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Abstract 
 

Many researchers have tackled the architecture 
and requirements aspects of grid security, 
concentrating on the authentication or authorization 
mediation instead of authorization techniques, 
especially the topic of policy combination. Policy 
combination is an essential requirement of grid, not 
only because of the required remote (or global) vs. 
local interaction between grid members, but also the 
dynamic scalability nature of handling the joining and 
leaving of grid membership. However, evolving from 
the general security requirements of grid, the 
independency of a grid member’s access control 
system is critical and needs to be maintained when the 
access decision is determined by the combination of 
global and local access control policies. The Policy 
Machine (PM) provides features which not only can 
meet the significant independency requirement but 
also have better performance, easier management, 
and more straightforward policy expression than most 
of the popular policy combination techniques for grid.  
 
1. Introduction 
 

Grid computing has become closer to reality due 
to the maturity of the current computing technologies 
[1]; however, grid systems have greater challenges 
compared to non-grid systems with infrastructure 
security issues such as access control (authorization), 
directory services, and firewalls/VPN. Of these 
challenges, grid access control is the most crucial and 
difficult, because the management of access control on 
a multi-organization grid and the grid-mapfile does not 
scale well, and it works only at the resource level, not 
the collective level [2]. The difficulties lie under the 
usual case that the resources are available both locally 
and conditionally grid-wide; to not violate the 
principle of reference monitor, both the local and grid 
access control policies should be integrated under one 
access control management system. 

Many have researched the criticality and 
requirements [3] for the interaction between grid and 

local access control policies, but few have discussed 
practical approaches for solving the problems. One 
reason is that most access control mechanisms and 
models are not flexible enough to arbitrarily combine 
access control policies [4]. NIST has proposed the idea 
of combining access control systems using the 
universal Policy Machine (PM) [5], which, by 
composing the relations of the basic access control 
elements (i.e., subjects, operations, objects, and 
attributes), can combine not only well-known access 
control policies but also novel ones. The technique for 
combining policies provides practical solutions for the 
integration issues of grid and local policies. 

This paper contains six sections. Section 1 
introduces the motivation for the research. Section 2 
defines terms applied to this paper. Section 3 discusses 
the grid access control requirements that evolve to the 
requirements for and definitions of policy 
combinations. Section 4 introduces the Policy 
Machine (PM) and demonstrates how PM combines 
grid and local access control policies. Section 5 
compares PM with XACML and its related work. 
Section 6 is the conclusion. 
 
2. Terms 
 

Because all the authorization for the combined 
policies is performed at the local system, we define a 
set of terms named from the perspective of an 
individual grid member. Figure 1 illustrates the 
relations of the following terms. 
• Grid member (others call it participant, note, 

element, or computer) refers to a system that 
participates as a member of a grid. 

• Local system refers to an individual grid member 
and its trust domain. A local system sees other grid 
members as remote systems. 

• Resource is hardware and software accessible by 
any grid member; it is local if only available 
through the local system, and global otherwise. 

• User is a registered principal of a grid. A user is 
local if the resource the user is requesting to access 



is located on the same system as the user login, and 
remote otherwise. 

• Subject is the delegation of a remote or local user 
when a resource access assigned by the system is 
activated.  

• Trust domain is a collection of systems managed 
under one security policy. The users and objects 
under the same trust domain are mutually trusted. 
The local trust domain is managed by local access 
control policy, and grid trust domains are governed 
by the matching grid access control policies. 

• Combined policy is created by incorporating local 
and grid access control policies. There may be 
multiple grid policies in regard to different trust 
domains in the grid; therefore, there might be 
multiple grid-local combined policies in a local 
system. We only use one in this paper for simplicity 
in explaining concepts, but the principle can be 
applied to multiple policy combinations. 

