

A Power Management Proxy with a New Best-of-N Bloom Filter Design to

Reduce False Positives1

1This material is based on work supported by the National Science Foundation under Grant No. 0520081.

Miguel Jimeno and Ken Christensen
Computer Science and Engineering

University of South Florida
Tampa, FL 33620

{mjimeno, christen}@cse.usf.edu

Allen Roginsky
Computer Security Division

National Institute of Standards and Technology
Gaithersburg, MD 20899
allen.roginsky@nist.gov

Abstract

Bloom filters are a probabilistic data structure used to
evaluate set membership. A group of hash functions are
used to map elements into a Bloom filter and to test
elements for membership. In this paper, we propose using
multiple groups of hash functions and selecting the group
that generates the Bloom filter instance with the smallest
number of bits set to 1. We evaluate the performance of
this new Best-of-N method using order statistics and an
actual implementation. Our analysis shows that
significant reduction in the probability of a false positive
can be achieved. We also propose and evaluate a new
method that uses a Random Number Generator (RNG) to
generate multiple hashes from one initial “seed” hash.
This RNG method (motivated by a method from Kirsch
and Mitzenmacher) makes the computational expense of
the Best-of-N method very modest. The target application
is a power management proxy for P2P applications
executing in a resource-constrained “SmartNIC”.

Keywords: Networks, Power management, Bloom filter

1. Introduction

The Internet and the devices that connect to it are
consuming an increasing amount of electricity. It is
estimated that the Internet is consuming 2% of all the
electricity consumed in the US [11]. Electronic devices –
most of them connected to the Internet – are the fastest
growing consumer of electricity. Reducing the electricity
used by desktop PCs and other devices connected to the
Internet is thus of growing importance. An average PC
consumes 120 W when fully powered-on [20]. Such a PC
if fully powered-on 24 hours per day, 365 days per year
would add about 10% to the typical US residential
electricity consumption (see the appendix for the
calculation). This is a non-trivial impact. Many new and

emerging network applications are driving PC on-time to
increase. One such application is peer-to-peer (P2P) file
sharing. A PC running a P2P application is nearly idle
99% of the time (see the appendix for the calculation), but
must remain “on the net” so that other P2P users can
query the PC to learn if a requested file is being shared.

We are investigating how a P2P application can be
executed in a small, low-power microcontroller that
proxies for a PC. The PC could then be power managed
(that is, enter a low-power sleep state) during the time
that shared files are not actively being uploaded or
downloaded. The design of a power management proxy is
outlined in this paper. The proxy microcontroller is
limited in memory and processing capability. It cannot
easily contain a large list of file names (strings) and could
require significant time to search a large list for a given
file name. Bloom filters [1] are an ideal space-efficient,
probabilistic data structure for representing a list of file
name strings such that testing for membership in the list
of files can be done quickly. A Bloom filter is an array of
bits. A string is added to a Bloom filter by inputting it to a
group of k hash functions resulting in k array index values
where each indexed array position is set to 1. A string is
tested for membership by inputting it to the same group
of k hash functions. If all k generated array positions are
set to 1, then the string is probably a member. Non-
member strings may map to set bit positions in the Bloom
filter array, thus false positives are possible. The
probability of false positive of a Bloom filter is increasing
with the number of bits set to 1 (we give a precise
relationship later in the paper). We investigate using N
groups of hash functions to generate N Bloom filters and
selecting the group of hash functions that generates the
Bloom filter instance with the smallest number of set bits
(and thus also the smallest probability of false positive).
The selected group of Best-of-N hash functions is then
used to test queried file names for membership in the list
of shared files.

The remainder of this paper is organized as follows. In
Section 2 we review Bloom filters and describe our P2P
proxy in the context of a SmartNIC. Section 3 formally
describes our Best-of-N method. Section 4 describes our
new method for generating multiple hash values from one
actual hash. Section 5 analyzes the Best-of-N method
using order statistics. Section 6 is an experimental
evaluation. Section 7 describes related work. Finally,
Section 8 is a summary and also describes future work.

2. Using a Bloom Filter in a SmartNIC

PCs connect to the Internet typically via an Ethernet
Network Interface Controller (NIC). The NIC may be a
chip on the motherboard, or a separate add-on adapter
card. The NIC supports the Ethernet PHY and MAC
protocols and cannot generate or respond to higher-layer
packets. It is the TCP/IP implementation within the PC
operating system and the applications running in the PC
that generate and respond to packets. A PC needs to be
fully powered-on (i.e., processor running) in order to
generate and respond to packets. If the PC is powered-
down (e.g., to a power management sleep state), then
applications executing in the PC are dormant. Any
application with TCP connections will lose its
connections when a PC goes to sleep. A sleeping PC
cannot generate or respond to packets (with the exception
of being able to wake-up for specifically defined “wake-
up” packets).

