
Access Control Policy Combinations for the Grid Using the Policy Machine

Vincent C. Hu, David F. Ferraiolo, and Karen Scarfone
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8930, USA

Email: {vhu, dferraiolo, karen.scarfone}@nist.gov

Abstract

Many researchers have tackled the architecture
and requirements aspects of grid security,
concentrating on the authentication or authorization
mediation instead of authorization techniques,
especially the topic of policy combination. Policy
combination is an essential requirement of grid, not
only because of the required remote (or global) vs.
local interaction between grid members, but also the
dynamic scalability nature of handling the joining and
leaving of grid membership. However, evolving from
the general security requirements of grid, the
independency of a grid member’s access control
system is critical and needs to be maintained when the
access decision is determined by the combination of
global and local access control policies. The Policy
Machine (PM) provides features which not only can
meet the significant independency requirement but
also have better performance, easier management,
and more straightforward policy expression than most
of the popular policy combination techniques for grid.

1. Introduction

Grid computing has become closer to reality due
to the maturity of the current computing technologies
[1]; however, grid systems have greater challenges
compared to non-grid systems with infrastructure
security issues such as access control (authorization),
directory services, and firewalls/VPN. Of these
challenges, grid access control is the most crucial and
difficult, because the management of access control on
a multi-organization grid and the grid-mapfile does not
scale well, and it works only at the resource level, not
the collective level [2]. The difficulties lie under the
usual case that the resources are available both locally
and conditionally grid-wide; to not violate the
principle of reference monitor, both the local and grid
access control policies should be integrated under one
access control management system.

Many have researched the criticality and
requirements [3] for the interaction between grid and

local access control policies, but few have discussed
practical approaches for solving the problems. One
reason is that most access control mechanisms and
models are not flexible enough to arbitrarily combine
access control policies [4]. NIST has proposed the idea
of combining access control systems using the
universal Policy Machine (PM) [5], which, by
composing the relations of the basic access control
elements (i.e., subjects, operations, objects, and
attributes), can combine not only well-known access
control policies but also novel ones. The technique for
combining policies provides practical solutions for the
integration issues of grid and local policies.

This paper contains six sections. Section 1
introduces the motivation for the research. Section 2
defines terms applied to this paper. Section 3 discusses
the grid access control requirements that evolve to the
requirements for and definitions of policy
combinations. Section 4 introduces the Policy
Machine (PM) and demonstrates how PM combines
grid and local access control policies. Section 5
compares PM with XACML and its related work.
Section 6 is the conclusion.

2. Terms

Because all the authorization for the combined
policies is performed at the local system, we define a
set of terms named from the perspective of an
individual grid member. Figure 1 illustrates the
relations of the following terms.
• Grid member (others call it participant, note,

element, or computer) refers to a system that
participates as a member of a grid.

• Local system refers to an individual grid member
and its trust domain. A local system sees other grid
members as remote systems.

• Resource is hardware and software accessible by
any grid member; it is local if only available
through the local system, and global otherwise.

• User is a registered principal of a grid. A user is
local if the resource the user is requesting to access

is located on the same system as the user login, and
remote otherwise.

• Subject is the delegation of a remote or local user
when a resource access assigned by the system is
activated.

• Trust domain is a collection of systems managed
under one security policy. The users and objects
under the same trust domain are mutually trusted.
The local trust domain is managed by local access
control policy, and grid trust domains are governed
by the matching grid access control policies.

• Combined policy is created by incorporating local
and grid access control policies. There may be
multiple grid policies in regard to different trust
domains in the grid; therefore, there might be
multiple grid-local combined policies in a local
system. We only use one in this paper for simplicity
in explaining concepts, but the principle can be
applied to multiple policy combinations.

3. Grid Access Control Requirements

Besides general security functions, including
authentication, integrity, privacy, and nonrepudiation,
grid requires a standard access control protocol
between grid members. To support that, many
requirements have been proposed [3,6,7]. We
summarize these in four major categories:
Infrastructure, Authentication, Independency, and
Combination. The Infrastructure category contains the
security requirements, which are no different than the
requirements for most non-grid computing systems.
The other three categories contain requirements
specific to grid. The following describes the
requirements without listing details to the clause level,
for our purpose is to abstract the concepts for the main
topic – policy combination.

