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Abstract
A recent paper by Ignacio Lira in this journal (2006 Metrologia 43 S231–4)
proposes a new procedure to evaluate the data from a simple key comparison
where a travelling standard of a stable value during the comparison is
independently measured by the participants. In particular, Lira presents an
expression, which he claims to be the kernel of a Bayesian posterior
probability density function for the value of the measurand. Lira claims that
his expression encodes the collective state of knowledge whether or not the
results are consistent. Thus Lira offers an alternative to the method
recommended by an Advisory Group on Uncertainties commissioned by the
BIPM. We discuss Lira’s procedure from the viewpoint of what we believe
to be a good practice of Bayesian statistics.

1. Introduction

Statistical analysis of the results from a key comparison is
an important problem of interest to the national metrology
institutes. The outputs of a key comparison include a reference
value, unilateral and bilateral degrees of equivalence and their
associated uncertainties. Lira [1] addresses a simple key
comparison where a travelling standard of a stable value during
the comparison is independently measured by the participants.
This problem has previously been addressed in Cox [2] by an
Advisory Group on Uncertainties commissioned by the BIPM.
Cox [2] recommends two procedures: (a) for consistent results
and (b) for inconsistent results. Lira [1, section 1, paragraph 2]
states that his paper develops a Bayesian procedure, which
yields an analytic probability density function (pdf) that
encodes the collective state of knowledge, and it applies
irrespective of whether or not the data are consistent; then from
his pdf, an estimated value for the measurand together with its
associated uncertainty and the degrees of equivalence may be
determined. Thus Lira [1] offers an alternative to Cox [2]. We
discuss the procedure of Lira [1] from the viewpoint of what
we believe to be a good practice of Bayesian statistics.

1.1. Notation

In this paper we use symbols different from those used
by Lira [1]. The correspondence between the two sets of

symbols is given in table 1. The symbols we use make it
easier to distinguish quantities that have constant values from
those that are random variables. We use upright lower-case
Greek symbols for statistical and metrological parameters of
supposedly constant values (that is, essentially unique and
stable values), such as µ1, . . . , µn, and ξ . The symbol ξ

is a metrological parameter; it represents the value of the
measurand. The symbols µ1, . . . , µn are statistical parameters;
they represent expected values of the sampling pdfs of the
results of measurement from the individual laboratories.
The metrological and statistical parameters have essentially
identical interpretations in conventional statistics, Bayesian
statistics [3] and the Guide to the Expression of Uncertainty
in Measurement (GUM) [4]. We use upright lower-case Latin
symbols for the actual results (data), x1, . . . , xn, submitted by
the individual laboratories. In both conventional statistics and
Bayesian statistics, the data x1, . . . , xn are regarded as known
realizations of random variables having sampling pdfs. The
random variables of which the data x1, . . . , xn are regarded as
realization are denoted by the italic lower-case Latin symbols
x1, . . . , xn. The random variables x1, . . . , xn are also referred
to as results. The expected values of the sampling pdfs
of x1, . . . , xn are µ1, . . . , µn, respectively. The variances of
the sampling pdfs of x1, . . . , xn are denoted by σ 2

1 , . . . , σ 2
n ,

respectively. To our understanding, Lira’s paper [1] is based on
the assumption that the variances σ 2

1 , . . . , σ 2
n of the sampling
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Table 1. Correspondence between the symbols used by Lira in [1] and in this paper.

Lira [1] This paper

Constant value of the common measurand X ξ
Constant realized result from laboratory i xei xi

Constant uncertainty submitted by laboratory i ui u(xi)
Constant expected value of result from laboratory i Xi µi

Variable with state-of-knowledge pdf concerning µi xi Xi

Variable with state-of-knowledge pdf concerning ξ x Y

pdfs of x1, . . . , xn are known and that σ 2
1 , . . . , σ 2

n are equal to
the squares u2(x1), . . . , u2(xn) of the standard uncertainties
u(x1), . . . , u(xn) submitted by the individual laboratories.
Following the notation used in the GUM, we use the italic
upper-case Latin symbol Xi for a random variable having
a state-of-knowledge pdf concerning the expected value µi

based on the result xi and uncertainty u(xi ) from the laboratory
labelled i, for i = 1, 2, . . . , n. Similarly we use the symbol
Y for a random variable having a state-of-knowledge pdf
concerning the value ξ of the common measurand. To sum
up, we use upright symbols for constants and italic symbols
for random variables.