Network applications, such as P2P file sharing, are
driving up PC on time. These applications require a PC to
be fully powered-on at all times to maintain TCP
connections and respond to messages. For the majority of
the time, PCs running P2P applications are not actively
transferring files, but are only receiving and responding to
query messages. In order to enable PCs running P2P
applications to be power managed, we are studying the
idea of using a small low-power controller to “cover”, or

proxy, for a sleeping PC. This proxy controller will be
able to maintain P2P TCP connections and respond to
query messages. When an HTTP GET request for a file
download is received, the sleeping system is woken-up
and control transfers from the proxy controller to the PC.
We are exploring locating the proxy controller directly on
the NIC, thus it is a “SmartNIC”. Figure 1 shows the
SmartNIC. In Figure 1(a) the SmartNIC is operating as a
standard NIC passing all packets to and from the fully
powered-on PC. When the PC goes to sleep, shown in
Figure 1(b), the SmartNIC enables proxying and responds
to all packets and wakes-up the PC only when its full
resources are needed (e.g., for a file transfer).

In order to keep SmartNIC costs low, the proxy
controller is limited in both computational and memory
capabilities. To maintain a large list of file names being
shared – the case for a P2P application – would require
considerable memory. A Bloom filter is ideally suited to
“compressing” a list of filenames or keywords. We thus
study the application of Bloom filters to proxying for a
P2P application and how to make a Bloom filter as
efficient as possible. Two key measures of performance
for a Bloom filter are 1) the probability of false positive
and 2) the computational effort required to test for
membership. The computational effort required for
generating a Bloom filter is also a performance measure.
However, in our case the application in the PC will
generate the Bloom filter (to be passed to the proxy
controller). The PC contains a very powerful processor
compared to the proxy controller. Thus, we seek a trade-
off in computation whereby generating a Bloom filter can
take greater computational effort in order to reduce its
probability of false positive. We also seek to minimize
computation required to test for element membership.

3. The Best-of-N Method

The Best-of-N method uses additional computation in
generating a Bloom filter to reduce the probability of
false positive. For a given list of elements (e.g., file name
strings) to be mapped into a Bloom filter, the Best-of-N
method finds a Bloom filter instance with the least
numbers of bits set to 1. Using N different groups of hash
functions, N instances of a Bloom filter are generated
sequentially. The instance with the least number of bits
set to 1 defines the Bloom filter instance and the hash
group that is then used to check for membership in the
filter. The Best-of-N method is shown in Figure 3 (Figure
2 defines the variables used). Two functions are given,
one to generate the Bloom filter and the other to test for
membership. A Bloom filter has m bits. The constant K is
the number of hash functions in a hash group
(corresponds to k hash functions).

NIC (internal to PC)

Traffic flow
from/to PC

Traffic flow
from/to NIC

PC in sleepPC fully on

Figure 1. The SmartNIC with proxy capability

InternetInternet

(a) (b)

Proxying is enabledNIC (internal to PC)

Traffic flow
from/to PC

Traffic flow
from/to NIC

PC in sleepPC fully on

Figure 1. The SmartNIC with proxy capability

InternetInternet

(a) (b)

Proxying is enabled

In Figure 3, the function hash(string, i) generates a

hash value for string using hash function i. One way to
implement multiple hash functions from a single hashing
method is to seed the method with a value i. For example,
we use CRC32 as a hashing method and seed the CRC
accumulator with different values to obtain different hash
functions.

Intuitively, the larger the N value the lower the
probability of false positive and the longer the time
required to compute the Bloom filter. In Section 5 we
analyze the reduction of probability of false positive as a
function of N.