Infrastructure requirements – This category
contains the fundamental security requirements that
also apply to non-grid computing systems, including
networks and standalone systems. The requirements

include forgery prevention (user and server), wire-
tapping and tamper prevention, intrusion detection,
resource abuse prevention, and event logging. These
requirements protect the underlying communication
and system infrastructures of the grid.

Authentication requirement – As trust influences
access control enforcement [8], the operations between
grid members covered by different trust domains
require mutual authentication [7]. Thus, grid users
must be grid-wide recognized, and a delegation for a
remote user is created to access the local system. So, a
program or process as a subject acts on behalf of the
remote user and can be delegated a subset of the local
user’s rights.

Independency requirement – A trust domain is
defined by the trust among grid members; it should be
maintained such that other trust domains have limited
or no influence over the local one. In other words, we
can neither require that local security policy be
replaced, nor are we allowed to override local policy
decisions when interacting with the global
environment. Further, no additional security
operations or services are imposed on the local
security mechanisms. It is impractical to modify local
resources to accommodate the global environment.
Consequently, a combined policy must focus on
controlling the interdomain interactions and the
mapping of interdomain operations into local access
control policy [7], which might require the separation
of access control policies and mechanisms.

Combination requirement – All access should
be controlled by the combination of local and grid
policies if the resource is available for both local and

remote access. There are four basic types of
combinations: merge two policies by returning their
intersection, merge two policies by returning their
union, restrict a policy by eliminating all accesses in a
second policy [8], and mutually exclude two policies.
The configuration of combinations should allow a
remote system to update and specify invocation to the
grid policy. The authorization should accommodate
various access control models and implementations to
allow remote systems and a local system to
dynamically exchange security policy information (as
well as other information) to negotiate a security
context [6].

Policy combinations

As previously discussed, the combination
requirement is one of the critical functions of grid, not
only because of the inevitable complexity of remote
vs. local interaction between grid members, but also
the dynamic scalability nature of handling the joining
and leaving of grid membership. Many researchers

Local/Global
resource

Local access
control policy

Local grid
member

Local trust domain

Combined access
control policy

Remote grid
member

Remote grid
member

Remote grid
member

Grid trust domain
Figure 1 – Grid from a local system’s point of view

Grid access
control policy

Remote
user

Remote
user

Local
user

[6,7] have tackled the architecture and requirement
aspects of this issue, mostly concentrating on the
authentication or authorization mediation instead of
the authorization techniques, especially on the topic of
policy combination.

Policy combination can be as diverse as its
application. The building blocks of all varieties of
combinations are intersection, union, elimination, and
exclusion of policies. The complexity degree of a
combination is dictated by the number of access
control policies included. Many have concluded that
to support policy combination, grid mechanisms must
enforce the following: 1) users have to be community
recognizable (authentication requirement), such as
through the management of an LDAP system; 2)
users’ roles have to be globally vs. locally meaningful
(independency requirement); and 3) the local
repository resolves conflicts between global and local
policies [8]. Providing the three required
characteristics, we can now define the basic
combinations as the following with examples. We
leave the formal definitions (by PM) to Section 4.

For the following definitions, we denote an access
request as a tuple (subject, operation, object) such that
subject requests to access an object of a resource with
operation operation.

Definition 1 - Policy Intersection: An access
request is granted only if the request is granted by both
policies A and B, as shown in Figure 2, where a dot
represents a request, a circle represents the trust
domain for an access control policy (clear circle is
policy A, and shadowed is policy B), which is a set of
permitted requests, and an X means a request is
granted. For example, in addition to being authorized
for an access request by local policy A, a multilevel
policy that ensures every user has the proper security
classification, a user also needs to have matching role
assignments assigned by role-based access control
policy B, which authorizes certain roles for remote
users.

Definition 2 - Policy Union: An access request is
granted only if the request is granted by either policy
A or B. For example, a grid is formed by affiliated
stores such that grid members help each other by
fulfilling orders if an item is not available locally. Any
grid member should accept orders from remotely or
locally registered grid users. Thus, in the local system,
the products (resources) are available for both local
customers (managed under policy A) and remote
customers (managed under policy B).

Definition 3 - Policy Elimination: An access
request is granted only if the request is granted by

policy A but not policy B. For example, to prevent a
conflict of interest (COI), the local system grants a
user access to read information through policy A only
if the same information cannot be obtained from
policy B, so that a user cannot work in the same
capability for company B, for which users can access
the same information through access control policy B.
Note that COI-related resources are globally managed
such that policy B is updated grid-wide.