 
3. Grid Access Control Requirements  
 

Besides general security functions, including 
authentication, integrity, privacy, and nonrepudiation, 
grid requires a standard access control protocol 
between grid members. To support that, many 
requirements have been proposed [3,6,7]. We 
summarize these in four major categories: 
Infrastructure, Authentication, Independency, and 
Combination. The Infrastructure category contains the 
security requirements, which are no different than the 
requirements for most non-grid computing systems. 
The other three categories contain requirements 
specific to grid. The following describes the 
requirements without listing details to the clause level, 
for our purpose is to abstract the concepts for the main 
topic – policy combination.  

Infrastructure requirements – This category 
contains the fundamental security requirements that 
also apply to non-grid computing systems, including 
networks and standalone systems. The requirements 

include forgery prevention (user and server), wire-
tapping and tamper prevention, intrusion detection, 
resource abuse prevention, and event logging. These 
requirements protect the underlying communication 
and system infrastructures of the grid. 

Authentication requirement – As trust influences 
access control enforcement [8], the operations between 
grid members covered by different trust domains 
require mutual authentication [7]. Thus, grid users 
must be grid-wide recognized, and a delegation for a 
remote user is created to access the local system. So, a 
program or process as a subject acts on behalf of the 
remote user and can be delegated a subset of the local 
user’s rights.  

Independency requirement – A trust domain is 
defined by the trust among grid members; it should be 
maintained such that other trust domains have limited 
or no influence over the local one. In other words, we 
can neither require that local security policy be 
replaced, nor are we allowed to override local policy 
decisions when interacting with the global 
environment. Further, no additional security 
operations or services are imposed on the local 
security mechanisms. It is impractical to modify local 
resources to accommodate the global environment. 
Consequently, a combined policy must focus on 
controlling the interdomain interactions and the 
mapping of interdomain operations into local access 
control policy [7], which might require the separation 
of access control policies and mechanisms. 

Combination requirement – All access should 
be controlled by the combination of local and grid 
policies if the resource is available for both local and 

remote access. There are four basic types of 
combinations: merge two policies by returning their 
intersection, merge two policies by returning their 
union, restrict a policy by eliminating all accesses in a 
second policy [8], and mutually exclude two policies. 
The configuration of combinations should allow a 
remote system to update and specify invocation to the 
grid policy. The authorization should accommodate 
various access control models and implementations to 
allow remote systems and a local system to 
dynamically exchange security policy information (as 
well as other information) to negotiate a security 
context [6]. 
 
Policy combinations 
 

As previously discussed, the combination 
requirement is one of the critical functions of grid, not 
only because of the inevitable complexity of remote 
vs. local interaction between grid members, but also 
the dynamic scalability nature of handling the joining 
and leaving of grid membership. Many researchers 
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[6,7] have tackled the architecture and requirement 
aspects of this issue, mostly concentrating on the 
authentication or authorization mediation instead of 
the authorization techniques, especially on the topic of 
policy combination.  

Policy combination can be as diverse as its 
application. The building blocks of all varieties of 
combinations are intersection, union, elimination, and 
exclusion of policies. The complexity degree of a 
combination is dictated by the number of access 
control policies included.  Many have concluded that 
to support policy combination, grid mechanisms must 
enforce the following: 1) users have to be community 
recognizable (authentication requirement), such as 
through the management of an LDAP system; 2) 
users’ roles have to be globally vs. locally meaningful 
(independency requirement); and 3) the local 
repository resolves conflicts between global and local 
policies [8]. Providing the three required 
characteristics, we can now define the basic 
combinations as the following with examples. We 
leave the formal definitions (by PM) to Section 4.  

For the following definitions, we denote an access 
request as a tuple (subject, operation, object) such that 
subject requests to access an object of a resource with 
operation operation.  

Definition 1 - Policy Intersection: An access 
request is granted only if the request is granted by both 
policies A and B, as shown in Figure 2, where a dot 
represents a request, a circle represents the trust 
domain for an access control policy (clear circle is 
policy A, and shadowed is policy B), which is a set of 
permitted requests, and an X means a request is 
granted. For example, in addition to being authorized 
for an access request by local policy A, a multilevel 
policy that ensures every user has the proper security 
classification, a user also needs to have matching role 
assignments assigned by role-based access control 
policy B, which authorizes certain roles for remote 
users.  