4. Generating Hash Values with an RNG

Given two hash functions, ()xh1 and (),2 xh
additional pseudo hash values can be generated as
 () () ()xhixhxgi 21 ⋅+= (1)

where i is the hash value index and x is the string value
being hashed. Kirsch and Mitzenmacher [12] describe the
application of this method to Bloom filters. To generate k
indexes into a Bloom filter requires only two actual
hashes and 2−k iterations of (1) which is a considerable
reduction in processing compared to needing k actual
hashes. It is shown in [12] that using this method does not
increase the asymptotic probability of false positive.

bloom[] Bloom filter of length m bits
tempBloom[] Temporary Bloom filter
strList Input list of strings
nextString Next string in input list of strings
hashValue Hash value (value from 1 to m)
setCount Current count of bits set to 1
minCount Minimum count of bits set to 1
hashGroup Index of best hash group
inString Input string to test for membership
memberFlag Membership flag
i, j Loop counters

Figure 2. Variables for Best-of-N method

bloom[] Bloom filter of length m bits
tempBloom[] Temporary Bloom filter
strList Input list of strings
nextString Next string in input list of strings
hashValue Hash value (value from 1 to m)
setCount Current count of bits set to 1
minCount Minimum count of bits set to 1
hashGroup Index of best hash group
inString Input string to test for membership
memberFlag Membership flag
i, j Loop counters

Figure 2. Variables for Best-of-N method

function mapString(nextString)
seedValue = hash(nextString)
bloom[seedValue] = 1
seedRNG(seedValue)
for i = 1 to K do

hashValue = randInt();
bloom[hashValue] = 1;

function testString(inString)
memberFlag = true
seedValue = hash(inString)
if (bloom[seedValue] == 0)

memberFlag = false
if (memberFlag == true)

seedRNG(seedValue)
for i = 1 to K do

hashValue = randInt();
if (bloom[hashValue] == 0)

memberFlag = false
break

return(memberFlag)

Figure 4. RNG hash method for Bloom filter

function mapString(nextString)
seedValue = hash(nextString)
bloom[seedValue] = 1
seedRNG(seedValue)
for i = 1 to K do

hashValue = randInt();
bloom[hashValue] = 1;

function testString(inString)
memberFlag = true
seedValue = hash(inString)
if (bloom[seedValue] == 0)

memberFlag = false
if (memberFlag == true)

seedRNG(seedValue)
for i = 1 to K do

hashValue = randInt();
if (bloom[hashValue] == 0)

memberFlag = false
break

return(memberFlag)

Figure 4. RNG hash method for Bloom filter

function mapBloom(strList)
clear bloom[]
minCount = m

for i = 1 to N do
open strList
clear tempBloom[]
setCount = 0
while (strings remain in strList) do

nextString = next string in strList

for j = 1 to K do
hashValue = hash(nextString, (i–1)*K+j)
if (bloom[hashValue] == 0)

increment setCount
bloom[hashValue] = 1
if (setCount > minCount)

continue to outside for loop

if (setCount < minCount)
minCount = SetCount
bloom = tempBloom
hashGroup = i

return(bloom[], hashGroup)

function testBloom(inString, hashGroup)
memberFlag = true
for i = 1 to K do

hashValue =
hash(inString, (hashGroup–1)*K+i)
if (bloom[hashValue] == 0)

memberFlag = false
break

return(memberFlag)

Figure 3. Best-of-Nmethod for Bloom filter

function mapBloom(strList)
clear bloom[]
minCount = m

for i = 1 to N do
open strList
clear tempBloom[]
setCount = 0
while (strings remain in strList) do

nextString = next string in strList

for j = 1 to K do
hashValue = hash(nextString, (i–1)*K+j)
if (bloom[hashValue] == 0)

increment setCount
bloom[hashValue] = 1
if (setCount > minCount)

continue to outside for loop

if (setCount < minCount)
minCount = SetCount
bloom = tempBloom
hashGroup = i

return(bloom[], hashGroup)

function testBloom(inString, hashGroup)
memberFlag = true
for i = 1 to K do

hashValue =
hash(inString, (hashGroup–1)*K+i)
if (bloom[hashValue] == 0)

memberFlag = false
break

return(memberFlag)

Figure 3. Best-of-Nmethod for Bloom filter

We build upon this by using a linear congruential
generator (LCG) random number generator (RNG) where
a single hash value is used as a seed to generate additional
pseudo hash values. Figure 4 shows the method for
mapping strings into, and testing for membership in, a
Bloom filter. The value seedValue is the initial hash
value from an actual hashing of the string. The function
seedRNG() seeds the RNG. The function randInt()
returns a random integer between 1 and m from the RNG.
The returned value is the pseudo hash value. In the
function testString(), testing of bits is explicitly halted at
the detection of the first 0 bit. Compared to the method of
Kirsch and Mitzenmacher, our RNG method requires
only one actual hash and it can use a “good” LCG RNG
algorithm (i.e., one with well-known properties) for
generating the pseudo hash values. In our implementation
of the RNG hash method we use the following LCG
(from Jain [10]),

 ()12mod7 31
1

5 −= −nn xx (2)

where nx is the nth random integer value. We evaluate
computation time and probability of false positive for
both the Kirsch and Mitzenmacher, and RNG methods
later in this paper.

