
1. Introduction

The photodegradation of fluorophores is an impor-
tant process that determines the accuracy of many bio-
logical assays [1], the efficacy of photodynamic thera-
py [2], and the phototoxicity of drugs. The measure-
ment of the apparent rate of photodegradation was tra-
ditionally performed by measuring the decrease in
fluorescence emission under constant illumination [3].
Recently illumination consisting of short pulses has

been used to examine the decay of photochemical reac-
tion products [4]. The time resolved measurements are
difficult to interpret since the photo-degradation
process usually involves multiple time scales. The fre-
quency domain measurement technique looks at the
response for each frequency of modulation of the illu-
minating light. Harmonic equations are simpler to solve
and, thus, interpretation of frequency domain measure-
ments can be performed in terms of traditional imped-
ance concepts [5]. In the measurements described
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Fluorescent materials play a prominent
role in the qualitative and quantitative
measurement of scientific phenomena
of importance in biotechnology and
biomedical applications. Photodegradation
of fluorophores is a process that
determines the accuracy and sensitivity
of such measurements.This is the
motivation for developing methods for
accurately measuring fluorophore
photodegradation rates. Recently,
illumination consisting of short pulses
has been used to examine the decay
of photochemical reaction products.
However, the time resolved measurements
are difficult to interpret since the
photodegradation process usually involves
multiple time scales. The frequency
domain measurement technique discussed
here looks at the frequency response
of a fluorescent sample to a frequency
modulated illuminating light. The
photodegradation rate is obtained by
interpreting the frequency domain
measurements in terms of traditional
impedance concepts. In the measurements
described in this paper, a focused laser
beam is used to illuminate a sample of
slowly flowing fluorescent solution. The
laser beam is assumed to have a Gaussian
power distribution hence illumination is
spatially non-uniform in the region of 

interest. The photochemical reaction rates
depend on power, so they will also vary
with the position in the beam. However
in the case of photodegradation of
fluorophores, the measurement of the
resulting decrease in fluorescence is given
in terms of the radiation emitted from
the entire illuminated region.  In this work
we present a mathematical description
of the time evolution of the fluorescence
response integrated over a non-uniformly
illuminated domain. As a result of our
analysis, an experimentally accessible
and tractable mathematical model
Eq. (19) and Eq. (30) is obtained from a
more fundamental description given by
Eq. (4) and Eq. (5). The model is used to
create a functional form for fitting
experimental measurements from a lock-in
amplifier.
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below, a focused laser beam is used to illuminate the
sample. The power distribution of a Gaussian laser
beam is strongly dependent on spatial location;
therefore, the rates of photochemical reactions, which
depend on power, will also depend on location in the
beam. Since absorption of radiation leads to local heat-
ing and concentration gradients, convective and
diffusive mass transport will be present in the vicinity
of the focused beam. A slow flow is imposed on the
fluorophore solution in order to dominate and thus min-
imize the effect due to uncontrollable convective and
diffusive mass transport. In the case of photodegrada-
tion of fluorophores, measurement of the resulting
decrease in fluorescence usually measures the radiation
emitted from the entire illuminated region. Therefore
an analysis method has to be developed which
describes the time evolution of the integrated fluores-
cence response from a nonuniformly illuminated
region. In previous work [6] a frequency domain meas-
urement technique was interpreted with a model which
assumed a uniform beam profile. This work extends the
model to a laser beam with a Gaussian profile. In it we
derive an experimentally accessible mathematical
model Eq. (19) and Eq. (30) from first principles Eqs.
(4) and (5). A dramatic simplification of these equa-
tions is a consequence of the strongly disparate time
scales in the kinetics imposed by the slow rate of degra-
dation relative to the relaxation and absorption rates
The first section contains a motivation and presentation
of the equations that are taken as a fundamental
description of the experimental setting (also see Fig. 1).
The equations are based on a two-state model with
excitation and relaxation. In Sec. 2, a perturbation
scheme employing the disparate time scales is used to
reduce the system of two partial differential equations,
describing the kinetic process to a single partial differ-
ential equation Eq. (14) for the total fluorophore popu-
lation (to leading order in the perturbation parameter).
The biggest reduction in mathematical complexity
comes from writing the total measured fluorescence in
terms of the total fluorophore population averaged over
the Gaussian light beam distribution. This formula
is introduced in Sec. 3, Eq. (9) and there follows the
derivation of a single ordinary equation for the time evo-
lution of the spatial average Eq. (30) that completes the
model. The mathematical arguments that justify the
manipulations performed in the main body of the paper
can be found in the appendices. Section 4 discusses the
time independent case and a functional form for fitting
experimental measurements from a lock-in amplifier.
The form, obtained from fitting values predicted from
the model, shows good agreement with actual data. In a

forthcoming paper, a harmonic approximation of the
solution of the model equations will be developed. It
will be possible then to express the fit parameters in
terms of the physical parameters in the experiment.