1.2. Assumptions

To our understanding, Lira’s paper [1] is based on the following
assumptions.

Assumption 1. A measurand of an unknown essentially
unique and stable value ξ is measured by n laboratories. The
laboratories submit the following paired results and standard
uncertainties (x1, u(x1)), . . . , (xn, u(xn)) for the common
value ξ of the measurand [1, section 1, line 3].

Assumption 2. For i = 1, 2, . . . , n, the submitted result xi

is a realization of a random variable xi . The sampling pdf
of xi is normal (Gaussian) with unknown expected value µi

and known variance σ 2
i . The known variance σ 2

i is equal to
u2(xi), for i = 1, 2, . . . , n. The sampling pdfs of x1, . . . , xn

are mutually independent. (This assumption is not explicitly
stated in Lira [1, section 2] but it is implied and corroborated
by [5, 6] cited in that section.)

Assumption 3. The difference µi − ξ is the bias (offset,
systematic error) in the result xi , for i = 1, . . . , n. The
random error in xi is xi − µi and the total error is xi − ξ =
(xi − µi ) + (µi − ξ). All biases (offsets) µi − ξ are assumed to
be zero; that is, µ1 = . . . = µn = ξ [1, section 2.1, line 1].

Assumption 4. The state-of-knowledge pdf of each Xi is
normal with expected value xi and standard deviation u(xi), for
i = 1, 2, . . . , n [1, section 1, line 8]. The state-of-knowledge
pdfs of X1, . . . , Xn are mutually independent [1, section 1,
line 6].

Assumption 5. The number n of laboratories is three or more
[1, p S232, column 1, line 6].

Note 1. To avoid overload of symbols, Bayesian statisticians
declare the expected values µ1, . . . , µn as random variables
with state-of-knowledge pdfs rather than introduce new
symbols for the variables. For clarity, in this paper,
we have used the symbols µ1, . . . , µn for constants and
X1, . . . , Xn for random variables with state-of-knowledge pdfs
concerning µ1, . . . , µn.

Note 2. Assumptions 2 and 4 are not equivalent.
Assumption 2 is about the sampling probability distributions
of the data x1, . . . , xn conditional on the fixed (constant) values
of the statistical parameters (µ1, σ

2
1 ), . . . , (µn, σ

2
n ), where

σ 2
i = u2(xi ), for i = 1, 2, . . . , n. A sampling distribution

is a property of the measurement procedure (i.e. the data
generation process). A sampling distribution is required in
both conventional statistics and Bayesian statistics to define
the likelihood function of the parameters conditional on the
realized data. A sampling distribution has at least one unknown
parameter which is to be estimated. For example, under
assumption 2 and the subsequent assumption 3, the expected
value of each xi , for i = 1, 2, . . . , n, is ξ which is to be
estimated.

Assumption 4 is about the state-of-knowledge probability
distributions of X1, . . . , Xn concerning µ1, . . . , µn conditional
on the fixed (constant) values of the realized data x1, . . . , xn. A
state-of-knowledge distribution represents belief probabilities
about the possible values of a parameter based on all available
information. In Bayesian statistics, a prior distribution
represents the state of knowledge about the value of a parameter
before measurement data are seen and a posterior distribution
represents an updated state of knowledge about the value of that
parameter in view of the measurement data. All parameters of a
state-of-knowledge probability distribution are fully specified,
possibly through a hierarchy of probability distributions. For
example, under assumption 4, the probability distribution of
each Xi , for i = 1, 2, . . . , n, is a fully specified normal
distribution with expected value xi and variance σ 2

i = u2(xi ).
Assumption 4 does not imply assumption 2. Assumption 2

provides a likelihood function of X1, . . . , Xn concerning
µ1, . . . , µn conditional on the realized data x1, . . . , xn. Then
with independent non-informative improper prior distributions
for X1, . . . , Xn, it can be shown, using Bayes’s theorem,
that the Bayesian posterior distributions for X1, . . . , Xn

conditional on the realized data x1, . . . , xn are independent
and normal with expected values x1, . . . , xn and variances
σ 2

1 , . . . , σ 2
n , respectively [3]. Since Bayesian posterior

distributions are state-of-knowledge pdfs, one may say that
assumption 4 follows from assumption 2. In this sense
assumption 4 is redundant. If the prior distributions
for X1, . . . , Xn were proper probability distributions, then
assumption 4 would not follow from assumption 2.
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1.3. Review of Lira’s procedure

Lira’s [1] procedure for determining a state-of-knowledge pdf
for Y , based on assumptions 1 through 5, is as follows.