Definition 4 - Policy Exclusion: An access
request is granted either by policy A or B but not both
(mutual exclusion, which is different from policy
elimination that does not grant the request that is
granted by policy B). For example, users can claim
their rebate either through purchasing from retail
stores (managed by local policy A) or through
purchasing from wholesalers (managed by remote
policy B) but not both, therefore preventing being
double-rebated. Note that once a rebate is sent to the
user, the user will be removed from policy A and B.

Intersection X

Union X X X X X

Elimination X X
Exclusion X X X X

Figure 2 – Policy Combination

4. Policy Machine

NIST has initiated a project in pursuit of a
standardized access control mechanism referred to as
the Policy Machine (PM) [4,5,9]. It is a practical
approach to implementing the four basic combination
functions. PM is based on the principle that the
separation of access control policies from mechanisms
[10] allows enforcement of multiple policies within a
single, unified system so that access control rules from
different authorities may be integrated with each other
[8].

As shown in Figure 3, the PM architecture is
composed of the Policy Engine (PE), which includes
PE processes and the PE database, and the General
Policy Management System (GPMS). PE is the
processing unit that receives user requests and
performs the authorization process by referencing
information from the PE database; it then generates a
Boolean value (grant or deny) as a result. GPMS is the
interface for PM administrators to configure and
compose policies and to manage the PE database.

PM categorizes users, objects (grid resources) and
their attributes into policy classes, and appropriately
enforces subsets of the policies in response to a user’s
access request. The following fundamental data sets
for PM processing are stored in the PE database:
U: The set of PM users under the PM’s control
UA: The set of user attributes of U
OP: The set of operations (access rights) permitted by
the PM
O: The set of objects under the PM’s control
OA: The set of object attributes of O
PC: The set of policy classes the PM is implementing

Figure 4 shows the PE database model, and Table 1
lists the functions PE uses for authentication.

Table 1 – Functions associated with the PE
database

Function Description – mapping relation of
uua(u) = UAu
⊂ UA

a user u to a set of user attributes UAu
that u is assigned to

uau(ua) = Uua
⊂ U

a user attribute ua to a set of users Uua
that ua is assigned to

uaua(ua) =
UAua ⊂ UA

a user attribute ua to a set of inherited
user attributes; a user assigned to ua
will inherit the privileges of the user
attributes in UAua (note, ua ∈ UAua)

uaop(ua) =
OPua ⊂ OP

a user attribute ua to a set of operations
OPua that ua has the privilege to
perform

opua(op) =
UAop ⊂ UA

an operation op to a set of user
attributes UAop that has privilege op

opoa(op) =
OAop ⊂ OA

an operation op to a set of object
attributes OAop that can be accessed by
op

oaop(oa) = an object attribute oa to a set of

Function Description – mapping relation of
OPoa ⊂ OP operations OPoa that can operate on oa
pcpc(pc) =
PCpc ⊂ PC

a policy class pc to a set of inherited
policy classes (note, pc ∈ PCpc)

uapc(ua) =
PCua ⊂ PC

a user attribute ua to a set of policy
classes PCua that covers ua

pcua(pc) =
UApc ⊂ UA

a policy class pc to a set of user
attributes UApc that are covered by pc

oapc(oa) =
PCoa ⊂ PC

an object attribute oa to a set of policy
classes PCoa that covers oa

pcoa(pc) =
OApc ⊂ OA

a policy class pc to a set of user
attributes OApc that are covered by pc

ooa(o) = OAo
⊂ OA

an object o to a set of object attributes
OAo that o is assigned to

oao(oa) = Ooa
⊂ O

an object attribute oa to a set of objects
Ooa that oa is assigned to

oaoa(oa) =
OAoa⊂ OA

an object attribute oa to a set of
inherited object attributes; an object
assigned to this attribute will inherit all
the privileges of the object attributes in
OAoa (note, oa ∈ OAoa)

Note: all the mapping functions in Table 1 have 1 to m
≥ 0 domain to range relation.