2. Kinetic Equations

As a starting point, consider a model for reactions at
a fixed point in space. This simplified model will be
used to motivate the details of the analysis. Assuming
no mass transfer from surrounding fluid, Fig. 1 shows a
two state model where absorption occurs from the
ground state with rate ka , and the excited state popula-
tion of size N1, relaxes back to the ground state with a
rate kr . Here N0 is the population of the ground state
molecules. Intact fluorophores change into non-fluor-
escent species with a rate kd . The kinetics are summa-
rized by a set of equations

(1)

To interpret kd , Eq. (1) has to be supplemented by a
model of the photochemical processes that are respon-
sible for the conversion of the fluorophores into non-
fluorescent species [6]. In the present manuscript, there
will be no attempt to interpret the rate constant kd . The
discussion below will focus on two problems inherent
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Fig. 1. A graphical representation of the components included in the
kinetic model discussed in the text. The rate constant kd, represents
photodegradation that leads to non-fluorescent species. The rate con-
stants ka and kr represent absorption and relaxation to the ground state
respectively. N0 and N1 represent the populations of the ground and
excited states.
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in using Eq. (1) to describe real experimental condi-
tions. The first problem is that the laser beam has a
spatial intensity distribution leading to spatial variation
of the absorption rate. The second problem is that con-
vection and diffusion currents will change the local
concentration of molecules in an uncontrolled manner.
The second problem will be reduced significantly by
introducing a flow that will change the concentration of
fluorophores in a predictable way.

The absorption rate depends on the power density of
the incident light. The absorption rate will be written as
ka = σa I [7], where σa (cm2) is the molecular absorption
cross section, and I is the incident photon flux (1/s
cm2). During the experiment, the laser irradiance
P(W/cm2) is measured. The irradiance P can be con-
verted into a photon flux, I, by dividing P by the ener-
gy per photon. Explicitly, I = Pc P where the conversion

n is the index of refraction, h is Planck’s constant, and
c is the speed of light in vacuum. This yields the result
ka = σa Pc P = kc P. The constant kc relates the laser
irradiance to the molecular absorption rate.

Figure 2 shows the geometric relation of the laser
beam, the cuvette holding the sample, the flow, and the
detector. The laser beam is incident along the z axis
which points out of the plane of the paper. The irradi-
ance of the modulated beam that illuminates the sample
will be written as:

(2)

P0(x,y) is the time independent component, and ∆P(x,y)
is the amplitude of the modulated component, ω is the

and t is time. The beam will be assumed to have a
Gaussian profile [8].

(3)

where P0 is the total power (watts) of the laser beam
and w is the width of the beam. The function f (x,y) is
defined such that its integral over all the x,y plane is
normalized to 1. The time independent component and
the modulation amplitude have the same spatial depend-

ence given by f (x,y). Clearly in this situation, the ab-
sorption rate will have a strong spatial dependence.
Consequently reaction products may have concentra-
tion gradients and uneven heating may cause thermal
mass transfer. The kinetic model of photodegradation,
given by Eq. (1), will be extended to include a spatially
dependent absorption rate and a constant flow of the
solution containing the reaction product. It will be
assumed that the flow dominates all mass transport
(diffusive and convective) into and out of the illuminat-
ing region and provides a well defined initial concen-
tration of fluorophore in the illuminated region.

To account for the spatial variation of absorption and
the flow of fluid carrying fluorophores past the laser
light, Eq. (1) is modified to,

(4)
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factor is given by . Here is the wavelength,c
nP hc

λ λ=

Fig. 2. The geometric arrangement of cuvette walls (thick lines),
laser beam propagating in the z direction (out of the plane of the
paper), the fluid velocity in the x direction, and the detector located
on the y axis. The shaded circle represents the Gaussian profile of the
laser beam.
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Here ka (x,y,t) = kc P(x,y,t). The velocity of the fluid,
denoted by v is assumed to be a constant and in the
direction of the x axis in Fig 2. Note in contrast to
Eq. (1) the absorption rate is now a function of space
and time. To completely specify the solution of these
equations, the number of particles flowing into the
entrance of the apparatus must be specified and the
number of particles at the beginning of the observation
period (t = 0) must also be given.

(5)

Equation (5) states that prior to entering the laser beam
there is no change in the populations of the fluorophore
states. The distance L is some length along the x axis
where the laser beam intensity is effectively zero.
Eq. (5) also gives the initial conditions at t = 0 when the
laser beam is turned on.

3. Perturbation Analysis of Kinetic
Equations

The faster processes, absorption and relaxation
dominate the time variation at least initially. Returning
to the model for the fixed position  in Eq. (1), this sug-
gests that after an initial transient the quasi-equilibrium
condition holds,

Substitution of this condition into Eq. (1) results in
a single equation for the total fluorophore population
N = N0 + N1.

In this section this reduction is extended to the case
of non-uniform illumination and is made rigorous. Here
the coupled pair of partial differential equations,
Eq. (4), will reduce to a single partial differential equa-
tion Eq. (14), accurate to first order in a perturbation
expansion. Justification of the operations leading to
these simplifications can be found in Appendix A.

The absorption and the excited state relaxation
rates are usually of the order 108 s–1, while the value
of kd is less than 103 s–1. The constants in Eq. (4) can
therefore be re-scaled as ka = k–a / ε, kr = k–r / ε where
ε = 10–8 and k–a , k–r are of the order of 1. Equation (4)
can then be rewritten as,

(6)

We will treat N0 (x,y,t,) and N1 (x,y,t) as functions
of ε. Let N

∧

0 (x,y,t) = N0 (x,y,t,ε) |ε = 0 and N
∧

1 (x,y,t) =
N1 (x,y,t,ε) |ε = 0 be the leading terms for N0 (x,y,t,ε) and
N1 (x,y,t,ε) respectively in a perturbation expansion for
ε > 0 and large time t.