Definition 2 - Policy Union: An access request is 
granted only if the request is granted by either policy 
A or B. For example, a grid is formed by affiliated 
stores such that grid members help each other by 
fulfilling orders if an item is not available locally. Any 
grid member should accept orders from remotely or 
locally registered grid users. Thus, in the local system, 
the products (resources) are available for both local 
customers (managed under policy A) and remote 
customers (managed under policy B). 

Definition 3 - Policy Elimination: An access 
request is granted only if the request is granted by 

policy A but not policy B. For example, to prevent a 
conflict of interest (COI), the local system grants a 
user access to read information through policy A only 
if the same information cannot be obtained from 
policy B, so that a user cannot work in the same 
capability for company B, for which users can access 
the same information through access control policy B. 
Note that COI-related resources are globally managed 
such that policy B is updated grid-wide. 

Definition 4 - Policy Exclusion: An access 
request is granted either by policy A or B but not both 
(mutual exclusion, which is different from policy 
elimination that does not grant the request that is 
granted by policy B). For example, users can claim 
their rebate either through purchasing from retail 
stores (managed by local policy A) or through 
purchasing from wholesalers (managed by remote 
policy B) but not both, therefore preventing being 
double-rebated. Note that once a rebate is sent to the 
user, the user will be removed from policy A and B. 

 
      
Intersection X     

Union X X X X X 

Elimination  X  X  
Exclusion  X X X X 

Figure 2 – Policy Combination 
 
4. Policy Machine  
 

NIST has initiated a project in pursuit of a 
standardized access control mechanism referred to as 
the Policy Machine (PM) [4,5,9]. It is a practical 
approach to implementing the four basic combination 
functions. PM is based on the principle that the 
separation of access control policies from mechanisms 
[10] allows enforcement of multiple policies within a 
single, unified system so that access control rules from 
different authorities may be integrated with each other 
[8].  

As shown in Figure 3, the PM architecture is 
composed of the Policy Engine (PE), which includes 
PE processes and the PE database, and the General 
Policy Management System (GPMS). PE is the 
processing unit that receives user requests and 
performs the authorization process by referencing 
information from the PE database; it then generates a 
Boolean value (grant or deny) as a result. GPMS is the 
interface for PM administrators to configure and 
compose policies and to manage the PE database. 



PM categorizes users, objects (grid resources) and 
their attributes into policy classes, and appropriately 
enforces subsets of the policies in response to a user’s 
access request. The following fundamental data sets 
for PM processing are stored in the PE database: 
U: The set of PM users under the PM’s control 
UA: The set of user attributes of U 
OP: The set of operations (access rights) permitted by 
the PM 
O: The set of objects under the PM’s control 
OA: The set of object attributes of O 
PC: The set of policy classes the PM is implementing 

Figure 4 shows the PE database model, and Table 1 
lists the functions PE uses for authentication. 
 
Table 1 – Functions associated with the PE 
database 

Function Description – mapping relation of   
uua(u) = UAu 
⊂ UA 

a user u to a set of user attributes UAu 
that u is assigned to 

uau(ua) = Uua 
⊂ U   

a user attribute ua to a set of users Uua 
that ua is assigned to  

uaua(ua) = 
UAua ⊂ UA   

a user attribute ua to a set of inherited 
user attributes; a user assigned to ua 
will inherit the privileges of the user 
attributes in UAua (note, ua ∈ UAua) 

uaop(ua) = 
OPua ⊂ OP   

a user attribute ua to a set of operations 
OPua that ua has the privilege to 
perform 