PM can allow inheritance relations among user
attributes, object attributes, and policy classes such
that an element inherits the privileges from the
elements that it is inherited from. The inheritance
relation has to be in the partial order to be legitimate.
A set of members in an inheritance relation from one
function to another function can be formally described
by the union transitive closure of the two functions: ∪
y∈a(x)b(y) = Z with the symbol “x→a,b*”. For
example, all inherited user attributes UAu of a user u
can be denoted by u→uua,uaua*, and all inherited
object attributes OAo of an object o is o→ooa,oaoa*.
We also denote by x→y z that there are mapping
relations from x to y to z.

4.1. Atomic authorization process of PM

Based on the above model and notation, the
following definitions describe the PE authorization
process and the states of PM.

Definition 5 - A tuple <u, ua, op, pc, oa, o> ∈ U
× UA × OP × PC × OA × O is an instance of the
current configuration of a PM.

Definition 6 - Grant_instance_of_policy(u, op,
o, pc), function decides if an access request (u, op, o)
is satisfied in a PM, i.e. if there exists a policy class pc
link (maps to) a ua and oa that the u and o are a
member of, respectively, formally,

 U O

 PC

 UA OA OP

uaua

uua

pcpc
oapc uapc

uau opua

uaop

oaop

opoa

oaoa

ooa

oao

pcoa pcua

Figure 4 – PE database model

User’s access
GPMS

PE processes

PE database

PM administrators

Grant / Deny
Figure 3 – PM schema

For u ∈ U, op ∈ OP, o ∈ O, pc ∈ PC,
Grant_instance_of_policy(u, op, o ,pc) = True ⇔
∃ ua ∈ UA and ∃ oa ∈ OA, such that
1. ua ∈ (u→uua,uaua∗),
2. oa ∈ (o→ooa,oaoa∗),
3. ua→op oa,
4. pc ∈ ua→uapc,pcpc∗, and
5. pc ∈ oa→oapc,pcpc∗.

4.2. Cases of policy multi-coverage

Through the links to the policy class, more than
one policy can be implemented for the same sets of
users, user attributes, operations, objects, and object
attributes. An example of NIST’s implementation is
shown in Figure 5: 5a shows user1 and user2 linked to
policy classes MLS and RBAC, and in 5b the two
policy classes are shown to be linked to the objects
dev3, mrec1, mrec2, and mrec4. For simplicity, we
only show the combination of two policies.

5a – users linked to policy classes MLS and RBAC

5b – objects linked to policy classes MLS and RBAC
Figure 5 - Example PM implementation from

NIST
As shown, one request can be covered by <u, ua,

op, pcA, oa, o> and <u, ua, op, pcB, oa, o>, i.e.
Grant_instance_of_policy(u, ua, op, pcA, oa, o) =
Grant_instance_of_policy(u, ua, op, pcB, oa, o). In
other words, a user’s access request can be authorized
by more than one access control policy. Such
conditions can be realized by four basic PM states, as
described in the following states 1 to 4.

State 1, multi-coverage by independent
assignments. As shown in Figure 6, this is a
straightforward PM state where a user’s request (u, op,
o) is covered by two different, unrelated policies (for
example, pcM and pcN). The following conditions are
satisfied for such a state:
1.Grant_instance_of_policy(u, op, o, pcM) =
Grant_instance_of_policy(u, op, o, pcN) = True,
2. {pcM, pcN}⊄ {pcpc(pcM) ∩ pcpc(pcN)}, and
3. uua(u) ∈ pcM →pcpc,pcua* = UAA, uua(u) ∈ pcN
→pcpc,pcua* = UAB, u ∉ UAA ∩ UAB
Condition 1 above says that there is multi-coverage of
(u, op, o). Condition 2 shows that the two unrelated
(no inherit relation) policies pcM and pcN both cover
the (u, op, o) request. Condition 3 makes sure that
there are no common user attributes mapping for user
u.

State 2, multi-coverage by hierarchical user
attribute relation. As shown in Figure 7, the user is
assigned directly or indirectly to a user attribute uaA
by policy class pcM, and uaA is inherited (directly or
indirectly) by other user attributes, say uaB, which is
covered under a different policy class pcN. Both pcM
and pcN have the same access right op to the same
object o the user is request to access. The following
conditions must be satisfied for such an access
instance:
1.Grant_instance_of_policy(u, op, o, pcM) =
Grant_instance_of_policy(u, op, o, pcN) = True,
2. {pcM, pcN}⊄ {pcpc(pcM) ∩ pcpc(pcN)}, and
3. uua(u) ∈ pcM →pcpc,pcua* = UAA , uua(u) ∈ pcN
→pcpc,pcua* = UAB, UAB ⊄ UAA, UAA ⊂ UAB.