(7)

The validity of the expansion in ε is discussed further
in Appendix A. Substituting Eq. (7) into Eq. (6) and
equating coefficients of equal powers of ε on both sides
of the equation gives for ε = 0

(8)

This implies that as ε → 0

(9)

Thus the relation between the populations of ground
and excited states holds in this approximate sense for
all larger times. (This is not valid for t ≈ 0. When the
illumination is turned on, there is an initial transient
period where the populations are changing rapidly and
therefore where the left hand side of Eq. (6) is not pro-
portionate to ε.) Equating the coefficients of the first
power of ε gives:

(10)
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Letting N (x,y,t) = N
∧

0 (x,y,t) + N
∧

1 (x,y,t), be the total
fluorophore population in the zero order approxima-
tion, we can add the two parts of Eq. (10) and obtain

(11)

The right side of Eq. (11) depends on the zeroth
order approximation to the population of excited state.
Using Eq. (9) and the definition of the total fluorophore
population it is possible to obtain the relation

(12)

which is correct to zero order in ε. Substituting Eq. (12)
into the right hand side of Eq. (11) gives the following
equation for N (x,y,t) valid up to first order in ε

(13)

Equation (10) has been rewritten as a kinetic equation
for the total fluorophore number valid to the first order
in ε. Equation (13) can be rewritten further by setting
b = kc / kr , η = kd b. Eq. (13) becomes

(14)

The boundary condition for N(x,y,t) at x = – L is
inherited from those imposed on N0 and N1 at x = – L in
Eq. (5)

(15)

The initial condition at t = 0 is N(x,y,0) = N 0 since no
reaction takes place prior to turning on the illumination.

The last term in Eq. (14) gives the flow related
flux of fluorophores into the illuminating region as a
function of position. The flow of fluorophores into the
volume illuminated by the laser beam is assumed to be
uniform over the entire volume. The photodegradation
depends on the intensity of incident light; consequently
the concentration of intact fluorophore will not be
uniform over the illuminated volume.

4. Spatial Averaging and the
Fluorescent Signal

The measured fluorescence signal per unit distance
in the z direction is given by

(16)

where A represents the characteristics of the optical
measurement instrument, krad is the rate of radiative
decay of the excited state population, and N1(x,y,t) is
the population of the excited state. (The radiative decay
contributes to the overall relaxation rate given by kr).
The population of the excited state can be approximat-
ed by Eq. (12) leading to

(17)

The symbol b was defined previously. Equation (17)
together with Eq. (14) constitute a description of the
measurement valid to first order in ε. Equation (17)
suggests that instead of finding the solution N(x,y,t) at
every spatial point it may be better to find the variation
of the averaged concentration defined by Eq. (18)

(18)

The average is performed with a weighting factor
equal to the spatial distribution of the laser irradiance.
The weighting factor provides a measure of the contri-
bution of fluorophores at each point in space to the
total fluorescence signal. It will be shown below that
Eq. (14) can be converted into an equation for 〈N(t)〉 as
defined by Eq. (18), and that the fluorescence signal
can be written as

(19)

where to a very good approximation α is a constant and
P(t) = P0 + P1cos(ω t) ≡ P0 + ∆(t). For actual computa-
tions, the constant α is evaluated in terms of the time
independent solution of Eq. 14. In this section, an ordi-
nary differential equation for the time evolution of
〈N(t)〉 will be derived (Eq. (30)). The fluorescent signal
can therefore be obtained (with small error) by solving
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Eq. (30) and then using Eq. (19). Together these equa-
tions represent an experimentally accessible mathemat-
ical model of the fluorescent signal under excitation by
a focused laser beam.

To find an equation for 〈N(t)〉, first multiply Eq. (14)
by 1 + bP(x,y,t) and obtain (below r represents the
coordinates x,y).

(20)

Multiply Eq. (20) by f (x,y) and integrate over the beam
cross section region, R. Each term will be treated in
detail. To simplify the notation integrals in the x-y plane
will be represented by a single integral in r = (x,y) with
dr = dxdy. The left side of Eq. (20) becomes

which can be expanded to

Inserting the explicit form of the power function we get

The second part of the above equation will be rewrit-
ten by introducing the quantity,

(21)

The final result for the left side of Eq. (20) after multi-
plication and integration is therefore

(22)

(Note that the definition given in Eq. (21) will be used
in deriving Eq. (19)).