opua(op) = 
UAop ⊂ UA   

an operation op to a set of user 
attributes UAop that has privilege op  

opoa(op) = 
OAop ⊂ OA 

an operation op to a set of object 
attributes OAop that can be accessed by 
op 

oaop(oa) = an object attribute oa to a set of 

Function Description – mapping relation of   
OPoa ⊂ OP operations OPoa that can operate on oa 
pcpc(pc) = 
PCpc ⊂ PC 

a policy class pc to a set of inherited 
policy classes (note, pc ∈ PCpc) 

uapc(ua) = 
PCua ⊂ PC   

a user attribute ua to a set of policy 
classes PCua that covers ua 

pcua(pc) = 
UApc ⊂ UA 

a policy class pc to a set of user 
attributes UApc that are covered by pc 

oapc(oa) = 
PCoa ⊂ PC   

an object attribute oa to a set of policy 
classes PCoa that covers oa 

pcoa(pc) = 
OApc ⊂ OA   

a policy class pc to a set of user 
attributes OApc that are covered by pc 

ooa(o) = OAo 
⊂ OA 

an object o to a set of object attributes 
OAo that o is assigned to 

oao(oa) = Ooa 
⊂ O 

an object attribute oa to a set of objects 
Ooa that oa is assigned to 

oaoa(oa) = 
OAoa⊂ OA   

an object attribute oa to a set of 
inherited object attributes; an object 
assigned to this attribute will inherit all 
the privileges of the object attributes in 
OAoa (note, oa ∈ OAoa) 

 
Note: all the mapping functions in Table 1 have 1 to m 
≥ 0 domain to range relation.  

PM can allow inheritance relations among user 
attributes, object attributes, and policy classes such 
that an element inherits the privileges from the 
elements that it is inherited from. The inheritance 
relation has to be in the partial order to be legitimate.  
A set of members in an inheritance relation from one 
function to another function can be formally described 
by the union transitive closure of the two functions: ∪ 
y∈a(x)b(y) = Z with the symbol “x→a,b*”. For 
example, all inherited user attributes UAu of a user u 
can be denoted by u→uua,uaua*, and all inherited 
object attributes OAo of an object o is o→ooa,oaoa*. 
We also denote by x→y z that there are mapping 
relations from x to y to z. 
 
4.1. Atomic authorization process of PM  
 

Based on the above model and notation, the 
following definitions describe the PE authorization 
process and the states of PM. 

Definition 5 - A tuple <u, ua, op, pc, oa, o> ∈ U 
× UA × OP × PC × OA × O is an instance of the 
current configuration of a PM.  

Definition 6 - Grant_instance_of_policy(u, op, 
o, pc), function decides if an access request (u, op, o) 
is satisfied in a PM, i.e. if there exists a policy class pc 
link (maps to) a ua and oa that the u and o are a 
member of, respectively, formally, 
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For u ∈ U, op ∈ OP, o ∈ O,  pc ∈ PC, 
Grant_instance_of_policy(u, op, o ,pc) = True ⇔     
∃ ua ∈ UA and ∃ oa ∈ OA, such that   
1. ua ∈ (u→uua,uaua∗), 
2. oa ∈ (o→ooa,oaoa∗),  
3.  ua→op oa, 
4. pc ∈ ua→uapc,pcpc∗, and 
5. pc ∈ oa→oapc,pcpc∗. 
 
4.2. Cases of policy multi-coverage  
 

Through the links to the policy class, more than 
one policy can be implemented for the same sets of 
users, user attributes, operations, objects, and object 
attributes. An example of NIST’s implementation is 
shown in Figure 5: 5a shows user1 and user2 linked to 
policy classes MLS and RBAC, and in 5b the two 
policy classes are shown to be linked to the objects 
dev3, mrec1, mrec2, and mrec4. For simplicity, we 
only show the combination of two policies.  
 