Figure 6 - Individual policy class assignment

u
uaX

uaY uaB

uaA op

pcM

pcN

o
user
attribute
relations

PC to
object
attribute
relations

Condition 1 and 2 are the same as in State 1.
Condition 3 makes sure that there is an inheriting
relation, for example, from uaA to uaB.

State 3, multi-coverage by hierarchical policy
classes. As shown in Figure 8, the user is covered by a
policy class that inherits another policy class, which is
authorized the access right to the object o the user is
requesting. The following conditions have to be
satisfied for such a request (u, op, o):
1. Grant_instance_of_policy(u, op, o, pcI) = True, and
2. pcI ∈{pcpc(pcM) ∩ pcpc(pcN)}, pcM ∉ pcpc(pcI),
pcN ∉ pcpc(pcI)
Condition 1 above says that the (u, op, o) request is
covered by the policy, pcI. Condition 2 shows that
there are inheriting relations from pcI to pcM and from
pcI to pcN.

The above three basic states can be arbitrarily
combined to form new types of states. Thus,
Grant_instance_of_policy(u, op, o, pc1) =
Grant_instance_of_policy(u, op, o, pc2) =………=
Grant_instance_of_policy(u, op, o, pcn) = True,
where n is the number of policies that are included in
the combined state.

4.3. PM implementation of combination

As the data sets and functions described in
Section 4.2 satisfy the Combination requirement, PM
allows adding and deleting policy classes (therefore,
the policies) without affecting the existing policy
(classes), thus meeting the Independency requirement.
It is easy to identify the policies that cover a user’s
access request, even with dynamic adding and deleting
of policies. The authorization of user access requests
via the four basic types of policy combinations

becomes straightforward in the context of logic
expressions of the atomic PE processes:

Policy Intersection is enforced for the
application that requires both the grid and local
policies to grant the user access request (Definition
1). If the function GrantG∩L(u, op, o, pcgrid,
pclocal) is to decide the request (u, op, o) through
the intersection of grid and local policy
implemented by policy classes pcgrid and pclocal
respectively, then the following should be true:
GrantG∩L(u, op, o, pcgrid, pclocal) =

Grant_instance_of_policy(u, op, o, pcgrid) ∧
Grant_instance_of_policy(u, op, o, pclocal).
Considering cases of multi-coverage states in Section
4.2, assume pcgrid = pcM and pclocal = pcN, or
pcgrid = pcN and pclocal = pcM. The user’s request
will be granted for all cases.

Policy Union is enforced for the application that
requires either the grid or local policy to grant the user
access request (Definition 2). If the function
GrantG∪L(u, op, o, pcgrid, pclocal) is to decide the
request (u, op, o) through the union of grid and local
policy implemented by policy classes pcgrid and
pclocal respectively, then the following should be

true:
GrantG∪L(u, op, o, pcgrid, pclocal) =
Grant_instance_of_policy(u, op, o, pcgrid)
∨ Grant_instance_of_policy(u, op, o,
pclocal).
As with Policy Intersection, all cases of
multi-coverage states in Section 4.2 will be

granted.
Policy Elimination is enforced for the

application that grants a user’s request only if the
request is authorized by one policy but not the other
one (Definition 3), so if the function GrantG-L(u, op,
o, pcgrid, pclocal) is to decide the request (u, op, o)
through the elimination of the local policy pclocal,
then the following should be true:
GrantG-L(u, op, o, pcgrid, pclocal) =
Grant_instance_of_policy(u, op, o, pcgrid) ∧¬
Grant_instance_of_policy(u, op, o, pclocal).
Or in reverse, if the grid policy is eliminated, then
GrantL-G(u, op, o, pcgrid, pclocal) =
Grant_instance_of_policy(u, op, o, pclocal) ∧¬
Grant_instance_of_policy(u, op, o, pcgrid).
Considering cases of multi-coverage states in Section
4.2, assume pcgrid = pcM and pclocal = pcN, or

Figure 7 - Hierarchical user attributes coverage

ua u

uaB

uaA

pcN

pcM

op
o

user
attribute
relations

user
attribute
relations

PC to
object
attribute
relations

Figure 8 - Hierarchical policy class coverage

pcI ua u op
opcM

pcN

user
attribute
relations

PC to PC
relations

PC to
object
attribute
relations

pcgrid = pcN and pclocal = pcM. The user’s request
will be denied for all cases.

