and our demonstration 
of the benefits of an effective solution, will all encourage 
other researchers to tackle this important and difficult 
problem. 
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