 
5a – users linked to policy classes MLS and RBAC 

 

5b – objects linked to policy classes MLS and RBAC 
Figure 5 - Example PM implementation from 

NIST 
As shown, one request can be covered by <u, ua, 

op, pcA, oa, o> and <u, ua, op, pcB, oa, o>, i.e. 
Grant_instance_of_policy(u, ua, op, pcA, oa, o) = 
Grant_instance_of_policy(u, ua, op, pcB, oa, o). In 
other words, a user’s access request can be authorized 
by more than one access control policy. Such 
conditions can be realized by four basic PM states, as 
described in the following states 1 to 4. 

State 1, multi-coverage by independent 
assignments. As shown in Figure 6, this is a 
straightforward PM state where a user’s request (u, op, 
o) is covered by two different, unrelated policies (for 
example, pcM and pcN). The following conditions are 
satisfied for such a state: 
1.Grant_instance_of_policy(u, op, o, pcM) = 
Grant_instance_of_policy(u, op, o, pcN) = True,  
2. {pcM, pcN}⊄ {pcpc(pcM) ∩ pcpc(pcN)}, and 
3. uua(u) ∈ pcM →pcpc,pcua* = UAA, uua(u) ∈ pcN 
→pcpc,pcua* = UAB, u ∉ UAA ∩ UAB 
Condition 1 above says that there is multi-coverage of 
(u, op, o). Condition 2 shows that the two unrelated 
(no inherit relation) policies pcM and pcN both cover 
the (u, op, o) request. Condition 3 makes sure that 
there are no common user attributes mapping for user 
u. 

State 2, multi-coverage by hierarchical user 
attribute relation. As shown in Figure 7, the user is 
assigned directly or indirectly to a user attribute uaA 
by policy class pcM, and uaA is inherited (directly or 
indirectly) by other user attributes, say uaB, which is 
covered under a different policy class pcN. Both pcM 
and pcN have the same access right op to the same 
object o the user is request to access. The following 
conditions must be satisfied for such an access 
instance: 
1.Grant_instance_of_policy(u, op, o, pcM) = 
Grant_instance_of_policy(u, op, o, pcN) = True,  
2. {pcM, pcN}⊄ {pcpc(pcM) ∩ pcpc(pcN)}, and 
3. uua(u) ∈ pcM →pcpc,pcua* = UAA , uua(u) ∈ pcN 
→pcpc,pcua* = UAB, UAB ⊄ UAA, UAA ⊂ UAB. 

Figure 6 - Individual policy class assignment
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Condition 1 and 2 are the same as in State 1. 
Condition 3 makes sure that there is an inheriting 
relation, for example, from uaA to uaB. 

State 3, multi-coverage by hierarchical policy 
classes. As shown in Figure 8, the user is covered by a 
policy class that inherits another policy class, which is 
authorized the access right to the object o the user is 
requesting. The following conditions have to be 
satisfied for such a request (u, op, o): 
1. Grant_instance_of_policy(u, op, o, pcI) = True, and 
2. pcI ∈{pcpc(pcM) ∩ pcpc(pcN)},  pcM ∉ pcpc(pcI),  
pcN ∉ pcpc(pcI) 
Condition 1 above says that the (u, op, o) request is 
covered by the policy, pcI. Condition 2 shows that 
there are inheriting relations from pcI to pcM and from 
pcI to pcN. 

The above three basic states can be arbitrarily 
combined to form new types of states. Thus, 
Grant_instance_of_policy(u, op, o, pc1) = 
Grant_instance_of_policy(u, op, o, pc2) =………= 
Grant_instance_of_policy(u, op, o, pcn) = True,  
where n is the number of policies that are included in 
the combined state. 
 