Policy Exclusion is enforced for the application
that grants a user request only if the request is covered
by either one of the policies but not both (Definition
4), so if the function GrantG⊕L(u, op, o, pcgrid,
pclocal) is to decide the request (u, op, o) through the
mutual exclusion of grid and local policy implemented
by policy classes pcgrid and pclocal respectively, then
the following should be true:
GrantG⊕L(u, op, o, pcgrid, pclocal) =
Grant_instance_of_policy(u, op, o, pcgrid) ⊕
Grant_instance_of_policy(u, op, o, pclocal).
Or, expressed by AND operations of Policy
Elimination:
GrantG-L(u, op, o, pcgrid, pclocal) ∧ GrantL-G(u, op,
o, pcgrid, pclocal) = True
As with Policy Elimination, all cases of multi-
coverage states in Section 4.2 will be denied.

Extending the above elementary combinations,
various complex combinations can be expressed by
composing propositional Boolean logic. For example,
three trust domains in a grid are controlled such that a
user request can be granted only if it is granted by both
trust domains x and y, or local domain l, and has to be
excluded from trust domain z. The expression for such
a policy is:
Grantxylz(u, op, o) = (GrantG∩L (u, op, o, pcx, pcy) ∨
Grant_instance_of_policy(u, op, o, pcl)) ∧¬
Grant_instance_of_policy(u, op, o, pcz)

5. Related Works

XACML [11] provides a flexible and mechanism-
independent representation of access rules that vary in
granularity, allowing the combination of different
authoritative domains’ policies into one policy set for
making access control decisions in a widely
distributed system environment.

Several systems that support emerging grid
computing use XACML for their authorization
mechanism, which can be integrated into the GSI
authorization framework [12] as authorization
services. For example, Shibboleth [13] is considering
XACML to replace its current access control system;
accessed resources in Cardea [14] are protected by
local access control policies in XACML syntax;
PRIMA [15] applies XACML to allow more flexible
specification of access control rules in privileges and
policies; the PERMIS [16] project is investigating
XACML to replace parts of its proprietary policy

language; and the Akenti [17] team will investigate
using XACML for the representation of distributed
policies and the applicability and effectiveness of the
policy combining mechanism [18].

The flexibility and expressiveness of XACML
make it complex and verbose. It is hard to work
directly with the language or policy files. Supporting
XACML in a heterogeneous environment also calls for
fully specified data type and function definitions that
produce a highly verbose document even if the actual
policy rules are trivial: an example is manual creation
of XACML policies by ordinary users in PRIMA. In
general, platform-independent policies expressed in an
abstract language are difficult to create and maintain
by resource administrators [18]. PM is not a language,
so it is free from syntactic and semantic complexity. It
employs the Boolean logics of AND, OR, NOT, and
EXCLUSION to express the combination of policies,
in contrast to XACML, which has only the AND
operation with six algorithm varieties. When
describing hierarchical relations between attributes or
policies, PM only requires adding links between them;
in XACML, relations need to be inserted in precise
syntactic order. PM also has a WYSIWYG graphic
user interface that visually aids in the management of
policy documents; administrators can “see” how the
managed access control attributes are related to each
other, as well as the policy under which the attributes
are covered.

Depending on the granularity of access
decisions, there is significant overhead for XACML,
especially for enterprise systems. For example,
handling an HTTP request to render a portal page that
aggregates many resources may require many access
decisions. Handling this with XACML would require
many requests to be generated since each may only
contain a single action element. The resulting
processing time and delay in collecting all access
decisions may not be acceptable [19]. In contrast to
XACML multiple policies, which have to be bounded
by the combining algorithm in the same PolicySet, PM
can independently implement multiple policies by
assigning them to different policy classes, allowing
policy decisions to be processed independently. This
avoids the time delay due to the sequence of overhead
algorithms, thus PM has better performance than
XACML. This feature is essential for meeting the
Independency requirement (Section 3) of grid security,
especially when adding and deleting policies in a
policy combination.

6. Conclusion

This paper began by introducing general grid
security requirements, which led to the integration of

requirements for the combination of global and local
access control policies for grid systems. According to
the requirements, four fundamental mechanisms were
defined – intersection, union, elimination, and
exclusion – in various policy combinations.