The first term on the right side of Eq. (20) after the
operations becomes

(23)

where a– is defined in Eq. (21). The second term on the
right side of Eq. (20) becomes, after multiplication and
integration,

To treat the second term of the above equation, we
introduce a second function defined by

(24)

The second term of the right hand side of the trans-
formed Eq. (20) now reads

(25)

In Appendix B we will show that the functions α– (t)
and α– ′(t) are, up to a small error, independent of t and
can be replaced by constants α and α ′ respectively.
The error introduced into equations Eq. (21), Eq. (23),
and Eq. (25) by this approximation is discussed in
Appendix C.
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Collecting terms, Eq. (20) can be written after multi-
plication by f (x,y) and integration, up to small varying
functions of t, as

(26)

where

(27)

The final step in the derivation of an equation for
〈N(t)〉 consists of finding an approximation to the
weighted average spatial derivative in Eq. (27). For
small widths w the major contribution to the integral
comes from a region in the vicinity of the beam which
we define by 0 ≤x,y≤ κ w where we may choose
the constant κ , 0 ≤ κ ≤ 3. If we replace the partial
derivative in the integrand by a backwards difference
quotient with step h = – κ w the value of N at the left
endpoint of the interval is N0 (to a good approxima-
tion). Thus for w small enough we have,

where o(1)is a term that tends to zero as w → 0. To
guarantee an error that is smaller than the dominant
terms of Eq. (26) we have to require that w is sufficient-
ly small and κ is large. In fact experimental conditions
govern the actual choice of w. The following heuristic
argument governed the choice of κ.

We observed that in the vicinity of the origin (x = 0,
y = 0 ) the spatial derivative of the time independent
solution, N(x,y) discussed below, has a functional form
which is almost identical to the beam distribution func-
tion f (x,y) as shown by the two overlapping curves in
Fig. 4. The difference between – f (x,y) and ∂N(x,y)/∂x
(both normalized by dividing by the maximum of their
respective absolute values) is magnified 50 times and
shown in Fig. 4 by the upper curve. The weighted aver-
age of the un-normalized beam distribution function
π ⋅ width2 f (x,y) is equal to 0.5. Therefore the weighted
average of the spatial derivative will be approximately
equal to 0.5 times the value at the origin

(28)

The derivative at the origin can be approximated in
the usual way by the difference of the function N(x,y,t)
evaluated at two points spanning the origin and divided
by the distance between the two points. However for
the purpose of this analysis a more useful approxima-
tion uses the difference 〈N (t)〉 – N 0 divided by an
effective distance which reproduces the value of the
derivative. For the case of the Gaussian beam, the best
estimate of the derivative at the origin was found
(using the time independent solution) to be (〈N (t)〉
– N 0)/w*0.637.  This yields the following approximate
expression for the average spatial derivative given in
Eq. (28).

(29)

Using Eq. (29), the approximate kinetic equation for
〈N (t)〉 becomes

(30)
where ∆(t) = P1 cos(ωt).

5. Validation of the Model Equations and
Their Derivation:

This section discusses the time independent form of
Eq. (30) (see Eq. (31). Since an analytical form of
the solution exists for the time independent case of
Eq. (14), direct comparisons of the fluorescent signal
obtained from the time independent version of Eq. (30)
are possible. In both cases the fluorescence signal is
obtained from Eq. (19) (using the steady state solutions
of Eq. (14) and Eq. (30). A second important reason for
considering the time independent solution is that the
spatial average in Eq. (18) is dominated by the spatial
average of the time independent solution itself. As a
consequence, the time varying functions α (t) and α′ (t)
can be replaced by constants calculated from the time
independent solution (see B 9 in Appendix B).

The time independent form of Eq. (14) corresponds
to a condition of constant illumination, constant flow,
and constant initial fluorophore concentration.
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(31)

Figure 2 shows the geometrical arrangement of the
flow channel, the laser beam, and the detector. The
laser beam is along the z direction, the detector along
the y axis, and the flow takes place along the x axis. The
channel dimensions are d y = 0.4 cm along the y axis,
d z = 1 cm along the z axis, and 5 cm along the x axis.
The velocity of the fluid in the center of the channel is
set to 0.025 cm/s. No uncertainties are given since
these values will be used to model the response of the
system. The width of the Gaussian laser beam is set to
w = 50 ⋅ 10–4 cm. The laser power is P0 = 0.03 W, the
vacuum wavelength is λ = 488 ⋅ 10–7 cm. The number
of photons per Joule, Pc, is calculated by Pc = λ n/hc =
3.314 ⋅ 1021 J–1, where n = 1.35 is the index of refrac-
tion of water and hc is the product of Planck constant
and the speed of light. The extinction coefficient is
set to ε = 82000 L/cm mol, yielding a cross section
σ = 1000ε /0.4343 NA = 3.135 ⋅ 10–16 cm2 where NA is
the Avogadro’s number. The average absorption rate is
given by ka = σ Pc P0 /√π– width = 3.97 ⋅ 105 s–1, and the
relaxation rate is given by the inverse of the measured
lifetime of the excited state, kr = 1 /τ = 3.33 ⋅ 108 s–1.
The photodegradation rate kd is set to 170 s–1. Using
these values it is possible to calculate the parameters
that enter into Eq. 31, b = σ Pc /kr x = 3.117 ⋅ 10–6 cm2s/J
and η = kd b = 5.3 ⋅ 10–4 cm2/J.

