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Abstract 

 
Bloom filters are a probabilistic data structure used to 
evaluate set membership. A group of hash functions are 
used to map elements into a Bloom filter and to test 
elements for membership. In this paper, we propose using 
multiple groups of hash functions and selecting the group 
that generates the Bloom filter instance with the smallest 
number of bits set to 1. We evaluate the performance of 
this new Best-of-N method using order statistics and an 
actual implementation. Our analysis shows that 
significant reduction in the probability of a false positive 
can be achieved. We also propose and evaluate a new 
method that uses a Random Number Generator (RNG) to 
generate multiple hashes from one initial “seed” hash. 
This RNG method (motivated by a method from Kirsch 
and Mitzenmacher) makes the computational expense of 
the Best-of-N method very modest. The target application 
is a power management proxy for P2P applications 
executing in a resource-constrained “SmartNIC”.  
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1. Introduction 
 

The Internet and the devices that connect to it are 
consuming an increasing amount of electricity. It is 
estimated that the Internet is consuming 2% of all the 
electricity consumed in the US [11]. Electronic devices – 
most of them connected to the Internet – are the fastest 
growing consumer of electricity. Reducing the electricity 
used by desktop PCs and other devices connected to the 
Internet is thus of growing importance. An average PC 
consumes 120 W when fully powered-on [20]. Such a PC 
if fully powered-on 24 hours per day, 365 days per year 
would add about 10% to the typical US residential 
electricity consumption (see the appendix for the 
calculation). This is a non-trivial impact. Many new and 

emerging network applications are driving PC on-time to 
increase. One such application is peer-to-peer (P2P) file 
sharing. A PC running a P2P application is nearly idle 
99% of the time (see the appendix for the calculation), but 
must remain “on the net” so that other P2P users can 
query the PC to learn if a requested file is being shared.  

We are investigating how a P2P application can be 
executed in a small, low-power microcontroller that 
proxies for a PC. The PC could then be power managed 
(that is, enter a low-power sleep state) during the time 
that shared files are not actively being uploaded or 
downloaded. The design of a power management proxy is 
outlined in this paper. The proxy microcontroller is 
limited in memory and processing capability. It cannot 
easily contain a large list of file names (strings) and could 
require significant time to search a large list for a given 
file name. Bloom filters [1] are an ideal space-efficient, 
probabilistic data structure for representing a list of file 
name strings such that testing for membership in the list 
of files can be done quickly. A Bloom filter is an array of 
bits. A string is added to a Bloom filter by inputting it to a 
group of k hash functions resulting in k array index values 
where each indexed array position is set to 1. A string is 
tested for membership by inputting it to the same group 
of k hash functions. If all k generated array positions are 
set to 1, then the string is probably a member. Non-
member strings may map to set bit positions in the Bloom 
filter array, thus false positives are possible. The 
probability of false positive of a Bloom filter is increasing 
with the number of bits set to 1 (we give a precise 
relationship later in the paper). We investigate using N 
groups of hash functions to generate N Bloom filters and 
selecting the group of hash functions that generates the 
Bloom filter instance with the smallest number of set bits 
(and thus also the smallest probability of false positive). 
The selected group of Best-of-N hash functions is then 
used to test queried file names for membership in the list 
of shared files. 



 

The remainder of this paper is organized as follows. In 
Section 2 we review Bloom filters and describe our P2P 
proxy in the context of a SmartNIC. Section 3 formally 
describes our Best-of-N method. Section 4 describes our 
new method for generating multiple hash values from one 
actual hash. Section 5 analyzes the Best-of-N method 
using order statistics. Section 6 is an experimental 
evaluation. Section 7 describes related work. Finally, 
Section 8 is a summary and also describes future work. 

 
2. Using a Bloom Filter in a SmartNIC 
 

PCs connect to the Internet typically via an Ethernet 
Network Interface Controller (NIC). The NIC may be a 
chip on the motherboard, or a separate add-on adapter 
card. The NIC supports the Ethernet PHY and MAC 
protocols and cannot generate or respond to higher-layer 
packets. It is the TCP/IP implementation within the PC 
operating system and the applications running in the PC 
that generate and respond to packets. A PC needs to be 
fully powered-on (i.e., processor running) in order to 
generate and respond to packets. If the PC is powered-
down (e.g., to a power management sleep state), then 
applications executing in the PC are dormant. Any 
application with TCP connections will lose its 
connections when a PC goes to sleep. A sleeping PC 
cannot generate or respond to packets (with the exception 
of being able to wake-up for specifically defined “wake-
up” packets). 