We then presented a formal model of universal
access control mechanism, PM, through data set and
mapping functions. Based on the model, basic states of
multi-policy coverage cases for a user request were
explained. Those states alone with separated coverage
states were used to demonstrate the solution that PM
provides for combining global and local policies in
grid. At the end, we briefly introduced the most
studied policy combination approach, XACML,
discussed its applications and limitations, and showed
the advantages of PM: easier policy expression and
management, and better performance.

Even though the focus of this paper is on the grid
application, the proposed policy combination
mechanism can also be applied to distributed operating
environments, so that each processing unit can locally
manage its own resources as the local system
presented in this paper did, improving enforceability
[20] due to the network wide access control
configuration.

7. References

[1] The 451 Group, “Grid Technology User Case Study”,
Grids 2004 report, JP Morgan Chase, New York, 2003.

[2] Chien A. A., “Globus Grid Security”, CSE225 Lecture
note #13, University of California, San Diego, 2004.

[3] Enterprise Grid Alliance Security Working Group,
“Enterprise Grid Security Requirements”, 2005.

[4] Hu C. V., “The Policy Machine For Universal Access
Control”, Dissertation, Computer Science Department,
University of Idaho, 2002.

[5] Hu C. V., Frincke D. A., and Ferraiolo D. F., “The Policy
Machine For Security Policy Management”, Proceeding
ICCS Conference, San Francisco, 2001.

[6] Nagaratnam N., Janson P., Dayka J., Nadalin A.,
Siebenlist F., Welch V., Foster I., and Tuecke S., “The
Security Architecture for Open Grid Services”, Global Grid
Forum, Open Grid Service Architecture Security Working
Group (OGSA-SEC-WG), 2002.

[7] Foster I., Kesselman C., Tsudik G., and Tuecke S., “A
Security Architecture for Computational Grids”, 5th ACM
Conference on Computer and Communication Security,
1998.

[8] Coetzee M., and Eloff J. H. P., “Virtual Enterprise
Access Control Requirements” Proceedings of SAICSIT, pp.
285-294, 2003.

[9] Ferraiolo D. F., Gavrila S., Hu C. V., and Kuhn D. R.,
“Composing and Combining Policies under the Policy
Machine”, ACM SACMAT, 2005.

[10] Jajodia S., Samarati P., and Subrahmanian V. S., ``A
Logical Language for Expressing Authorizations,'' Proc.
IEEE Symp, Oakland, Calif., 1997.

[11] OASIS, “Extensible Access Control Markup Language
(XACML), TC”, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[12] Lang B., Foster I., Siebenlist F., Ananthakrishnan A.,
and Freeman T., “A Multipolicy Authorization Framework
for Grid Security”, Proc. Fifth IEEE Symposium on Network
Computing and Application, Cambridge, USA, 2006.

[13] Erdos M., and Cantor S., “Shibboleth Architecture v5”,
Internet2/MACE, 2002.

[14] Lepro R., “Dynamic Access Control in Distributed
Systems”, NAS Technical Report NAS-03-020, 2003.

[15] Lorch M., et al, “The PRIMA System for Privilege
Management, Authorization and Enforcement in Grid
Environments”, communicated to the 4th Ind. Workshop on
Grid Computing- Grid 2003.

[16] Chadwick D. W., and Otenko A., “The PERMIS X.509
Role Based Privilege Management Infrastructure”, 7th ACM
Symposium on Access Control Models and Technologies,
2002.

[17] Thompson M., Essiari A., and Mudumbai S.,
“Certificate-based Authorization Policy in a PKI
Environment”, ACM Transactions on Infomation and System
Security (TISSEC), Vol. 6 No. 4, pp. 566-588, 2003.

[18] Lorch M., et al, “First Experiences Using XACML for
Access Control in Distributed Systems”, ACM Workshop on
XML Security, Fairfax, Virginia, 2003.

[19] Griffin P., “Introduction To XACML”, DeV2Dev,
http://dev2dev.bea.com/pub/a/2004/02/xacml.html.

[20] Hu C. V., Kuhn D. R., and Ferraiolo D. F., “The
Computational Complexity of Enforceability Validation for
Generic Access Control Rules”, Proceeding IEEE
SUTC2006 Conference, Taichung, Taiwan, 2006.