The solution of Eq. 31 is written as

(32)

where L = 0.02. Equations (21) and (24) can be used to
calculate α = 6324 and α′ = 8462, respectively, using
Eq. (32). Note that A is a constant which is set to 1.
Figure 3 shows the resulting N(x,y) for the parameters
given above. The solution given by Eq. (32) can be
used to predict the time independent fluorescence sig-
nal by substituting it into Eq. (19). The result can be
compared to fluorescence calculated from the steady
state of the approximate kinetic Eq. (30), i.e.,

(33)

The two values of the fluorescent signal (FS) agree
to within 1 % up to 0.1 W incident power. The approx-
imate fluorescence signal given by Eq. (30) and
Eq. (33) is almost indistinguishable from the result
given by Eq. (32). It is expected that the time depend-
ent solutions will also be described correctly by the
approximate Eq. (30) which together with Eq. (19)
will be taken as the fundamental description of the
photodegradation process occurring in the focused
laser beam. Finally the steady state solution was used to
find the effective distance to use in the estimate of the
average spatial derivative given by Eq. (29). The exact
value of the average spatial derivative and the
estimated value using Eq. (29) are – 3.932 cm– 4 and
– 3.906 cm–4 respectively. Thus Eq. (29) should provide
a reasonable estimate of the average spatial
derivative even in the time dependent case.

The formal time dependent solution of Eq. (30)
can be written as ( see for example
http://tutorial.math.lamar.edu/terms.aspx)

(34)

where

(35)

For the case of low power, the approximations
bα P(t) « 1, bα′ P(t) « 1, and a laser beam power given
by P(t) = P0 + P1 cos (ω t) yield an approximate solu-
tion given by Eq. (36).

(36)
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Fig. 3. (a) The steady state solution of Eq. (31) given by Eq. (32). The physical parameters that enter into
the equation are discussed in the text. The function N(x,y) is normalized to 1. The laser beam is incident
along the normal to the x-y plane. As expected, the number of intact fluorophores decreases with increas-
ing laser beam intensity. The decreased concentration of intact fluorophores persists along the x axis due
to the imposed flow. (b) The steady state x-derivative of the function N(x,y). The derivative is finite along
the profile of the laser beam.
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Fig. 4. The correspondence between the Gaussian beam profile function – f (x,y), shown by the solid line, and the steady state function

shown by the dotted line. Both functions are normalized by their maximum values in order to emphasize functional similarities. The difference
between the two functions, magnified 50 times, is shown by the curve with two valleys. The graphs in Fig. 4a are for y value of 0 cm, and the
graphs in Fig. 4b are for y value of 0.005 cm.

( , ) ,N x y
x

∂
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Figure 5 shows the time dependent solution at three
values of the laser power for a modulation frequency of
2 Hz. The other parameters were taken to be the same
as in the case of the steady state solution. The salient
features of the time dependent solution are a transient at
t = 0 and a modulation of the intact fluorophore concen-
tration at the driving frequency of the laser. As expected
the average level of intact fluorophores decreases with
increasing average power, and the amplitude of the mod-
ulation increases with increasing modulation amplitude.
The approximate time dependent solution given by
Eq. (36) was used to obtain the fluorescence signal given
by Eq. (19). The fluorescence signal was detected by a
computer model of a lock-in amplifier consisting of an
in-phase and quadrature multipliers followed by low
pass filters. The low pass filters were implemented by
Fourier analyzing the signal, setting to zero all coeffi-
cients corresponding to non zero frequencies, and then
performing an inverse Fourier transform. The solid
circles in Fig. 6a show the ratio of the detected quadra-

ture and in-phase components at different modulation
frequencies. Most of the parameters used in Eq. (36)
were the same as in the steady state calculation except
for width = 10 µm, P0 = 50 mW, and kD = 600 s–1. The
solid line in Fig. 6a shows a fit to the calculated points of
a function given by R( f ) = (a* f )/(b + f 2 ), where f is the
modulation frequency and a and b are fit parameters.
Clearly the calculated response and R(f ) form an excel-
lent match. The solid points in Fig. 6b show experimen-
tally measured values of the ratio of quadrature and in-
phase response. The solid line in Fig 6b is a fit to the
function R(f ). The match is reasonable. Thus there is a
strong indication that the measured response can be rep-
resented by the function R(f ), and that the fit parameters
provide information about the various physical constants
of the experiment. To elucidate the dependence of the fit
parameters on the physical constants, it is best to use
analytical solutions to Eq. (30) and obtain the analytical
form of the response function R(f ). This task is carried
out in a forthcoming paper.
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Fig. 5. The time dependent numerical solutions of Eq. (30). Each curve corresponds to a different power of the laser beam. The ini-
tial value is set to 1 in all cases. After an initial transient, the average concentration of intact fluorophores oscillates with the modula-
tion frequency. The amplitude of the oscillation increases with increasing laser power.

time, t
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Fig. 6. (a) The time dependent solutions, such as shown in Fig 5, were inserted into Eq. (19) to model the
detected fluorescence signal. The fluorescence signal was inserted into a digital model of a two phase lock-
in amplifier (discussed in the text) . The ratio of the outputs of the quadrature and in-phase lock-in amplifiers
is shown by the solid circles. The solid line is a best fit to a function R(f ) = (a* f )/(b + f 2 ), where f is the
modulation frequency and a and b are parameters. (b) The solid circles show the measured response of a flow-
ing fluorescein solution in a focused laser beam with a wavelength of 488 nm. The solid line gives the best
fit to the function R(f ) given in (a).