Step 1. Lira [1, section 2.1, line 7] states that for
i = 1, . . . , n, ‘With non-informative prior pdfs for all
quantities involved, Bayes’s theorem [5] gives their joint pdf
after all measurements have been carried out as

f (X1, . . . , Xn, Y |{xi , u(xi )})

∝
n∏

i=1

Li(Y, Xi |xi , u(xi ))δ(Y − Xi), (1)

where δ is Dirac’s delta function and Li(Y, Xi |xi , u(xi )) is the
likelihood of obtaining the data xi , u(xi) given that ξ = Y

and µi = Xi .’ The symbol {xi , u(xi )} represents the sequence
(x1, u(x1)), . . . , (xn, u(xn)).

Step 2. Lira [1, section 2.1] determines the likelihood function
Li(Y, Xi |xi , u(xi )) used in (1) from assumption 4, which
states that the state-of-knowledge pdfs for X1, . . . , Xn are
independent and the pdf of Xi is normal with expected value
xi and variance u2(xi). That is,

fi(Xi |xi , u(xi )) ∝ exp

[
−1

2

(Xi − xi )
2

u2(xi )

]
× [u2(xi )]

−1/2,

(2)

for i = 1, . . . , n. The term [u2(xi)]−1/2 is included in (2)
because Lira [1, section 2.1] replaces the known constant
variance u2(xi) in (2) by the random variable u2(xi )+(Y −xi )

2

of unknown pdf to obtain the following expression for the
likelihood function:

Li(Y, Xi |xi , u(xi )) ∝ exp

[
−1

2

(Xi − xi )
2

u2(xi ) + (Y − xi )2

]

×[u2(xi ) + (Y − xi )
2]−1/2, (3)

for i = 1, . . . , n.

Step 3. Lira [1, section 2.1] substitutes (3) in (1), which
amounts to multiplying the n expressions given in (3) for
i = 1, . . . , n and then replacing each of the random variables
X1, . . . , Xn with the same random variable Y to obtain the
following expression:

f (Y |{xi , u(xi )}) ∝ exp

[
−1

2

n∑
i=1

(Y − xi )
2

u2(xi ) + (Y − xi )2

]

×
n∏

i=1

[u2(xi ) + (Y − xi )
2]−1/2. (4)

Lira [1] claims that when the number n is three or more,
expression (4) can be normalized to form a pdf for Y .
Expression (4) cannot be normalized when n is less than
three. Further, Lira refers to expression (4) as the kernel of
a posterior pdf for Y . Lira [1, abstract] refers to this procedure
for obtaining (4) as a Bayesian procedure.

In section 2, we show that if assumptions 1, 2 and 3
could reasonably be attributed to the data x1, . . . , xn then a
Bayesian posterior pdf for Y is normal with expected value
xW and variance u2(xW), where xW = �wixi/�wi is the
weighted mean, wi = 1/u2(xi ) for i = 1, 2, . . . , n, and
u(xW) = 1/

√
�wi . In section 3, we comment on Lira’s

procedure. Concluding remarks are given in section 4.

2. A Bayesian posterior pdf for Y conditional on
{xi, u(xi)}

Assumptions 1, 2 and 3 imply that the only unknown parameter
is the value ξ of the measurand. The problem is to determine
a pdf for the random variable Y representing the state of
knowledge concerning ξ . The sampling pdf of xi conditional
on its unknown expected value ξ is

f (xi |ξ) ∝ exp

[
−1

2

(xi − ξ)2

u2(xi )

]
, (5)

for i = 1, . . . , n, and the joint pdf of x1, . . . , xn conditional
on their common expected value ξ is

f (x1, . . . , xn|ξ) ∝ exp

[
−1

2

n∑
i=1

(xi − ξ)2

u2(xi )

]
. (6)