Network applications, such as P2P file sharing, are 
driving up PC on time. These applications require a PC to 
be fully powered-on at all times to maintain TCP 
connections and respond to messages. For the majority of 
the time, PCs running P2P applications are not actively 
transferring files, but are only receiving and responding to 
query messages. In order to enable PCs running P2P 
applications to be power managed, we are studying the 
idea of using a small low-power controller to “cover”, or 

proxy, for a sleeping PC. This proxy controller will be 
able to maintain P2P TCP connections and respond to 
query messages. When an HTTP GET request for a file 
download is received, the sleeping system is woken-up 
and control transfers from the proxy controller to the PC. 
We are exploring locating the proxy controller directly on 
the NIC, thus it is a “SmartNIC”. Figure 1 shows the 
SmartNIC. In Figure 1(a) the SmartNIC is operating as a 
standard NIC passing all packets to and from the fully 
powered-on PC. When the PC goes to sleep, shown in 
Figure 1(b), the SmartNIC enables proxying and responds 
to all packets and wakes-up the PC only when its full 
resources are needed (e.g., for a file transfer).  

In order to keep SmartNIC costs low, the proxy 
controller is limited in both computational and memory 
capabilities. To maintain a large list of file names being 
shared – the case for a P2P application – would require 
considerable memory. A Bloom filter is ideally suited to 
“compressing” a list of filenames or keywords. We thus 
study the application of Bloom filters to proxying for a 
P2P application and how to make a Bloom filter as 
efficient as possible. Two key measures of performance 
for a Bloom filter are 1) the probability of false positive 
and 2) the computational effort required to test for 
membership. The computational effort required for 
generating a Bloom filter is also a performance measure. 
However, in our case the application in the PC will 
generate the Bloom filter (to be passed to the proxy 
controller). The PC contains a very powerful processor 
compared to the proxy controller. Thus, we seek a trade-
off in computation whereby generating a Bloom filter can 
take greater computational effort in order to reduce its 
probability of false positive. We also seek to minimize 
computation required to test for element membership. 
 
3. The Best-of-N Method 
 

The Best-of-N method uses additional computation in 
generating a Bloom filter to reduce the probability of 
false positive. For a given list of elements (e.g., file name 
strings) to be mapped into a Bloom filter, the Best-of-N 
method finds a Bloom filter instance with the least 
numbers of bits set to 1. Using N different groups of hash 
functions, N instances of a Bloom filter are generated 
sequentially. The instance with the least number of bits 
set to 1 defines the Bloom filter instance and the hash 
group that is then used to check for membership in the 
filter. The Best-of-N method is shown in Figure 3 (Figure 
2 defines the variables used). Two functions are given, 
one to generate the Bloom filter and the other to test for 
membership. A Bloom filter has m bits. The constant K is 
the number of hash functions in a hash group 
(corresponds to k hash functions).  
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In Figure 3, the function hash(string, i) generates a 

hash value for string using hash function i. One way to 
implement multiple hash functions from a single hashing 
method is to seed the method with a value i. For example, 
we use CRC32 as a hashing method and seed the CRC 
accumulator with different values to obtain different hash 
functions.  

Intuitively, the larger the N value the lower the 
probability of false positive and the longer the time 
required to compute the Bloom filter. In Section 5 we 
analyze the reduction of probability of false positive as a 
function of N. 
 
4. Generating Hash Values with an RNG 
 

Given two hash functions, ( )xh1  and ( ),2 xh  
additional pseudo hash values can be generated as  
 ( ) ( ) ( )xhixhxgi 21 ⋅+=  (1) 

where i is the hash value index and x is the string value 
being hashed. Kirsch and Mitzenmacher [12] describe the 
application of this method to Bloom filters. To generate k 
indexes into a Bloom filter requires only two actual 
hashes and 2−k  iterations of (1) which is a considerable 
reduction in processing compared to needing k actual 
hashes. It is shown in [12] that using this method does not 
increase the asymptotic probability of false positive.  

