
Dividing a given set of positive num-
bers into two groups so that the sums
of the numbers in each group differ
by the smallest amount possible is

called the integer-partitioning problem. In a perfect
partition, the sums of the elements in each group
differ by only zero or one. In a balanced parti-
tion, the number of elements in each group, the
cardinalities, differ by only zero or one. 

Finding such a partition is useful in multi-
processor load balancing,1 certain thermody-
namics problems,2 and theoretical computer sci-
ence (as an example of a provably hard problem).3

A good estimate could help a processor decide
how many resources it could allocate to solve a
large problem. For example, we know that par-
titioning is a hard problem, and we might want
to load-balance a multiprocessor. However, we
would not want to do this if it would take a week
to run a partitioning program but only a few
hours to run the actual software programs.

The integer-partitioning problem is known to
be NP-complete,3 and as a result, researchers have
developed heuristics that provide minimized parti-
tion4 and cardinality5 differences over time. What
is not clear, however, is how long these heuristics
must be run to find an acceptable answer. 

We have developed a method to estimate the
amount of work required to find an optimal so-
lution to the integer-partitioning problem. We
have also developed a way to estimate how
many balanced, perfect partitions exist. The key
to our method is a variation of a technique
Donald Knuth originally developed to estimate
the size of the backtrack trees.6

Why Is Partitioning Hard?

A naïve partitioning method looks at all the ways
to assign elements to subsets. If we think of the
integer-partitioning problem as assigning 0’s and
1’s to list elements, with a 0 meaning that ele-
ment is assigned to the first set and a 1 meaning
that the element is assigned to the second set,
there are 2n possible ways to assign the original
list elements. With the constraint that the par-
tition be balanced, only

need be considered. 
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ESTIMATING THE WORK IN
INTEGER PARTITIONING

The authors developed an approach for estimating the work done by the best-known
integer-partitioning methods for a given data set, and it works without running the
partitioning program itself. This method can also estimate the number of perfect partitions
in a given data set.
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However, there are faster methods than the
naïve method. Narendra Karmarkar and Richard
Karp,7 for example, have a set-differencing
heuristic (the KK method) for partitioning that
works in polynomial time. The KK heuristic
sorts numbers in descending order. At each step,
the two largest elements are placed in different
subsets, although the decision on which particu-
lar subset each will go in is not made immedi-
ately. (We will address the question of which sub-
set in the section “How to Get a Partition.”)
Putting the two elements in different groups is
essentially equivalent to replacing the two num-
bers in the list by their difference. The list is then
resorted with the new difference replacing the
two numbers used, and the process continues un-
til there is only one element left in the list. This
last element is the final difference between the
two subsets. Figure 1 shows this method used on
the list 8, 7, 6, 5, 4. The KK heuristic is not guar-
anteed to give a good partition, but it does give a
partition and a better one than a random one.

The CKK Method

Richard Korf extended this heuristic to a com-
plete anytime algorithm4—called the complete
Karmarkar–Karp, or CKK method—that finds
the KK partition in n steps and then looks for
better answers by also examining the sums of the
numbers and not only their differences. The
CKK gets better answers the longer it is allowed
to run, but it could possibly run a long time, so it
is reasonable to stop after a predetermined
amount of computing has been done or until a
perfect partition is found. Stephan Mertens’s
version of Korf’s algorithm includes, among
other improvements, constraints for finding a
balanced partition.5

More specifically, CKK searches a binary tree
from left to right where each node replaces the
two largest numbers with either their difference
(the left branch) or their sum (the right branch)
and then resorts. There are also pruning rules
if it is clear that an improved partition is not
possible. To best follow the CKK partitioning
algorithm, consider a sorted list of length six: 6,
5, 5, 4, 3, 3. The first two elements, 6 and 5, are
removed. The two options available are either
to put the two elements in different groups or
to put them in the same group. Essentially, this
is equivalent to replacing the two numbers by
their difference, 1, or by their sum, 11, respec-
tively. Either decision results in a new list of
length five: 5, 4, 3, 3, 1 or 11, 5, 4, 3, 3.