We close this section with a brief description of the
mathematical justification for the time dependent case.
The reduction of the original system Eq. (4) and Eq. (5)
to a single partial differential equation depended on the
use of a multiple time scale perturbation expansion.
The validity of the technique used for this problem
(matched asymptotic expansions) is discussed in
Appendix A. By spatially averaging the partial differ-
ential equation we derive an ordinary differential equa-
tion for the averaged reactant concentration as well as a
simplified expression for the total fluorescence. These
simplifications are possible because the varying func-
tions (Eq. (21) and Eq. (24) respectively) are nearly
constant. The proof of this fact can be found in
Appendix B. Finally the equation for the spatial aver-
age, as in Eq. (30), involves these functions and it is
shown that replacing them by constants creates a small
error. This is shown in Appendix C.

6. Conclusion

The dynamics of the populations of excited and
unexcited fluorophores are described by a pair of first
order partial differential equations that incorporate the
kinetics of the fluorophore reaction driven by a period-
ically varying laser beam and the convective fluid flow
in a measurement apparatus. We obtain a dramatic
reduction in the mathematical complexity of the model
by taking advantage of the disparate time scales for
excitation, relaxation and degradation. This is followed
by averaging the reactant concentration over the laser
beam, which is assumed to have a Gaussian profile. A
single ordinary differential equation, Eq. (30), is
obtained describing the evolution of the spatially aver-
aged reactant concentration. The measured fluorescent
signal, Eq. (19), is expressed in terms of the spatially
averaged reactant concentrations. These equations pro-
vide a prediction of the response whenever the photo-
chemical reaction degrades the fluorophores flowing
past the laser beam.

Mathematical justification for the approximations
used in the course of the derivation is given and some
comparisons to the time independent case are
described. The predicted frequency response (based on
the time varying solution of Eq. (30)) is used to derive
a functional form for the ratio of the in-phase and quad-
rature parts of the fluorescent signal. This same form
provides a good fit for experimental data. The fit and
the connection with physical parameters of the experi-
ment will be discussed in a forthcoming paper.

7. APPENDIX A

This appendix addresses the issue of the validity of
the perturbation expansion of N0 and N1 for large times
as stated in Eq. (6) and Eq. (7). The discussion is based
on the standard observation that the solutions of Eq. (6)
and Eq. (7) can be expressed in terms of the solution of
a parameterized system of ordinary differential equa-
tions. Here a new time variable s where t = s + θ is
introduced. The relaxation rate is denoted by kr x .

(A1)

See for example the book Aris and Amundson [9],
which contains many worked examples from the chem-
istry literature as well as a general discussion of the
transformation of partial differential equations such as
Eq. (6) . This is known as the “method of characteris-
tics.” The variable θ ≥ 0 parameterizes the family of
solution curves that satisfy the differential equations in
s and the initial conditions at s = 0 displayed on the last
line. The original time variable is t = θ + s and this
leads to the interpretation of θ as the time a particular
family of particles entered the apparatus (at x = – L

/2)
while s is the amount of time elapsed since entry. If we
are following the set of particles that entered the appa-
ratus at the beginning of the observation period, i.e., at
θ = 0, then s = t. Here we will assume that θ ≥ – L

/v . For
each θ, a perturbation method will be used to construct
solutions of Eq. (A1) based on the representation,

(A2)
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where N
∧

i i = 0,1 refers to the large time component of
N

∧

i and η i is the small time or inner correction of the
large time solution. A similar decomposition holds for
x. The inner correction governs the behavior of the
solution of A1 near the time of entry s = 0 and since we
expect a rapid initial transient it is written in terms of a
fast time scale τ = S/ε. The large time components have
perturbation expansions

(A3)

If we replace N0 , N1 , x by their respective large time
components in Eq. (A1) then,

(A4)

On setting ε = 0, one gets,

(A5)

the analogue of the quasi-equilibrium condition
expressed in Eq. (9). Similarly when coefficients of ε
on the left hand side of A4 are equated to those on the
right, there results

(A6)

Here we suppressed some of the arguments for ease
of reading. Comparing this with Eq. (11) we see
that for suitable initial conditions on X0 , N

∧

00 , and N
∧

10 ,
N(y, θ, s) = N

∧

00 (y, θ, s) + N
∧

10 (y, θ, s)) is a solution of
Eq. (13) expressed in terms of the solution of the para-
meterized ordinary differential equation.

The appropriate initial conditions can be obtained by
examining the behavior of the inner corrections.
Equations for them are obtained by returning to A1 and
replacing the functions N0, N1, and x and by the expres-
sions on the right hand side of A2. We seek representa-
tions of the corrections in terms of the following pertur-
bation expansion:

(A7)

We will suppress the dependence on y in what
follows. After performing the previously described
replacement involving A1and A2, and then using the
right hand sides of A4, the desired equations are
obtained. In them, the fast time variable is introduced
by the change of variable, s = ετ. We will write down
the resulting equations just for η1 and ξ,

(A8)

The equation for η0 is quite similar to the one for η1.
The initial conditions of the original problem A1 can

be used as the initial conditions for η0 ,η1 , and ξ since
these functions approximate the initial part of the solu-
tion of A1. Thus η0 (0) = N 0, η0 (0) = 0, ξ (0) = –L/2.
Equations for the leading terms in the perturbation
expansions in (A7) are then obtained by setting ε = 0 in
(A8). There results,

Volume 112, Number 4, July-August 2007
Journal of Research of the National Institute of Standards and Technology

204

2
0 00 01

2
1 10 11

2
0 1

ˆ ˆ ˆ( , , , ) ( , , ) ( , , ) ( )
ˆ ˆ ˆ( , , , ) ( , , ) ( , , ) ( )

ˆ     ( , , ) ( , ) ( , ) ( ).