bloom[ ]  Bloom filter of length m bits
tempBloom[ ] Temporary Bloom filter
strList Input list of strings
nextString Next string in input list of strings
hashValue Hash value (value from 1 to m)
setCount Current count of bits set to 1
minCount Minimum count of bits set to 1
hashGroup Index of best hash group
inString Input string to test for membership
memberFlag Membership flag
i, j  Loop counters
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function mapString(nextString)
seedValue = hash(nextString)
bloom[seedValue] = 1
seedRNG(seedValue)
for i = 1 to K do

hashValue = randInt();
bloom[hashValue] = 1;

function testString(inString)
memberFlag = true
seedValue = hash(inString)
if (bloom[seedValue] == 0) 

memberFlag = false
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Figure 4. RNG hash method for Bloom filter
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function mapBloom(strList)
clear bloom[ ]
minCount = m

for i = 1 to N do
open strList
clear tempBloom[ ]
setCount = 0
while (strings remain in strList) do

nextString = next string in strList

for j = 1 to K do
hashValue = hash(nextString, (i–1)*K+j)
if (bloom[hashValue] == 0)

increment setCount
bloom[hashValue] = 1
if (setCount > minCount)

continue to outside for loop
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minCount = SetCount
bloom = tempBloom
hashGroup = i

return(bloom[ ], hashGroup)

function testBloom(inString, hashGroup)
memberFlag = true
for i = 1 to K do

hashValue = 
hash(inString, (hashGroup–1)*K+i)
if (bloom[hashValue] == 0)
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We build upon this by using a linear congruential 
generator (LCG) random number generator (RNG) where 
a single hash value is used as a seed to generate additional 
pseudo hash values. Figure 4 shows the method for 
mapping strings into, and testing for membership in, a 
Bloom filter. The value seedValue is the initial hash 
value from an actual hashing of the string. The function 
seedRNG() seeds the RNG. The function randInt() 
returns a random integer between 1 and m from the RNG. 
The returned value is the pseudo hash value. In the 
function testString(), testing of bits is explicitly halted at 
the detection of the first 0 bit. Compared to the method of 
Kirsch and Mitzenmacher, our RNG method requires 
only one actual hash and it can use a “good” LCG RNG 
algorithm (i.e., one with well-known properties) for 
generating the pseudo hash values. In our implementation 
of the RNG hash method we use the following LCG 
(from Jain [10]), 

 ( )12mod7 31
1

5 −= −nn xx  (2) 

where nx  is the nth random integer value. We evaluate 
computation time and probability of false positive for 
both the Kirsch and Mitzenmacher, and RNG methods 
later in this paper. 

 
5. Analysis of Best-of-N Method 
 

In this section we derive an expression for probability 
of false positive for the Best-of-N method. Defining S as 
the random variable for the number of bits set in a Bloom 
filter; we derive expressions for mean and variance of S. 
Assuming a normal distribution of S and using order 
statistics, we get a computable expression for probability 
of false positive as a function of N.  

The derivation of the probability of false positive of a 
regular Bloom filter (a Best-of-N Bloom Filter where 

1=N ) is well described in the literature [1, 2]. We 
partially repeat this derivation below. We define a Bloom 
filter to have m bits and k hash functions per hash 
function group. The number of elements (file name 
strings in our case) represented in a Bloom filter is n. We 
assume that a hash function selects each array position 
with equal probability. Then, the probability, p, that a 
given bit is set in a Bloom filter is 

 [ ]
kn

m
p 






 −−== 111set isbit  givena Pr . (3) 

A false positive occurs when a tested string that is not a 
member of the Bloom filter maps to k bit positions that 
are set (i.e., have been set by strings mapped into the 
Bloom filter). This event occurs as 

 [ ] kp=positive falsePr . (4) 

For a Bloom filter with s bits set, msp =  and thus 

 [ ]
k

m
s






=positive falsePr . (5) 

The mean of S is the probability that a bit is 1 multiplied 
by the total number of bits, 
 [ ] mpSE = . (6) 

The variance of S requires the derivation of the second 
moment of S. Let iU  ( mi  ,,2 ,1 …= ) be the random 
variable that is set to 1 if bit i is set to 1 and 0 otherwise. 
Then mUUUS +++= "21  where  
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Hence,  
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For the second moment, 
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Since ii UU =2 , we already know that 
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We notice that ][ jiUUE  is equal to the probability that 
both bits i and j are set (this occurs when 1=jiUU ). This 
is,  
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which is 
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And thus we obtain [ ]SE 2  (13) directly. From (8) and 
(13) we can directly obtain the variance [ ]S2σ  (14). 
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We use order statistics [9] to determine the mean 

value of S given N samples (i.e., N instances of a Bloom 
filter) where the minimum value of samples 