Keeping track of the partitions’ cardinality dif-
ferences follows a similar approach to the one
Mertens originally developed.2 We now keep
track of pairs of numbers—namely, the numbers
themselves and their cardinality. The cardinali-
ties of the original numbers are all initialized to
1. As list elements are put in separate or same
groups, their cardinalities are subtracted or
added accordingly. If elements 6 and 5 were put
in the same group, their sum, 11, and the sum of
their cardinalities, 2, would replace them in a
new list. If they were put in different groups,
their difference, 1, and the difference between
their cardinalities, 0, would replace them. In
Mertens’s algorithm, however, the list is not re-
sorted until its length is only half that of the
original’s length.

This process continues, producing a binary
tree that finishes with 32 leaves that are each a
list of length 1. The numbers in each of these
lists represents the partition difference that we
would get by distributing the original numbers
into groups indicated by the path taken down
the tree and the resulting cardinality difference.
The pink boxes in Figure 2 indicate the loca-
tions of balanced, perfect partitions.

CKK excels because it can work faster; it
knows where it doesn’t have to look. For exam-
ple, consider a list of length 5—with the num-
bers 9, 7, 6, 5, 3—and investigate balanced par-
titions that contain 9 and 7 in the same group.
Remember, to have a balanced, perfect partition,
each group can have no more than three ele-
ments. This leaves four options, each repre-
sented by a row (see Table 1).

In looking at the table, we see no balanced,
perfect partitions, which should have been ob-
vious from the start. Because 9 + 7 = 16 and 6 + 5
+ 3 = 14, the smallest possible partition differ-
ence that includes 9 and 7 in the same group is 2.
CKK does not need to waste time investigating
these four possibilities; it can eliminate them im-
mediately and move on.

This suggests two pruning conditions.2,4 Let
(x1, x2, … xi) be the list to be sorted, and let mi be

8 7 6 5 4 6 5 4 1 4 1 1 3 1 2

Figure 1. The Karmarkar–Karp (KK) 
partitioning method on the list 8, 7, 6, 5, 4. The
pink elements are differences of the first two 
elements from the previous steps.
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the cardinality associated with element xi. When
finding a perfect, balanced partition, we can
eliminate lists from consideration if either of the
following conditions apply:

2 • max xi – Σxi > 1

or

2 • max |mi| – Σ|mi| > 1. 

By applying the pruning conditions, we can
make the previous tree significantly shorter. The
pink boxes in Figure 3 indicate nodes along the
tree where the pruning conditions discussed ear-
lier make looking at any nodes below that one
unnecessary. Such pruning eliminates 47 possi-
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Figure 2. The
tree created
by the
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algorithm.
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Figure 3. The
tree created
by the
complete 
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Karp (CKK) 
algorithm 
using pruning
methods on a
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list.
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ble steps, which is already a 75 percent reduc-
tion in work.

CKK could possibly find a perfect partition
even sooner. Because it follows a postorder tra-
versal of this tree, it will actually encounter the
first 0-0 node in only six steps—thus it has a per-
fect answer, so it can stop.

We have used a modified CKK method that
uses part of Mertens’s method for finding bal-
anced partitions. It is this method whose work
we estimate. First, we always sort the list after
every iteration. Second, we do not look to find
anything but a perfect partition. That is, if prun-
ing rules indicate that no perfect partition is pos-
sible, we don’t go there.

How to Get a Partition

Recovering the actual partition from the tree is a
simple game of replacement. Consider the tree
in Figure 4. (Recovering the partition is not nec-
essary for understanding the rest of the article,
but we thought it was interesting.)