4.3. PM implementation of combination 
 

As the data sets and functions described in 
Section 4.2 satisfy the Combination requirement, PM 
allows adding and deleting policy classes (therefore, 
the policies) without affecting the existing policy 
(classes), thus meeting the Independency requirement. 
It is easy to identify the policies that cover a user’s 
access request, even with dynamic adding and deleting 
of policies. The authorization of user access requests 
via the four basic types of policy combinations 

becomes straightforward in the context of logic 
expressions of the atomic PE processes:  

Policy Intersection is enforced for the 
application that requires both the grid and local 
policies to grant the user access request (Definition 
1). If the function GrantG∩L(u, op, o, pcgrid, 
pclocal) is to decide the request (u, op, o) through 
the intersection of grid and local policy 
implemented by policy classes pcgrid and pclocal 
respectively, then the following should be true: 
GrantG∩L(u, op, o, pcgrid, pclocal) = 

Grant_instance_of_policy(u, op, o, pcgrid) ∧ 
Grant_instance_of_policy(u, op, o, pclocal).  
Considering cases of multi-coverage states in Section 
4.2, assume pcgrid = pcM and pclocal = pcN, or 
pcgrid = pcN and pclocal = pcM. The user’s request 
will be granted for all cases. 

Policy Union is enforced for the application that 
requires either the grid or local policy to grant the user 
access request (Definition 2). If the function 
GrantG∪L(u, op, o, pcgrid, pclocal) is to decide the 
request (u, op, o) through the union of grid and local 
policy implemented by policy classes pcgrid and 
pclocal respectively, then the following should be 

true: 
GrantG∪L(u, op, o, pcgrid, pclocal) = 
Grant_instance_of_policy(u, op, o, pcgrid) 
∨ Grant_instance_of_policy(u, op, o, 
pclocal).  
As with Policy Intersection, all cases of 
multi-coverage states in Section 4.2 will be 

granted. 
Policy Elimination is enforced for the 

application that grants a user’s request only if the 
request is authorized by one policy but not the other 
one (Definition 3), so if the function GrantG-L(u, op, 
o, pcgrid, pclocal) is to decide the request (u, op, o) 
through the elimination of the local policy pclocal, 
then the following should be true: 
GrantG-L(u, op, o, pcgrid, pclocal)  = 
Grant_instance_of_policy(u, op, o, pcgrid) ∧¬ 
Grant_instance_of_policy(u, op, o, pclocal).  
Or in reverse, if the grid policy is eliminated, then  
GrantL-G(u, op, o, pcgrid, pclocal) = 
Grant_instance_of_policy(u, op, o, pclocal) ∧¬ 
Grant_instance_of_policy(u, op, o, pcgrid).  
Considering cases of multi-coverage states in Section 
4.2, assume pcgrid = pcM and pclocal = pcN, or 

Figure 7 - Hierarchical user attributes coverage
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Figure 8 - Hierarchical policy class coverage 
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pcgrid = pcN and pclocal = pcM. The user’s request 
will be denied for all cases. 

Policy Exclusion is enforced for the application 
that grants a user request only if the request is covered 
by either one of the policies but not both (Definition 
4), so if the function GrantG⊕L(u, op, o, pcgrid, 
pclocal) is to decide the request (u, op, o) through the 
mutual exclusion of grid and local policy implemented 
by policy classes pcgrid and pclocal respectively, then 
the following should be true: 
GrantG⊕L(u, op, o, pcgrid, pclocal) = 
Grant_instance_of_policy(u, op, o, pcgrid) ⊕ 
Grant_instance_of_policy(u, op, o, pclocal).   
Or, expressed by AND operations of Policy 
Elimination: 
GrantG-L(u, op, o, pcgrid, pclocal) ∧ GrantL-G(u, op, 
o, pcgrid, pclocal) = True 
As with Policy Elimination, all cases of multi-
coverage states in Section 4.2 will be denied. 

Extending the above elementary combinations, 
various complex combinations can be expressed by 
composing propositional Boolean logic. For example, 
three trust domains in a grid are controlled such that a 
user request can be granted only if it is granted by both 
trust domains x and y, or local domain l, and has to be 
excluded from trust domain z. The expression for such 
a policy is: 
Grantxylz(u, op, o) = (GrantG∩L (u, op, o, pcx, pcy) ∨ 
Grant_instance_of_policy(u, op, o, pcl)) ∧¬ 
Grant_instance_of_policy(u, op, o, pcz) 
 
5. Related Works  
 

XACML [11] provides a flexible and mechanism-
independent representation of access rules that vary in 
granularity, allowing the combination of different 
authoritative domains’ policies into one policy set for 
making access control decisions in a widely 
distributed system environment. 