5. Analysis of Best-of-N Method

In this section we derive an expression for probability
of false positive for the Best-of-N method. Defining S as
the random variable for the number of bits set in a Bloom
filter; we derive expressions for mean and variance of S.
Assuming a normal distribution of S and using order
statistics, we get a computable expression for probability
of false positive as a function of N.

The derivation of the probability of false positive of a
regular Bloom filter (a Best-of-N Bloom Filter where

1=N) is well described in the literature [1, 2]. We
partially repeat this derivation below. We define a Bloom
filter to have m bits and k hash functions per hash
function group. The number of elements (file name
strings in our case) represented in a Bloom filter is n. We
assume that a hash function selects each array position
with equal probability. Then, the probability, p, that a
given bit is set in a Bloom filter is

 []
kn

m
p 






 −−== 111set isbit givena Pr . (3)

A false positive occurs when a tested string that is not a
member of the Bloom filter maps to k bit positions that
are set (i.e., have been set by strings mapped into the
Bloom filter). This event occurs as

 [] kp=positive falsePr . (4)

For a Bloom filter with s bits set, msp = and thus

 []
k

m
s






=positive falsePr . (5)

The mean of S is the probability that a bit is 1 multiplied
by the total number of bits,
 [] mpSE = . (6)

The variance of S requires the derivation of the second
moment of S. Let iU (mi ,,2 ,1 …=) be the random
variable that is set to 1 if bit i is set to 1 and 0 otherwise.
Then mUUUS +++= "21 where

 []
kn

m






 −−== 1111UPr i . (7)

Hence,

[] [] [] 















 −−=+++=

kn

m m
mUEUEUEE 111][S 21 " . (8)

For the second moment,

 [] [] [] []∑∑
≠

+=++=
ji

ji
i

im UUEUEUUESE 22
1

2 " (9)

Since ii UU =2 , we already know that

 [] [] 















 −−=++

kn

m m
mUEUE 1112

1
2 " . (10)

We notice that][jiUUE is equal to the probability that
both bits i and j are set (this occurs when 1=jiUU). This
is,

[]

[] [] []0 and 0Pr0Pr0Pr1
1Pr

==+=−=−

==

jiji

ji

UUUU
UU

 (11)

which is

 []
knkn

ji mm
UUPr 






 −+






 −−== 2111211 . (12)

And thus we obtain []SE 2 (13) directly. From (8) and
(13) we can directly obtain the variance []S2σ (14).

 [] () 















 −+






 −−−+
















 −−=

knknkn

mm
mm

m
mSE 21112111112 (13)

 []
knknknkn

m
mm

m
mm

m
mm

m
mmS

2
222 1221







 −−






 −−






 −+






 −=σ (14)

We use order statistics [9] to determine the mean

value of S given N samples (i.e., N instances of a Bloom
filter) where the minimum value of samples

NSSS ,,, 21 … is selected as Best-of-N. For the random
variable S with probability distribution function ()sf ,
cumulative distribution function ()sF , and N independent
samples ,,,, 21 NSSS … the minimum value of the
samples is the first order statistic,
 () ()NSSSSS ,,,min 211min …== . (15)

For a continuous distribution,

 () ()() ()sfsFNsf N 1
min 1 −−= . (16)

The mean can be computed as

 [] ()∫
∞

∞−
= dsssfSE minmin . (17)

Based on heuristic and empirical evidence, the
distribution of S appears to be close to normal. Thus,

 ()
()

2

2

2

2
1 σ

µ−−

πσ
=

s

esf (18)

and

 () 


















σ
µ−+=
2

1
2
1 xerfsF (19)

where []SE=µ and []Sσ=σ . Substituting (18) and (19)
into (16) we get,

()
()















πσ


















σ
µ−







= σ

µ−−−

−
2

2

2

1

1min
2

1
22

1
sN

N eserfcNsf .(20)

We can now give an expression for the probability of
false positive of the Best-of-N method,

 [] [] k

m
SE







= minpositive falsePr (21)

where []minSE is computed by substituting (20) into (17).