We start creating our two lists by leaving one
empty and placing our known partition differ-
ence, 0, in the other. Looking up to the next
level of the tree, we get a final partition differ-
ence of 0 by subtracting 4 from 4. As such, we
can maintain our partition difference by remov-
ing the 0 and placing a 4 in each of the two
groups. We know that one of the 4’s was part of
the original list but the other came from sub-
tracting 5 from 9. Hence, we can remove one of
the 4’s and instead place the 9 where the 4 had
been and the 5 in the other group. The sum of
each group is 9, and the partition difference is
still 0. We can continue this work up the tree un-
til we have only original elements in our two
groups (see Table 2; note that because 15 came
from adding 8 and 7, we must replace 15 by plac-
ing 8 and 7 in the same group to maintain the
partition difference).

Programming this process is only slightly
more complicated. We have to keep track of how
we get to our perfect partition. For the example
in Figure 4 (and also Table 2), the path is right,
left, left, left. Once we have the path to a perfect
partition, we begin at the root element and fol-
low it down the tree. However, instead of hav-
ing just a cardinality number associated with
each element, now we also keep track of whether
it is an element original to our list and, if it is not,
what its two parent numbers are.

Once we have recreated the tree and made it
back down to the 0-1 list, everything is set to tra-

verse backward, up the tree. The basic idea is
that if something is an original element, it is
placed in either the A or B list—if not, it is
pushed onto an A or B stack. The nonoriginal 0
is pushed onto the A stack. The A stack gets
popped, reads the 0, and sees that it comes from
a nonoriginal 4 and an original 4. Because 4 – 4 
= 0, the function knows to put the 4’s in different
groups. The nonoriginal 4 is pushed onto the A
stack, while the original 4 is placed in the B list.
The A stack is popped again, and the same
process is followed. If the difference of the two
parent elements equals the child element, they
are placed in opposing stacks or lists; otherwise,
they are placed in the same stack or list. The
process continues until both stacks are empty.

Table 1. Examples of different ways to partition 9,
7, 6, 5, 3 given that 9 and 7 are in the same set.

Group 1 Group 2 Difference
9, 7 6, 5, 3 2
9, 7, 6 5, 3 14
9, 7, 5 6, 3 12
9, 7, 3 6, 5 8

14 4
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1 1 1 1 1 
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Figure 4. The
tree created
by the CKK 
algorithm 
using pruning
methods on a
five-element
list.

Table 2. Example of recovering the list partition.

Group A Group B
0
4 4
9 4, 5
15 4, 5, 6
8, 7 4, 5, 6
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Estimating the Work Done

Because solving large problems can take a great
deal of time, we have developed a way to esti-
mate the number of nodes that must be visited
in our modified CKK algorithm, using a varia-
tion on a technique Knuth developed for esti-
mating the size of backtrack trees. We do this in
two ways, depending on the list’s length and crit-
ical point.

What Is a Critical Point?
Although it seems that the longer the list of
numbers, the more difficult it would be to find
a perfect partition, the opposite is actually true.
For example, for each length between 5 and 200,
we created 100 lists of random 25-bit numbers
and submitted them to the partitioning method
described earlier. Figure 5 plots the average
number of nodes that must be visited to find one
perfect partition, if one exists. Once we reach a

critical length (around 29), the problem com-
plexity drops sharply, and soon the number of
nodes generated acts as n.

Mertens gives the formula for finding this crit-
ical point as

where is the standard devia-
tion of the xi’s and nc is the critical point.2

Calculating the Critical Point
After the critical point, the probability that the
list of numbers has a perfect partition equals 1.
(This was demonstrated empirically in Mertens’s
paper.2 He also used methods of statistical me-
chanics to prove it in another work.5) In our ex-
periments, we used a combination of the secant
and bisection rule to calculate the critical
points.8 Our estimation method is in two parts:
one if n < nc and one if n > nc.