Several systems that support emerging grid 
computing use XACML for their authorization 
mechanism, which can be integrated into the GSI 
authorization framework [12] as authorization 
services. For example, Shibboleth [13] is considering 
XACML to replace its current access control system; 
accessed resources in Cardea [14] are protected by 
local access control policies in XACML syntax; 
PRIMA [15] applies XACML to allow more flexible 
specification of access control rules in privileges and 
policies; the PERMIS [16] project is investigating 
XACML to replace parts of its proprietary policy 

language; and the Akenti [17] team will investigate 
using XACML for the representation of distributed 
policies and the applicability and effectiveness of the 
policy combining mechanism [18]. 

The flexibility and expressiveness of XACML 
make it complex and verbose. It is hard to work 
directly with the language or policy files. Supporting 
XACML in a heterogeneous environment also calls for 
fully specified data type and function definitions that 
produce a highly verbose document even if the actual 
policy rules are trivial: an example is manual creation 
of XACML policies by ordinary users in PRIMA. In 
general, platform-independent policies expressed in an 
abstract language are difficult to create and maintain 
by resource administrators [18]. PM is not a language, 
so it is free from syntactic and semantic complexity. It 
employs the Boolean logics of AND, OR, NOT, and 
EXCLUSION to express the combination of policies, 
in contrast to XACML, which has only the AND 
operation with six algorithm varieties. When 
describing hierarchical relations between attributes or 
policies, PM only requires adding links between them; 
in XACML, relations need to be inserted in precise 
syntactic order. PM also has a WYSIWYG graphic 
user interface that visually aids in the management of 
policy documents; administrators can “see” how the 
managed access control attributes are related to each 
other, as well as the policy under which the attributes 
are covered.  

Depending on the granularity of access 
decisions, there is significant overhead for XACML, 
especially for enterprise systems. For example, 
handling an HTTP request to render a portal page that 
aggregates many resources may require many access 
decisions. Handling this with XACML would require 
many requests to be generated since each may only 
contain a single action element. The resulting 
processing time and delay in collecting all access 
decisions may not be acceptable [19]. In contrast to 
XACML multiple policies, which have to be bounded 
by the combining algorithm in the same PolicySet, PM 
can independently implement multiple policies by 
assigning them to different policy classes, allowing 
policy decisions to be processed independently.  This 
avoids the time delay due to the sequence of overhead 
algorithms, thus PM has better performance than 
XACML. This feature is essential for meeting the 
Independency requirement (Section 3) of grid security, 
especially when adding and deleting policies in a 
policy combination. 
 
6. Conclusion  
 

This paper began by introducing general grid 
security requirements, which led to the integration of 



requirements for the combination of global and local 
access control policies for grid systems. According to 
the requirements, four fundamental mechanisms were 
defined – intersection, union, elimination, and 
exclusion – in various policy combinations.  

We then presented a formal model of universal 
access control mechanism, PM, through data set and 
mapping functions. Based on the model, basic states of 
multi-policy coverage cases for a user request were 
explained. Those states alone with separated coverage 
states were used to demonstrate the solution that PM 
provides for combining global and local policies in 
grid. At the end, we briefly introduced the most 
studied policy combination approach, XACML, 
discussed its applications and limitations, and showed 
the advantages of PM: easier policy expression and 
management, and better performance. 

Even though the focus of this paper is on the grid 
application, the proposed policy combination 
mechanism can also be applied to distributed operating 
environments, so that each processing unit can locally 
manage its own resources as the local system 
presented in this paper did, improving enforceability 
[20] due to the network wide access control 
configuration. 
 