NSSS ,,, 21 …  is selected as Best-of-N. For the random 
variable S with probability distribution function ( )sf , 
cumulative distribution function ( )sF , and N independent 
samples ,,,, 21 NSSS …  the minimum value of the 
samples is the first order statistic, 
 ( ) ( )NSSSSS ,,,min 211min …== . (15) 

For a continuous distribution,  

 ( ) ( )( ) ( )sfsFNsf N 1
min 1 −−= . (16) 

The mean can be computed as 

 [ ] ( )∫
∞

∞−
= dsssfSE minmin . (17) 

Based on heuristic and empirical evidence, the 
distribution of S appears to be close to normal. Thus, 
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where [ ]SE=µ  and [ ]Sσ=σ . Substituting (18) and (19) 
into (16) we get, 
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We can now give an expression for the probability of 
false positive of the Best-of-N method, 
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where [ ]minSE  is computed by substituting (20) into (17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1 Numerical results 

 
For a given m and n, the value of k to minimize the 

probability of false positive of a Bloom filter can be 
determined. The probability of false positive from (3) and 
(4) is 
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The value of k that minimizes the exact expression in (22) 
can be solved for directly and is  
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The value of k that minimizes the approximate expression 
in (22) can be solved for directly and is 

 ( )
n
mkopt 2ln= . (24) 

As m becomes large, the values of optk  in (23) and (24) 
converge to the same. A table of false positive values for 
varying m, n, and k based on (24) is presented in [6].  

For a given m and n where k is chosen optimally, we 
study the probability of false positive as a function of N. 
Figure 5 shows a plot of the probability of false positive 
(i.e., from (21)) as a function of N for 16=nm  and 

11=optk . Figure 6 shows the same plot for 32=nm  
and 22=optk . For Figure 5 1000=n  and 000,16=m  
corresponding to an almost 16 KByte Bloom filter 
representing 1000 strings (or 1000 files shared in our P2P 
application). For Figure 6 the same value of n is used and 
m is increased to 32,000. It can be seen that Best-of-N 
results in a reduction in probability of false positive. 
Figure 7 shows the improvement factor for 8=nm , 

16=nm  (from Figure 5), 32=nm  (from Figure 6), 
and 64=nm . Table 1 summarizes the improvement for 

=N  2, 5, 10, 50, and 100 from Figure 7. It can be seen 
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that as nm  increases the improvement factor also 
increases. For 32=nm  an almost 19% reduction in 
probability of false positive is achieved for 100=N .  
 
6. Experimental Evaluation 
 

In this section we compare the analytical model to a 
real implementation of the Best-of-N method for 
probability of false positive. We also evaluate the 
computation time when run on a typical desktop PC. An 
implementation of a Bloom filter with the Best-of-N 
method was written in C (the implementation is freely 
available from the authors by request). The following four 
hashing methods were implemented (input was a list of 
strings, described in Section 6.1): 

• MD5 using the implementation from [4]. MD5 was 
chosen as a widely used and known hash function. 

• CRC32 using an 8-bit table look-up 
implementation from [18]. CRC32 was chosen as a 
widely used and relatively efficient hash function 
to be implemented in software. 

• Our new RNG hashing method from Section 4 
using CRC32 for the seed hash. 

• Kirsch and Mitzenmacher’s method from [12] 
using CRC32 for the seed hashes. 

In addition to the above four hashing methods used to 
hash and map real strings into a Bloom filter, a “perfect 
hashing” was implemented using an RNG to generate a 
random sequence of values. This perfect hashing served 
as a control to eliminate any effects from the real hashing 
methods that may be less than completely random. 

One critical aspect of our experiments was to create N 
groups of hash functions based on one hash function 
implementation. For CRC32, we initialized the CRC 
accumulator with a different value each time a new hash 
function was needed. For the MD5 implementation, we 
added a different value at the end of the string to be 
hashed each time a new hash function was needed. 
 
6.1 Description of the experiments 

 
All experiments were executed on a Dell OptiPlex 

GX620 PC (Pentium4, 3.4 Ghz, 2 MBytes cache) with 
1 GByte RAM with WindowsXP as the operating system. 
The gcc compiler (version 3.4.2 mingw-special from Dev 
C++ [15]) with no optimizations was used in all cases.  