How the Knuth Method Works

The Knuth estimating method systematically es-
timates a tree’s size without actually counting all
the nodes.6 Consider the tree in Figure 6, with
the probabilities of going either direction indi-
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cated. We begin with an estimate of 1, for the
root. Depending on which direction we choose
to go, we multiply 1 by the inverse of the proba-
bility of going that direction, then add that num-
ber to 1. For the next step, in whichever direc-
tion we’ve taken, we multiply what was added
previously by the inverse of the probability of
going that direction, then add that number to
the previous sum (see Table 3).

The estimates of 5.90, 8.62, 9.10, or 26.56 are
all valid for the total number of nodes in the tree.
In fact, the sum of the products of the estimates
and their respective probabilities yields the cor-
rect number of nodes in the tree: (5.90 × 0.7 ×
0 .7) + (8.62 × 0.7 × 0.3) + (9.10 × 0.7 × 0.3) 
+ (26.56 × 0.3 × 0.3) = 9.

We selected the probabilities 0.7 and 0.3 in
this example for illustrative purposes. The prob-
ability of going either direction could just as eas-
ily have been 0.5 and 0.5. These probabilities are
often called importance functions, and choosing
them wisely can sometimes help an estimate
converge faster.9

Estimating the Work to the Left of nc

We use these same techniques to estimate the
number of steps required to find a perfect par-
tition or decide that we have the best one pos-
sible. Beginning at the top of the tree, a check
is made to see if pruning conditions make ei-
ther direction a dead end. If only one way is
open, we proceed in that direction, perform-
ing the Knuth calculation with a probability of
1. If either way is available, we choose a ran-
dom branch and perform the Knuth calcula-
tion with a probability of 0.5. This is contin-

ued until no further movement down the tree
is allowed.

This estimate is applied to the same 100
lists of 25-bit numbers used before, taking 10
samples on each list. For n < nc, the maximum
percent error hovers around 50 percent, but
increases dramatically for n > nc. This is be-
cause what the Knuth method actually esti-
mates is the number of nodes that must be
visited to find all the perfect partitions. Be-
fore the critical point, there are usually only
one or two, if any, perfect partitions, so this
presents no problem. After the critical point,
however, we begin to have more than one or
two perfect partitions—that is, more paths
down the tree become viable options, so the
estimate explodes. 

Estimating the Number of Perfect Partitions
The next logical step to correct the estimate on
the right side of nc is to find a good estimate for
the number of perfect partitions. For this esti-
mate, we use the same method from Knuth, ex-
cept that instead of using the multiply-then-add
method, which counts all the tree’s nodes, we use
the multiply-only method, which counts just the
leaves at the bottom of the tree. Also, because
we know that we are only guaranteed the exis-
tence of perfect partitions for lengths larger than
the critical point, we only multiply while the
length of the list in the current node (which de-
creases by 1 as we go down each level of the tree)
is greater than the critical point.

We must make one final adjustment: If the
original list’s length is even, everything is fine,
but if it’s odd, we multiply our final perfect es-

Table 3. Example of using the Knuth method for estimating the size of a tree.

Step Direction Probability Estimate
1 Left 0.7 1 + 1 × 10/7
2 Left 1 1 + 1 × 10/7 + 1 × 10/7 × 1
3 Left 0.7 1 + 1 × 10/7 + 1 × 10/7 × 1

+ 1 × 10/7 + 1 × 10/7 × 1 × 10/7 = 5.90
1 Left 0.7 1 + 1 × 10/7
2 Left 1 1 + 1 × 10/7 + 1 × 10/7 × 1
3 Left 0.3 1 + 1 × 10/7 + 1 × 10/7 × 1

+ 1 × 10/7 × 1 × 10/3 = 8.62
1 Right 0.3 1 + 1 × 10/3
2 Left 0.7 1 + 1 × 10/3 + 1 × 10/3 × 10/7 = 9.10
1 Right 0.3 1 + 1 × 10/3
2 Left 0.3 1 + 1 × 10/3 + 1 × 10/3 × 10/3
3 Left 1 1 + 1 × 10/3 + 1 × 10/3 × 10/3

+ 1 × 10/3 × 10/3 × 1 = 26.56
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timate by 2. The reasoning here is that to find a
balanced partition for an even list, we must
have exactly the same number of elements in
each group—a cardinality difference of 0.
However, for an odd list, we could have a car-
dinality difference of 1 or –1: twice as many
possibilities. This is the equivalent of simply
initializing the perfect estimate to 1 for even
numbers and 2 for odd numbers. With these
modifications, Figure 7 demonstrates our esti-
mating algorithm.