In Bayesian statistics, the likelihood function of the random
variable Y , representing the state of knowledge concerning ξ ,
given the data x1, . . . , xn is the joint pdf (6) interpreted as a
function of ξ [3]. Thus

L(Y |{xi , u(xi )}) ∝ exp

[
−1

2

n∑
i=1

(Y − xi )
2

u2(xi )

]
. (7)

In Bayesian statistics, the likelihood function (7) is used
to update via Bayes’s theorem [3] a prior pdf for Y to
determine a posterior pdf for Y . The likelihood function
can be multiplied by any function of the data (which are
known quantities) because it gets cancelled out when the
constant of proportionality is determined. Let us define
xW = �wixi/�wi , where wi = 1/u2(xi ) for i = 1, 2, . . . , n,
and u(xW) = 1/

√
�wi . If we multiply (7) by the function

exp[− 1
2 (�x2

i /u2(xi ) − x2
W/u2(xW))] of the data x1, . . . , xn,

we get

L(Y |{xi , u(xi )}) ∝ exp

[
−1

2

(Y − xW)2

u2(xW)

]
. (8)

If for a prior distribution for Y , we take the non-informative
improper prior distribution

g(Y ) ∝ 1, (9)

then by Bayes’s theorem [3], the posterior distribution for Y is

h(Y |{xi , u(xi )}) = g(Y ) × L(Y |{xi , u(xi )})

∝ exp

[
−1

2

(Y − xW)2

u2(xW)

]
. (10)

From (10), it follows that a Bayesian posterior pdf for Y is
normal with expected value xW and variance u2(xW). This
pdf represents the collective state of knowledge concerning
ξ implied by assumptions 1, 2 and 3 attributed to the data
x1, . . . , xn. Whether these assumptions could reasonably be
attributed to the given data x1, . . . , xn is a matter beyond the
scope of this paper.
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3. Comments on Lira’s procedure

Lira [1] does not explain how expression (1) comes out of
Bayes’s theorem. Also, what does this expression mean? In
particular, what does the delta function δ(Y − Xi) mean?
According to assumption 4, the pdf of Xi is normal with
expected value xi and variance σ 2

i = u2(xi ), for i = 1, . . . , n.
Thus the random variables X1, . . . , Xn have different fully
specified distributions. A pdf for the random variable Y is to
be determined. As discussed in section 2, according to Bayes’s
theorem, assumptions 1, 2 and 3 imply that a Bayesian posterior
pdf for Y is normal with expected value xW and variance
u2(xW). Therefore, for each i = 1, . . . , n, the distributions
of Xi and Y are different, unless n = 1.

3.1. Definition of a likelihood function

In Bayesian statistics, the likelihood function of an unknown
parameter (conditional on the realized data) is the sampling
pdf of the data generation process (conditional on the value of
the unknown parameter) regarded as a function of the value
of the parameter [3]. Thus, the likelihood function (7) is the
sampling pdf (6) regarded as a function of Y representing the
state of knowledge concerning the unknown value ξ of the
measurand. Unlike Bayesian statistics [3], Lira [1] develops
his likelihood function (3) from the fully specified state-of-
knowledge distribution (2) rather than a sampling distribution.
Also, Lira’s [1] method of developing the likelihood function
(3) from the fully specified state-of-knowledge distribution (2)
does not agree with Bayesian statistics [3].

3.2. Replacing the variances u2(xi ) by the random variables
u2(xi ) + (Y − xi )

2

The GUM [4] recommends that a result which is subject to
a recognized non-negligible bias (offset) should be corrected
and the uncertainty associated with the correction should be
included in the combined standard uncertainty associated with
the corrected result. Suppose q is an uncorrected result (which
is subject to a recognized bias/offset) with uncertainty u(q).
If c is the correction with uncertainty u(c), then the corrected
result, based on the measurement equation M = Q + C, is
m = q + c. The combined uncertainty associated with m is
u(m) =

√
u2(q) + u2(c) [6]. It has been suggested that in

some situations it is more practical to enlarge the uncertainty
u(m) =

√
u2(q) + u2(c) in lieu of correcting the result q [7].