N y s N y s N y s O

N y s N y s N y s O

X s X s X s O

θ ε θ ε θ ε

θ ε θ ε θ ε

θ ε θ ε θ ε

= + +

= + +

= + +

0
0 1

1
0 1 1

ˆ
ˆ ˆ ˆ    ( , , )

ˆ
ˆ ˆ ˆ ˆ    ( , , )      

     

a rx

a rx d

dN
k X y s N k N

ds
dN k X y s N k N k N
ds

ε θ

ε θ ε

= − + +

= + − −

ˆ
  v .                                                       dX

ds
=

0
10 00

0

ˆ( ( , ), , )ˆ ˆ   ( , , ) ( , , )

   ( , ) v    

a

rx

k X s y s
N y s N y s

k
dX

s
ds

θ θ
θ θ

θ

+
=

=

00
11 0 01

0
1 00

ˆ
ˆ ˆ ˆ( ( ), , )

ˆ( ( ), , ) ˆ ˆ
ˆ

rx a

a

dN k N k X s y s N
ds

k X s y s X N
X

θ

θ

= − +

 ∂ +
−   ∂ 

10
0 01

0
11 10 1 00

ˆ
ˆ ˆ( ( ), , )

ˆ( ( ), , )ˆ ˆ ˆ ˆ
ˆ

a

a
rx d

dN k X s y s N
ds

k X s y s
k N k N X N

X

θ

θ

= +

 ∂ +
− − +   ∂ 

1 0.dX
ds

=

0

0

0

( ( ), , )( , , ) ( , , ) 0
( ( ), , )

( )
                        v .

d a

rx a

k k X s y sdN y s N y s
ds k k X s y s

dX s
ds

θθ θ
θ
+

+ =
+ +

=

2
0 00 01

2
1 10 11

2
0 1

( , , ) ( , ) ( , ) ( )

( , , ) ( , ) ( , ) ( )

( , , ) ( , ) ( , ) ( ) .

O

O

O

η τ ε θ η τ θ εη τ θ ε
η τ ε θ η τ θ εη τ θ ε
ξ τ ε θ ξ τ θ εξ τ θ ε

= + +

= + +

= + +

1
0 0

0

1 1 1

1 1 1 1

ˆ( ( ) ( ), )[ ( ) ( )]

ˆ      ( ( ) ( ), ) ( )

      [ ( ) ( )] ( )
      [ ( ) ( )] [ ( ) ( )]

a

a

rx rx

d d

d k X N
d

k X N

k N k N
k N k N

η ετ εξ τ θ ετ ετ η τ
τ

ετ εξ τ θ ετ ετ

ετ η τ ετ
ε ετ η τ ε ετ η τ

= + + +

− + +

− + +
− + + +

0 .d
d

ξ
τ

=



(A9)

The initial value X0 (0) is a constant that will be deter-
mined shortly. Adding the first two equations in

terms in the expansion of the inner correction of
N0 + N1 is a constant. The next step in determining the
initial conditions for the large time solution (which in
general will not be the initial conditions for the original
problem) is to match the large time or outer solution
with the inner correction in an overlapping region of
the s axis. This region is defined as the outer reaches of
the initial interval where the inner correction is valid
and the beginning of the region of validity of the large
time solution. To do this we calculate the limit of the
inner correction as τ → ∞ by fixing s and letting ε → 0.
The limit must match the limit of the large time solu-
tion as s = ετ → 0 where τ is fixed and ε → 0. For our
problem this is written as,

(A10)

In this way, we determine the initial condition for the
leading order large time solution N(y,θ,s) and thereby
determine the boundary condition. Indeed from the
second equation in A10, the initial condition for the x
position to leading order is X0 (0) = –L/2. Given the large
time solution and inner corrections formally construct-
ed here, we can for each θ ≥ 0 construct a solution of
A1 that is uniformly valid throughout the interval
0 ≤ s ≤ T/ε for each fixed ε > 0 Standard theorems in
the theory of singular perturbations show that the oper-
ations used here to obtain it are rigorously justified. The
key hypothesis that must be satisfied in our problem is
that the inner solution must approach a finite limit
exponentially. Recall that η10 = N 0 – η00. Substituting
this relation into the first equation in A9 results in the
following equation for η00.