Figure 8 shows the results of using our algo-
rithm to find the number of perfect partitions of
lists of 10-bit numbers. We used 100 samples on
a single list for each length.

Estimating the Work to the Right of nc

As mentioned earlier, the Knuth method actu-
ally estimates the number of nodes that must be
visited to find not just one perfect partition but
all of them. As such, we must adjust the estimate
for length n > nc. Imagine visiting all the

Estimate (MainList[(x1, m1 ), ..., (xk, mk )], stepEstimate, nextTerm,
perfectEstimate)

For the first call, stepEstimate is initialized to 1 and nextTerm to 1, and perfectEstimate
is initialized to 1 for even lengths and 2 for odd lengths of list.

If k = 1 then return;

List1 = sort[ (x1 – x2, m1 – m2), (x3, m3), ..., (xk, mk) ]
List2 = sort[ (x1 + x2, m1 + m2), (x3, m3), ..., (xk, mk) ]

if 2 · maxx∈List1x – Σx∈List1x ≤ 1 and 2 · maxm∈List1|m| – Σm∈List1|m| ≤ 1
goLeft = TRUE;

if 2 · maxx∈List2x – Σx∈List2x ≤ 1 and 2 · maxm∈List2|m| – Σm∈List2|m| ≤ 1
goRight = TRUE;

if !goLeft and !goRight
return;

if goLeft and goRight
if length(List1) ≥ ceiling(CRITICAL_POINT)

perfectEstimate = perfectEstimate · 2
nextTerm = nextTerm · 2 (since 1/probability = 1/.5 = 2)
pivot = randomNumber();

if goLeft and !goRight
pivot = 0

if !goLeft and goRight
pivot = 1

stepEstimate = stepEstimate + nextTerm

if (pivot <.5) 
Estimate(List1, stepEstimate, nextTerm)

Else
Estimate(List2, stepEstimate, nextTerm)

Figure 7. Our modified estimating algorithm.
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branches that would be required to find all the
perfect partitions. Let x be the number of per-
fect partitions, and let our Knuth estimate be T.
Then, the effective work for getting from the
root to any of the leaves is log2(x) if we assume a
binary subtree. Thus, the amount of traversal
work done to actually lead to these different
leaves is x • log2(x).

If the probability of something happening is
p, and we do independent trials, then the ex-
pected number of trials before that something
happens is 1/p. For example, double 6’s should
show up once every 36 rolls of two dice. In our
case, the number of nodes that lead to a solution
is x • log2(x), and the total number of nodes is
T, so the probability that any node leads to a so-
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lution is x • log2(x)/T. Hence, the number of
nodes that must be looked at to get a solution is

.

When n ≥ nc, the work is known to be n and, in
fact, can never be less than n. So, if the estimate
is ever less than n, we set the estimate to n. Using
this final estimation method, we can find the
close-fitting estimate in Figure 9.

Putting the Pieces Together

To run the method, do the following:

1. Calculate the critical point nc
2. Run the pseudo code to get Estimate
3. If n > nc, Estimate = Estimate/

(perfectEstimate*log2(per-
fectEstimate))

4. If Estimate < n, Estimate = n

We plan to examine the same
problem for more than two sets
and to include other features of
Mertens’s method. In future in-

vestigations, we plan to look for a correction fac-
tor to the estimate for n > nc.
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