A list of 25,000 strings of unique music file names 
was obtained using Bearshare [14] (this list is freely 
available from the authors by request). The list of music 
file names was generated manually by searching names of 
artists and compiling a list of the songs retrieved by the 
queries. Each string consists of artist name and song title. 
This list of strings was used for the input to all 
experiments (except for the perfect hashing experiments 
where no strings were hashed). Figure 8 shows a 
histogram of string lengths from the test set. The mean 
string length was 47 bytes. Thus, with 16=nm  there are 
16 bits per string mapped into the Bloom filter resulting 
in a storage savings of over 20 times (i.e., )5.23247 = . 

The two response variables of interest were: 
• Probability of false positive for the Bloom filter. 
• Execution time to generate a Bloom filter. 

Probability of false positive was measured in two ways: 
• Analytically by counting the number of bits set to 

1 and using (5). 
• Empirically by testing for membership with a list 

of test strings where none of the strings in the list 
were already represented in the Bloom filter.  

Execution time was measured using C time functions 
with an accuracy of 10 ms on WindowsXP.  
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Table 1. Summary of Best-of-N improvement
 

N 8=nm  16=nm  32=nm  64=nm  
      2 1.021 1.028 1.058 1.057 
      5 1.043 1.058 1.083 1.119 
    10 1.058 1.078 1.111 1.161 
    50 1.086 1.115 1.167 1.243 
  100 1.096 1.129 1.188 1.275 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The control variables were: 

• Hashing method used 
• Bloom filter parameters m, n, and k 
• Best-of-N parameter N 
• Number of strings used in the string test set 

Experiments were designed to evaluate the probability of 
false positive, (including comparison of the analytical 
model to actual implementation) and computation run 
time (CPU time). All experiments, unless otherwise 
stated, were executed using the four hashing methods and 
“perfect hashing” using an RNG. For all experiments n 
was set to 1000 (corresponding to a reasonable number of 
files shared by a P2P node) and m set to 16,000 
corresponding to 16=nm  (k was chosen optimally as 

11=optk  from [6]). The experiments were: 
False positive experiment #1: Vary N from 1 to 100. 

Measure probability of false positive using (5). Collect 
the mean from 10,000 iterations for each value of N.  

False positive experiment #2: Repeat the previous 
experiment, except measure probability of false positive 
empirically. The test set of strings contained 20,000 
strings. 

Run-time experiment: Repeat the false positive 
experiment and collect the run time (CPU time) for each 
value of N. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2 Results from the experiments 

 
The false-positive experiment #1 results are shown in 

Figure 9 for perfect hashing and in Figure 10 using the 
four hashing methods studied. In Figure 9 it can be seen 
that the probability of false positive from the 
implementation and analysis agree perfectly (within 1% 
for all values of N). This validates our analytical model, 
including our assumption of normality for the number of 
bits set to 1 (S). Figure 10 shows that using a real, non-
ideal hash function results in a probability of false 
positive with greater variability compared to using a 
“perfect” hashing function.  

The false-positive experiment #2 results are shown in 
Figure 11. This figure specifically shows a lower 
probability of false positive for our RNG method 
compared to the method of Kirsch and Mitzenmacher.  

The run-time experiment results are show in Figure 
12. The graph shows the CPU time to generate one 
Bloom filter using the Best-of-N method with the four 
different hashing methods. For our test PC we found that 
for 1=N : 

• MD5 requires 74 milliseconds 
• CRC32 requires 4.9 milliseconds 
• RNG method requires 1.5 milliseconds 
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Figure 10. Results from false positive experiment #1
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Figure 11. Results from false positive experiment #2
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• Kirsch and Mitzenmacher method requires 1.3 
milliseconds 

These times increase linearly with N. Thus, the RNG and 
Kirsch and Mitzenmacher methods are about the same, 
CRC32 is 3 times greater in CPU time required than these 
two methods, and MD5 is 15 times greater.  
 
7. Related Work 
 

Bloom filters were first proposed by Bloom in 1970 as 
a space/time trade-off for hash tables [1]. Bloom filters 
reduce the space requirement for a hash table by allowing 
for a small probability of error – a false positive that a 
tested element is represented in the set. Bloom filters 
have found use in spell checkers, distributed databases, 
distributed caching, and in many other areas. A survey of 
network applications of Bloom filters is in [3]. 