5.1 Numerical results

For a given m and n, the value of k to minimize the

probability of false positive of a Bloom filter can be
determined. The probability of false positive from (3) and
(4) is

 []
k

m
knkkn

e
m 










−≈
















 −−=

−

1111positive falsePr . (22)

The value of k that minimizes the exact expression in (22)
can be solved for directly and is

()

n
m

m
kopt







 −
−=

1ln

2ln
. (23)

The value of k that minimizes the approximate expression
in (22) can be solved for directly and is

 ()
n
mkopt 2ln= . (24)

As m becomes large, the values of optk in (23) and (24)
converge to the same. A table of false positive values for
varying m, n, and k based on (24) is presented in [6].

For a given m and n where k is chosen optimally, we
study the probability of false positive as a function of N.
Figure 5 shows a plot of the probability of false positive
(i.e., from (21)) as a function of N for 16=nm and

11=optk . Figure 6 shows the same plot for 32=nm
and 22=optk . For Figure 5 1000=n and 000,16=m
corresponding to an almost 16 KByte Bloom filter
representing 1000 strings (or 1000 files shared in our P2P
application). For Figure 6 the same value of n is used and
m is increased to 32,000. It can be seen that Best-of-N
results in a reduction in probability of false positive.
Figure 7 shows the improvement factor for 8=nm ,

16=nm (from Figure 5), 32=nm (from Figure 6),
and 64=nm . Table 1 summarizes the improvement for

=N 2, 5, 10, 50, and 100 from Figure 7. It can be seen

4.0E-04

4.2E-04

4.4E-04

4.6E-04

4.8E-04

5.0E-04

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Pr
[f

al
se

 p
os

iti
ve

]

Figure 5. Probability of false positive for m /n = 16

1.6E-07

1.8E-07

2.0E-07

2.2E-07

2.4E-07

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Pr
[f

al
se

 p
os

iti
ve

]

Figure 6. Probability of false positive for m /n = 32

that as nm increases the improvement factor also
increases. For 32=nm an almost 19% reduction in
probability of false positive is achieved for 100=N .

6. Experimental Evaluation

In this section we compare the analytical model to a
real implementation of the Best-of-N method for
probability of false positive. We also evaluate the
computation time when run on a typical desktop PC. An
implementation of a Bloom filter with the Best-of-N
method was written in C (the implementation is freely
available from the authors by request). The following four
hashing methods were implemented (input was a list of
strings, described in Section 6.1):

• MD5 using the implementation from [4]. MD5 was
chosen as a widely used and known hash function.

• CRC32 using an 8-bit table look-up
implementation from [18]. CRC32 was chosen as a
widely used and relatively efficient hash function
to be implemented in software.

• Our new RNG hashing method from Section 4
using CRC32 for the seed hash.

• Kirsch and Mitzenmacher’s method from [12]
using CRC32 for the seed hashes.

In addition to the above four hashing methods used to
hash and map real strings into a Bloom filter, a “perfect
hashing” was implemented using an RNG to generate a
random sequence of values. This perfect hashing served
as a control to eliminate any effects from the real hashing
methods that may be less than completely random.

One critical aspect of our experiments was to create N
groups of hash functions based on one hash function
implementation. For CRC32, we initialized the CRC
accumulator with a different value each time a new hash
function was needed. For the MD5 implementation, we
added a different value at the end of the string to be
hashed each time a new hash function was needed.

6.1 Description of the experiments

All experiments were executed on a Dell OptiPlex

GX620 PC (Pentium4, 3.4 Ghz, 2 MBytes cache) with
1 GByte RAM with WindowsXP as the operating system.
The gcc compiler (version 3.4.2 mingw-special from Dev
C++ [15]) with no optimizations was used in all cases.

A list of 25,000 strings of unique music file names
was obtained using Bearshare [14] (this list is freely
available from the authors by request). The list of music
file names was generated manually by searching names of
artists and compiling a list of the songs retrieved by the
queries. Each string consists of artist name and song title.
This list of strings was used for the input to all
experiments (except for the perfect hashing experiments
where no strings were hashed). Figure 8 shows a
histogram of string lengths from the test set. The mean
string length was 47 bytes. Thus, with 16=nm there are
16 bits per string mapped into the Bloom filter resulting
in a storage savings of over 20 times (i.e.,)5.23247 = .

The two response variables of interest were:
• Probability of false positive for the Bloom filter.
• Execution time to generate a Bloom filter.