7. References 
 
[1]  The 451 Group, “Grid Technology User Case Study”, 
Grids 2004 report, JP Morgan Chase, New York, 2003. 
 
[2]  Chien A. A., “Globus Grid Security”, CSE225 Lecture 
note #13, University of California, San Diego, 2004. 
 
[3] Enterprise Grid Alliance Security Working Group, 
“Enterprise Grid Security Requirements”, 2005. 
 
[4] Hu C. V., “The Policy Machine For Universal Access 
Control”, Dissertation, Computer Science Department, 
University of Idaho, 2002. 
 
[5] Hu C. V., Frincke D. A., and Ferraiolo D. F., “The Policy 
Machine For Security Policy Management”, Proceeding 
ICCS Conference, San Francisco, 2001. 
 
[6] Nagaratnam N., Janson P., Dayka J., Nadalin A., 
Siebenlist F., Welch V., Foster I., and Tuecke S., “The 
Security Architecture for Open Grid Services”, Global Grid 
Forum, Open Grid Service Architecture Security Working 
Group (OGSA-SEC-WG), 2002. 
 
[7] Foster I., Kesselman C., Tsudik G., and Tuecke S., “A 
Security Architecture for Computational Grids”, 5th ACM 
Conference on Computer and Communication Security, 
1998. 
 

[8] Coetzee M., and Eloff J. H. P., “Virtual Enterprise 
Access Control Requirements” Proceedings of SAICSIT, pp. 
285-294, 2003. 
 
[9] Ferraiolo D. F., Gavrila S., Hu C. V., and Kuhn D. R., 
“Composing and Combining Policies under the Policy 
Machine”, ACM SACMAT, 2005. 
 
[10] Jajodia S., Samarati P., and Subrahmanian V. S., ``A 
Logical Language for Expressing Authorizations,'' Proc. 
IEEE Symp, Oakland, Calif., 1997. 
 
[11] OASIS, “Extensible Access Control Markup Language 
(XACML), TC”, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml. 
 
[12] Lang B., Foster I., Siebenlist F., Ananthakrishnan A., 
and Freeman T., “A Multipolicy Authorization Framework 
for Grid Security”, Proc. Fifth IEEE Symposium on Network 
Computing and Application, Cambridge, USA, 2006. 
 
[13] Erdos M., and Cantor S., “Shibboleth Architecture v5”, 
Internet2/MACE, 2002. 
 
[14] Lepro R., “Dynamic Access Control in Distributed 
Systems”, NAS Technical Report NAS-03-020, 2003. 
 
[15] Lorch M., et al, “The PRIMA System for Privilege 
Management, Authorization and Enforcement in Grid 
Environments”, communicated to the 4th Ind. Workshop on 
Grid Computing- Grid 2003. 
 
[16] Chadwick D. W., and Otenko A., “The PERMIS X.509 
Role Based Privilege Management Infrastructure”, 7th ACM 
Symposium on Access Control Models and Technologies, 
2002. 
 
[17] Thompson M., Essiari A., and Mudumbai S., 
“Certificate-based Authorization Policy in a PKI 
Environment”, ACM Transactions on Infomation and System 
Security (TISSEC), Vol. 6 No. 4, pp. 566-588, 2003. 
 
[18] Lorch M., et al, “First Experiences Using XACML for 
Access Control in Distributed Systems”, ACM Workshop on 
XML Security, Fairfax, Virginia, 2003. 
 
[19] Griffin P., “Introduction To XACML”, DeV2Dev, 
http://dev2dev.bea.com/pub/a/2004/02/xacml.html. 
 
[20] Hu C. V., Kuhn D. R., and Ferraiolo D. F., “The 
Computational Complexity of Enforceability Validation for 
Generic Access Control Rules”, Proceeding IEEE 
SUTC2006 Conference, Taichung, Taiwan, 2006. 