Lira and Wöger [6] suggest that if the result q is not corrected
then its uncertainty may be enlarged from

√
u2(q) + u2(c) to√

u2(q) + u2(c) + c2. The approach of Lira and Wöger [6]
is an alternative1 to the approach proposed in [7]. Note
that the pairs (q, u(q)), (c, u(c)) and (m, u(m)) are known
quantities (constants) representing the expected values and
standard deviations of the state-of-knowledge distributions for
Q, C and M , respectively. In particular, the uncertainties

1 Lira and Wöger [6] propose an alternative to the method of Phillips and
Eberhardt [7]. However, Lira and Wöger [6] do not support the idea of
enlarging the uncertainty in lieu of correcting a result for recognized bias.
We quote Lira and Wöger [6, p 1011], ‘Thus it is hard to think of any reason
why this approach should be followed, although the decision must of course be
left to the (well informed) producers and users of the results of measurements.’

√
u2(q) + u2(c) and

√
u2(q) + u2(c) + c2 are known quantities

(constants).
In Lira [1], all n biases (offsets) µi − ξ are assumed to be

zero; therefore, Lira and Wöger [6], which addresses biased
results, does not apply to the problem addressed in Lira [1].
Nevertheless, Lira [1] uses the random variable Y − xi as a
correction ci to enlarge the uncertainty associated with the
result xi from u(xi) to

√
u2(xi ) + (Y − xi )2. Note that, unlike

Lira and Wöger [6], Lira [1] equates the random variable
Y − xi to the correction ci , a supposedly known constant
representing the expected value of a correction variable and
that

√
u2(xi ) + (Y − xi )2 is a random variable rather than a

constant such as
√

u2(q) + u2(c) + c2.

3.3. Replacing the random variables Xi with the random
variable Y

Lira [1] replaces each of the n variables Xi with the same
variable Y in (3) to obtain expression (4). Then Lira [1] claims
expression (4) to be the kernel of a pdf for Y when n is at
least three. Lira [1] does not provide a mathematical basis for
replacing the n random variables Xi with the same random
variable Y . In addition, it is not clear why expression (4)
should be a Bayesian posterior pdf. The seemingly arbitrary
requirement that n must be at least three for expression (4) to
yield a pdf must raise a flag that perhaps something is wrong
in Lira’s procedure.

3.4. Applicability of expression (4) to inconsistent results

Lira [1, section 1] states that expression (4) yields a state-of-
knowledge pdf for Y that is valid whether or not the results
x1, . . . , xn are consistent. A chi-square test of consistency,
widely accepted by metrologists [2], implies that if the results
x1, . . . , xn are judged to be inconsistent then the expected
values µ1, . . . , µn may not be regarded as equal. If µ1, . . . , µn

were not all equal, then not all of µ1, . . . , µn could equal the
value ξ of the measurand. Thus assumption 3 is refuted.
Consequently, contrary to the claim of Lira [1], expression (4)
determined from assumptions 1 through 5 does not apply when
the results x1, . . . , xn are inconsistent.

3.5. Degrees of equivalence

Lira [1, section 2.2] suggests that the unilateral degree of
equivalence of a laboratory can be obtained from an expression
such as (4) by deleting the contribution of that laboratory. We
note that expression (4) is determined from assumptions 1
through 5 including assumption 3 that all biases (offsets) µi −ξ

are zero. To quantify unilateral degrees of equivalence, we
need to determine state-of-knowledge distributions for Xi −Y

without assuming that all biases are zero [8]. Lira [1] has
not determined a pdf for Y without assuming that all biases are
zero; thus, he has not determined pdfs forXi−Y that are needed
to quantify unilateral degrees of equivalence, for i = 1, . . . , n.

4. Concluding remarks

Lira [1] offers an alternative to the method [2] recommended
by a BIPM Advisory Group on Uncertainties for the evaluation

L60 Metrologia, 44 (2007) L57–L61



Short Communication

of data from a simple key comparison. For the reasons
discussed in section 3, we are skeptical of Lira’s [1] claim
that expression (4) is the kernel of a pdf for the unknown
value of the common measurand that encodes the collective
state of knowledge whether or not the interlaboratory results
are consistent. We cannot agree with Lira’s [1] claim that
his procedure is Bayesian. Bayesian statistics is discussed
in books such as [3, 9–13]. Lira’s procedure, reviewed here
in section 1.3, does not agree with the cited literature. In our
view, a statistical method that disagrees with the cited literature
(on Bayesian statistics) is not a Bayesian procedure.
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