(A11)

Solving this constant coefficient equation shows that
η00 and thus η10 has the required behavior as τ → ∞.
Note that equation (A1) is not a standard singular per-
turbation problem because the Jacobian associated with
the reduced problem, i.e., the problem obtained from
setting ε = 0 in the first two equations of (A1), is singu-
lar. Validity of the singular perturbation method in this
“critical” case was proved by Vasil’eva and Butuzov
[10] and was treated analytically and numerically by
O’Malley and Flaherty [11]. These results require that
the Jacobian have a constant deficient rank k for all s
and its non-zero eigenvalues have negative real parts. A
discussion of these problems can be found in O’Malley
[12] and Smith [13].

A complete solution of (A1) uniformly valid in an
interval comes from combining the large time and inner
correction and then subtracting the common value they
share in the overlapping region. If N(y,θ ,s) is the total
fluorophore population to leading order we have,

(A12)

when s is large

(A13)

Similar reasoning shows that

(A14)

where δ (s) and β (s) are exponentially small in s and
O(ε) holds uniformly in the interval 0 ≤ s ≤ T/ε and
where X0 (s) = –L/2 + νs. On adding Eqs. (A13) and
(A14) we see that at large times, the total fluorophore
population is dominated by N(y,θ,s). It is in this sense
that we can justify the statements in Sec. 2.
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8. APPENDIX B

the parameter η is small. To obtain an expression
for Ψ we will first derive an equation for Φ from

Eq. (20), by applying the operator
One finds Φ that must satisfy

(B1)

We assume that all of the limiting averaging opera-
tions used to derive B1 are valid. This will be the case
for example when the integrands are quasi-periodic
[14] – a reasonable assumption for this problem. The
boundary condition at x = –L/2 , comes from applying the

Substituting Eq. (B1) into Eq. (20) will lead to an
equation for Ψ.

(B2)

The conditions for Ψ at x = – L/2 , are obtained from
the conditions for Φ and N. Note the discontinuity in
the value of Ψ at t = 0 as particles are pumped into
the vessel. It propagates to larger values of x for t > 0 as
a shock. However since here we will assume that

will have passed and we have continuity in Ψ. The

(B3)

respect to x is written,

(B4)

where for easier reading we have suppressed some of
the function arguments. The functions Ht and g t are
derivatives

(B5)

From Eq. (B2) it can be seen that g t = – Ht |ξ = x′ Φ(r). 

show that g, H, Hτ are all small. Indeed from Eq. (B1)
we have Φ(r) ≤ N 0 so | g t | will be small if | H τ | is.
Using the fact that P(r,t) = (P0 + ∆(t)) f (r) where
∆(t) = P1cos(ωt) we find that

(B6)

We can perform a similar analysis of the remaining
terms in Eq. (B3) and Eq. (B4). Using the notation O(ρ)
to denote a term whose absolute value remains bound-
ed by a multiple of ρ as ρ → 0, the results are summa-
rized as
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(B7)

These relations hold uniformly for all t ≥ 0 since all
the time varying functions in (B7) are periodic. Thus by
considering η small enough we can conclude that for
all t ≥ 0

(B8)

Here we used the relation N(r,t) = Φ(r) + Ψ(r,t).
Finally we turn to a discussion of the replacement of

the functions α– (t) and α– ′(t) in Eq. (22), Eq. (24), and
Eq. (25) by constants α and α ′. We use the fact that the
constants are

(B9)
to write α– (t) = α + a (t) where

(B10)

Applying Eq. (B8) for Ψ to the numerator of (B10) we
see that

(B11)

In an analogous fashion the function
where

(B12)

therefore implies the equation
(B13)

Equations (B11) and (B13) hold uniformly for all t ≥ 0. 
Thus the effect of replacing α– (t) by the constant α is
to produce an error of size O(η) by Eq. (B11) and
Eq. (B13). This argument also justifies the replacement
in Eq. (19).

9. APPENDIX C

In Sec. 3 an equation Eq. (26) for the evolution of the
spatially averaged reactant concentration is derived
from Eq. (20). To properly assess the effect of replac-
ing the functions α– (t) and α– ′(t) respectively with con-
stants α and α ′ in the derivation of Eq. (26) it must first
be recognized that the time derivative of N(r,t) is small
since it is O(η). This can be seen from the definition of
Ψ in Appendix B and Eqs. (B2), (B7), and (B8). We
must therefore show that the neglected terms are of
smaller asymptotic order. Before the replacement, the
left hand side of Eq. (20) after multiplication by f (x,y)
and integration is actually Eq. (22). Using the notations
of Appendix B, Eq. (22) is rewritten,

Eq. (B5), Eq. (B6), and Eq. (B10)). Thus this term can
be dropped when either P1 or b is small. Note that if the
constant α is large, (i.e., α >> 1) the following terms are
retained because they are going to be of larger order
than the terms that are dropped.
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and (B11) and can therefore be neglected. The term



The first expression comes from the left hand side of
C1 and it is retained, and the second expression comes
from the right hand side of Eq. (20) after multiplication
and integration, i.e., Eq. (25). Therefore let us write
the right hand side of Eq. (20) after multiplication by
f (x,y) and integration as,

(C2)

We observe that

because of Eq. (B11) and Eq. (B13). Again taking b small
means that both these terms can be dropped. Moreover

retained. Thus, the remaining terms in Eq. (C1) form
the left hand side of Eq. (26) while the remaining terms
in Eq. (C2) become the right hand side of Eq. (26).
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