Probability of false positive was measured in two ways:
• Analytically by counting the number of bits set to

1 and using (5).
• Empirically by testing for membership with a list

of test strings where none of the strings in the list
were already represented in the Bloom filter.

Execution time was measured using C time functions
with an accuracy of 10 ms on WindowsXP.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Im
pr

ov
em

en
t f

ac
to

r

m /n = 32

m /n = 16

m /n = 8

m /n = 64

Figure 7. Improvement factor for various m /n Figure 8. Histogram of string lengths for test set

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140 160 180 200 220
String length (bytes)

Pr
ob

ab
ili

ty

min = 4 characters
max = 223
mean = 47.0

Table 1. Summary of Best-of-N improvement

N 8=nm 16=nm 32=nm 64=nm
 2 1.021 1.028 1.058 1.057
 5 1.043 1.058 1.083 1.119
 10 1.058 1.078 1.111 1.161
 50 1.086 1.115 1.167 1.243
 100 1.096 1.129 1.188 1.275

The control variables were:

• Hashing method used
• Bloom filter parameters m, n, and k
• Best-of-N parameter N
• Number of strings used in the string test set

Experiments were designed to evaluate the probability of
false positive, (including comparison of the analytical
model to actual implementation) and computation run
time (CPU time). All experiments, unless otherwise
stated, were executed using the four hashing methods and
“perfect hashing” using an RNG. For all experiments n
was set to 1000 (corresponding to a reasonable number of
files shared by a P2P node) and m set to 16,000
corresponding to 16=nm (k was chosen optimally as

11=optk from [6]). The experiments were:
False positive experiment #1: Vary N from 1 to 100.

Measure probability of false positive using (5). Collect
the mean from 10,000 iterations for each value of N.

False positive experiment #2: Repeat the previous
experiment, except measure probability of false positive
empirically. The test set of strings contained 20,000
strings.

Run-time experiment: Repeat the false positive
experiment and collect the run time (CPU time) for each
value of N.

6.2 Results from the experiments

The false-positive experiment #1 results are shown in

Figure 9 for perfect hashing and in Figure 10 using the
four hashing methods studied. In Figure 9 it can be seen
that the probability of false positive from the
implementation and analysis agree perfectly (within 1%
for all values of N). This validates our analytical model,
including our assumption of normality for the number of
bits set to 1 (S). Figure 10 shows that using a real, non-
ideal hash function results in a probability of false
positive with greater variability compared to using a
“perfect” hashing function.

The false-positive experiment #2 results are shown in
Figure 11. This figure specifically shows a lower
probability of false positive for our RNG method
compared to the method of Kirsch and Mitzenmacher.

The run-time experiment results are show in Figure
12. The graph shows the CPU time to generate one
Bloom filter using the Best-of-N method with the four
different hashing methods. For our test PC we found that
for 1=N :

• MD5 requires 74 milliseconds
• CRC32 requires 4.9 milliseconds
• RNG method requires 1.5 milliseconds

4.0E-04

4.1E-04

4.2E-04

4.3E-04

4.4E-04

4.5E-04

4.6E-04

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Pr
[f

al
se

 p
os

iti
ve

]

Analysis
Perfect hash

Figure 9. Results from false positive experiment #1

4.0E-04

4.1E-04

4.2E-04

4.3E-04

4.4E-04

4.5E-04

4.6E-04

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Pr
[f

al
se

 p
os

iti
ve

]

Analysis
MD5
CRC32
RNG method
Kirsch

Figure 10. Results from false positive experiment #1

3.5E-04

4.0E-04

4.5E-04

5.0E-04

5.5E-04

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

Pr
[f

al
se

 p
os

iti
ve

]

Analysis
MD5
CRC32
RNG method
Kirsch

Figure 11. Results from false positive experiment #2

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

0 10 20 30 40 50 60 70 80 90 100
Number of instances (N)

CP
U

 T
im

e
(s

ec
)

MD5
CRC32
RNG method
Kirsch

Figure 12. Results from run time experiment

• Kirsch and Mitzenmacher method requires 1.3
milliseconds

These times increase linearly with N. Thus, the RNG and
Kirsch and Mitzenmacher methods are about the same,
CRC32 is 3 times greater in CPU time required than these
two methods, and MD5 is 15 times greater.