Improvements to Bloom filters have been studied by 
many researchers. Counting Bloom filters were proposed 
by Fan et al. [7] (and improved by Bonomi et al. [2]) as a 
means of allowing insertion and deletion of elements 
(standard Bloom filters do not allow for element 
deletion). Lumetta and Mitzenmacher [13] applied the 
power of two choices to Bloom filters to reduce the 
probability of false positive. Lumetta and Mitzenmacher 
use two groups of hash functions for mapping elements 
and testing for element membership. This increase in 
processing results in a decrease in probability of false 
positive. The improvements reported are factor of 2 to 3 
reduction in probability of false positive. However, the 
added expense in computation is not clear. We were 
unable to reproduce the Lumetta and Mitzenmacher 
results as we were unable to implement their method for 
testing element membership as described in [13]. Their 
work, however, was the primary motivation for our Best-
of-N method and, as such, bears the closest resemblance 
to our work.  

An optimal Bloom filter replacement was studied by 
Pagh et al. [17]. Their approach is to use dynamic 
multisets to reduce membership testing time and space 
usage (and thus also probability of false positive for a 
given space allocation). This work is theoretical with no 
reported experimental implementations or results.  

For faster hashing for Bloom filters, Kirsch and 
Mitzenmacher [12] explored the use of pseudo hashing. 
Their work is described in Section 4 of this paper and is 
the motivation for our RNG hashing method. 

 
8. Summary and Future Work 

 
In summary, in this paper we have explored two 

improvements to Bloom filters: 

• A new Best-of-N method that reduces the 
probability of false positive by generating N 
instances of a Bloom filter and selecting the best. 

• A new RNG hashing method that generates pseudo 
hashes given a single seed hash. 

The Best-of-N method was analyzed using a probabilistic 
analysis and order statistics, and evaluated as an actual 
implementation. It was shown that with very modest 
computation, the probability of false positive can be 
reduced by 10 to 20%. This is a new and useful 
contribution to the body of knowledge for Bloom filters. 

Our application for the Bloom filter is a power 
management proxy for P2P file sharing applications. The 
Bloom filter is a space efficient mechanism for storing a 
list of files shared. We estimate that if only 25% of PCs 
running P2P applications contained SmartNICs with 
proxy capability, a savings of over $38 million per year in 
the US could be achieved (see appendix for calculations). 

Future work  includes fully implementing and 
evaluating the P2P proxy. We will also explore further 
improvements to Bloom filters including: 

• Compare our Best-of-N method to Lumetta and 
Mitzenmacher’s power of two method [13].  

• Evaluate the normality assumption we made for 
the number of bits set in a Bloom filter (S). 

• Explore if different values of k may improve the 
performance of the Best-of-N Bloom filter method. 

• Analyze the probability of hashing collisions (and 
thus false positives) for our RNG hashing method. 
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Appendix – Energy Savings Calculations 
 

This appendix contains energy use and savings 
calculations as referenced in the body of the paper. 
 
A.1 PC powered on 24/7 in typical household 
 

A single PC powered-on 24 hours per day, 7 days per 
week (such as a PC running a P2P application) will add 
about 10% to the electricity usage of a typical US 
household. We calculate this as follows. A typical PC 
consumes 120 W [20]. There are 107 million households 
in the US with a total power consumption of 1,140 billion 
kWh/yr [5]. Thus, the average household electricity use is 
10,654 kWh/yr. A 120 W PC powered-on 24/7 consumes 
1051 kWh/yr. Thus, the addition of a single PC powered-
on 24/7 would add 9.8%, or roughly 10%, additional 
electricity usage to the typical household. 
 
A.2 Active time of a P2P node 
 

A typical P2P node will be downloading or uploading 
files only 1% of the time (and is thus idle 99% of the 
time). We calculate this as follows. There are 1 billion 
downloads per week from 9 million users online at any 
time [16]. Thus, the average P2P node transfers about 16 
files per day. The average size of a file shared in a P2P 
node is 8 Mbytes [8]. If we assume a 1 Mb/s download 
rate as typical [19], then about 17 minutes per day are 
spent transferring files, which is about 1% of 24 hours. 
 
A.3 Estimated energy savings from P2P proxying 
 

If only 25% of PCs running P2P applications 
contained SmartNICs with proxy capability, a savings of 
over $38 million per year in the US could be achieved. 
There are approximately 60 million PCs in households in 
the US [5]. We will assume that 10% of these PCs run a 
P2P file sharing application. We will further assume that 
25% of these PCs running a P2P application will use a 
SmartNIC with proxying capability. If proxying can 
reduce the fully-on time by 8 hours per day (this assume 
full use by a user during 16 hours per day and otherwise 
idle during 8 hours per night) from 120W in fully on to 
10W in sleep state, then the savings in electricity 
consumed is $38.5 million per year (using $0.08 per 
kWh).