7. Related Work

Bloom filters were first proposed by Bloom in 1970 as
a space/time trade-off for hash tables [1]. Bloom filters
reduce the space requirement for a hash table by allowing
for a small probability of error – a false positive that a
tested element is represented in the set. Bloom filters
have found use in spell checkers, distributed databases,
distributed caching, and in many other areas. A survey of
network applications of Bloom filters is in [3].

Improvements to Bloom filters have been studied by
many researchers. Counting Bloom filters were proposed
by Fan et al. [7] (and improved by Bonomi et al. [2]) as a
means of allowing insertion and deletion of elements
(standard Bloom filters do not allow for element
deletion). Lumetta and Mitzenmacher [13] applied the
power of two choices to Bloom filters to reduce the
probability of false positive. Lumetta and Mitzenmacher
use two groups of hash functions for mapping elements
and testing for element membership. This increase in
processing results in a decrease in probability of false
positive. The improvements reported are factor of 2 to 3
reduction in probability of false positive. However, the
added expense in computation is not clear. We were
unable to reproduce the Lumetta and Mitzenmacher
results as we were unable to implement their method for
testing element membership as described in [13]. Their
work, however, was the primary motivation for our Best-
of-N method and, as such, bears the closest resemblance
to our work.

An optimal Bloom filter replacement was studied by
Pagh et al. [17]. Their approach is to use dynamic
multisets to reduce membership testing time and space
usage (and thus also probability of false positive for a
given space allocation). This work is theoretical with no
reported experimental implementations or results.

For faster hashing for Bloom filters, Kirsch and
Mitzenmacher [12] explored the use of pseudo hashing.
Their work is described in Section 4 of this paper and is
the motivation for our RNG hashing method.

8. Summary and Future Work

In summary, in this paper we have explored two

improvements to Bloom filters:

• A new Best-of-N method that reduces the
probability of false positive by generating N
instances of a Bloom filter and selecting the best.

• A new RNG hashing method that generates pseudo
hashes given a single seed hash.

The Best-of-N method was analyzed using a probabilistic
analysis and order statistics, and evaluated as an actual
implementation. It was shown that with very modest
computation, the probability of false positive can be
reduced by 10 to 20%. This is a new and useful
contribution to the body of knowledge for Bloom filters.

Our application for the Bloom filter is a power
management proxy for P2P file sharing applications. The
Bloom filter is a space efficient mechanism for storing a
list of files shared. We estimate that if only 25% of PCs
running P2P applications contained SmartNICs with
proxy capability, a savings of over $38 million per year in
the US could be achieved (see appendix for calculations).

Future work includes fully implementing and
evaluating the P2P proxy. We will also explore further
improvements to Bloom filters including:

• Compare our Best-of-N method to Lumetta and
Mitzenmacher’s power of two method [13].

• Evaluate the normality assumption we made for
the number of bits set in a Bloom filter (S).

• Explore if different values of k may improve the
performance of the Best-of-N Bloom filter method.

• Analyze the probability of hashing collisions (and
thus false positives) for our RNG hashing method.

Acknowledgment

The authors thank Dr. Kamran Sayrafian-Pour from
the Advanced Network Technologies Division (NIST) for
his multiple helpful comments that improved the quality
of this paper.

Disclaimer

Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify
the experimental procedure adequately. Such
identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the materials
or equipment identified are necessarily the best available
for the purpose.

References

[1] B. Bloom, “Space/Time Tradeoffs in Hash Coding with

Allowable Errors,” Communications of the ACM, Vol. 13,
No. 7, pp. 422-426, 1970.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese, “An Improved Construction for Counting
Bloom Filters,” 14th Annual European Symposium on
Algorithms, LNCS 4168, pp. 684-695, 2006.

[3] A. Broder and M. Mitzenmacher, “Network Applications
of Bloom Filters: A Survey,” Internet Mathematics, Vol. 1,
No. 4, pp. 485-509, 2005.

[4] L. Deutsch, “MD5 Homepage,” 2006. Available:
http://userpages.umbc.edu/~mabzug1/cs/md5/md5.html.

[5] Energy Information Administration, “U.S Household
Electricity Report,” July 2005. Available:
http://www.eia.doe.gov/emeu/reps/enduse/er01_us.html.

[6] L. Fan, P. Cao, and J. Almeida, “Bloom Filters - The
Math,” 2000. Available: http://www.cs.wisc.edu/~cao/
papers/summary-cache/node8.html.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
Cache: A Scalable Wide-Area Web Cache Sharing
Protocol,” IEEE/ACM Transactions on Networking, Vol. 8,
No. 3, pp. 281-293, 2000.

[8] M. Fetscherin and S. Zaugg, “Music Piracy On Peer-to-
Peer Networks,” Proceedings of the 2004 IEEE
International Conference on e-Technology, e-Commerce
and e-Service, pp. 431-440, 2004.

[9] R. Hogg and A. Craig, Introduction to Mathematical
Statistics, Fifth Edition, Prentice-Hall, 1995.

[10] R. Jain, The Art of Computer Systems Performance
Analysis, John Wiley & Sons, 1991.

[11] K. Kawamoto, J. Koomey, B. Nordman, R. Brown, M.
Piette, M. Ting, and A. Meier, “Electricity Used by Office
Equipment and Network Equipment in the U.S.: Detailed
Report and Appendices,” Technical Report LBNL-45917,
Energy Analysis Department, Lawrence Berkeley National
Laboratory, 2001.

[12] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same
Performance: Building a Better Bloom Filter,” Technical
Report TR-02-5, Computer Science Group, Harvard
University, 2005.

[13] S. Lumetta and M. Mitzenmacher, “Using the Power of
Two Choices to Improve Bloom Filters,” unpublished,
2006. Available: http://www.eecs.harvard.edu/~michaelm/

 postscripts/bftwo.ps.
[14] Musiclab, BearShare P2P Application, 2006. Available:

http://www.bearshare.com/.
[15] MinGW - Minimalist GNU for Windows, 2006. Available:

http://www.mingw.org/.
[16] F. Oberholzer and K. Strumpf, “The Effect of File Sharing

on Record Sales an Empirical Analysis,” School of
Business, University of Kansas, June 2005. Available:
http://www.unc.edu/~cigar/papers/FileSharing_June2005_f
inal.pdf.

[17] A. Pagh, R. Pagh, and S. Rao, “An Optimal Bloom Filter
Replacement,” Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 823-829, 2005.

[18] A. Perez, “Byte-wise CRC Calculations,” IEEE Micro, Vol.
3, No. 3, pp. 40-50, June 1983.

[19] S. Saroiu, K. Gummadi, and S. Gribble, “Measuring and
Analyzing the Characteristics of Napster and Gnutella
Hosts,” Multimedia System, Vol. 9, No. 2, pp. 170-184,
2003.

[20] US Department of Energy, Energy Efficiency and
Renewable Energy, “Estimating Appliance and Home
Electronic Energy Use,” 2005. Available:
http://www.eere.energy.gov/consumer/your_home/applianc
es/index.cfm/mytopic=10040.

Appendix – Energy Savings Calculations

This appendix contains energy use and savings
calculations as referenced in the body of the paper.

A.1 PC powered on 24/7 in typical household

A single PC powered-on 24 hours per day, 7 days per
week (such as a PC running a P2P application) will add
about 10% to the electricity usage of a typical US
household. We calculate this as follows. A typical PC
consumes 120 W [20]. There are 107 million households
in the US with a total power consumption of 1,140 billion
kWh/yr [5]. Thus, the average household electricity use is
10,654 kWh/yr. A 120 W PC powered-on 24/7 consumes
1051 kWh/yr. Thus, the addition of a single PC powered-
on 24/7 would add 9.8%, or roughly 10%, additional
electricity usage to the typical household.

A.2 Active time of a P2P node

A typical P2P node will be downloading or uploading
files only 1% of the time (and is thus idle 99% of the
time). We calculate this as follows. There are 1 billion
downloads per week from 9 million users online at any
time [16]. Thus, the average P2P node transfers about 16
files per day. The average size of a file shared in a P2P
node is 8 Mbytes [8]. If we assume a 1 Mb/s download
rate as typical [19], then about 17 minutes per day are
spent transferring files, which is about 1% of 24 hours.

A.3 Estimated energy savings from P2P proxying

If only 25% of PCs running P2P applications
contained SmartNICs with proxy capability, a savings of
over $38 million per year in the US could be achieved.
There are approximately 60 million PCs in households in
the US [5]. We will assume that 10% of these PCs run a
P2P file sharing application. We will further assume that
25% of these PCs running a P2P application will use a
SmartNIC with proxying capability. If proxying can
reduce the fully-on time by 8 hours per day (this assume
full use by a user during 16 hours per day and otherwise
idle during 8 hours per night) from 120W in fully on to
10W in sleep state, then the savings in electricity
consumed is $38.5 million per year (using $0.08 per
kWh).

