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Summary. Micromagnetics is based on the one hand on a continuum approxima-
tion of exchange interactions, including boundary conditions, on the other hand on
Maxwell equations in the non-propagative (static) limit for the evaluation of the
demagnetizing field. The micromagnetic energy is most often restricted to the sum
of the exchange, demagnetizing or (self-)magnetostatic, Zeeman and anisotropy en-
ergies. When supplemented with a time evolution equation, including field induced
magnetization precession, damping and possibly additional torque sources, micro-
magnetics allows for a precise description of magnetization distributions within finite
bodies both in space and time. Analytical solutions are, however, rarely available.
Numerical micromagnetics enables the exploration of complexity in small size mag-
netic bodies. Finite difference methods are here applied to numerical micromag-
netics in two variants for the description of both exchange interactions/boundary
conditions and demagnetizing field evaluation. Accuracy in the time domain is also
discussed and a simple tool provided in order to monitor time integration accuracy.
A specific example involving large angle precession, domain wall motion as well as
vortex/antivortex creation and annihilation allows for a fine comparison between
two discretization schemes with as a net result, the necessity for mesh sizes well
below the exchange length in order to reach adequate convergence.

The first two-dimensional numerical simulation of a domain wall structure
was published in 1969. In his celebrated work, A. E. LaBonte [1], showed that
the structure of a domain wall in an infinite magnetically soft thin film with
thickness in the 100 nm range was neither Bloch- nor Néel-type, but somehow
a mixture of both. Some 35 years later, numerical micromagnetics has become
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ubiquitous and rather unavoidable a tool in the study of magnetic nanostruc-
tures. Rather unexpectedly, LaBonte’s pioneering work remains modern due
to the immense progress made in the elaboration and observation of magnetic
nanostructures. Suffice it to say that three-dimensional numerical micromag-
netics unravels much hidden complexity and yet firm underlying logics in the
wall structures and magnetization distribution within faceted Iron nanocrys-
tals, in agreement with the most demanding experiments [2]. The present
chapter deals with numerical micromagnetics using finite difference methods
and is organized as follows. Section 1 captures the essentials of micromagnet-
ics, a continuum theory of ferro- or ferrimagnetic bodies, and thus provides
the necessary background for the understanding of the following sections. Sec-
tions 2 and 3 are devoted to numerical implementations of the micromagnetic
continuum theory with primacy given to the field acting on the magnetization
and energy, respectively. Section 4 addresses the issue of accuracy in the time
domain. Lastly, based on a single but demanding example, a brief comparison
between the two approaches is attempted in Section 5.

1 Background

If solely referring to the number of lattice sites in a micron-size magnetic
element with thickness in the few nm range, it becomes immediately clear
that fully ab-initio methods aimed at defining the local value of the magnetic
moment and its direction are out of reach. Micromagnetics is a continuum
theory of ferro or ferrimagnetic materials, which allows for the computation
of magnetization distributions in samples of arbitrary shape [3, 5, 6]. Its ba-
sic assumptions consist in considering the magnetization modulus to remain
constant (M = Msm, m · m = 1) and all vector quantities (the magnetiza-
tion M, the exchange HExch and demagnetizing fields Hd, especially) to vary
slowly at the atomic scale. The components of m are the direction cosines of
the magnetization M. Micromagnetics is based on the one hand on the notion
of an effective field acting on the magnetization [3, 4, 5, 6, 7], on the other
hand on an equation depicting magnetization dynamics known as the Landau-
Lifshitz or Landau-Lifshitz-Gilbert (LLG) equation, depending on the exact
formulation of damping. According to Brown’s theory [3], the effective field is
the functional derivative of the energy density ε, w.r.t. magnetization:

Heff = − 1

µ0Ms

δε

δm
. (1)

As shown earlier in this volume [8], the effective field usually contains contri-
butions stemming from the exchange, anisotropy, applied field or Zeeman and
demagnetizing energy densities, namely

Heff = − 1

µ0Ms

δε

δm
=

2A

µ0Ms
∇2m − 1

µ0Ms

δεK
δm

+ Happ + Hd , (2)
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corresponding to the following micromagnetic energy:

E =

∫

V

[

A (∇m)
2

+ εk − µ0Ms (Happ · m) − 1

2
µ0Ms (Hd ·m)

]

d3r ,

(3)

where, A is the exchange constant (units J/m), ǫK the anisotropy energy
density (units J/m3), Happ and Hd the applied and demagnetizing field (units
A/m), respectively. As noted as early as 1949 by C. Kittel [9], the exchange
energy may, by combining the constraint m2 = 1 with the vector relation
|∇f |2 = ∇ · (f∇f) − f∇2f , be expressed in either of the following forms:

Eexch =

∫

V

[

A (∇m)
2
]

d3r = −
∫

V

[

Am ·
(

∂2m

∂x2
+
∂2m

∂y2
+
∂2m

∂z2

)]

d3r .

(4)

Additional energy terms may be included in the energy, e.g. terms arising
from magnetostriction, or longer range exchange coupling across nonmagnetic
spacer layers in spin valves [10, 11]; such terms will not be considered below.

When considering an energy density functional solely implying exchange
and magnetostatic interactions (the ideally soft magnetic material limit), di-
mensional arguments soon lead to the definition of a characteristic length
known as the (magnetostatic-) exchange length

Λ =

√

2A

µ0M2
s

, (5)

a quantity labeled ls in [8]. The exchange length rarely exceeds a few nanome-
ters in 3d ferromagnetic materials or their alloys, thereby imposing severe
constraints on the mesh size in numerical simulations.

The effective field (see Eq.(2)) exerts a torque on the magnetization that
is proportional to M × H. In full analogy with classical mechanics, the rate
of change of the magnetization -angular momentum- is, in the absence of
damping, equal to the torque, namely

d

dt
m(t) = −γ0 [m(t) × Heff(t)] . (6)

It follows from (6) that as long as the torque is zero, the angular momentum

is conserved. For a free electron, γ0 is equal to ≈ 2.21×105 (A/m)
−1

s−1. Still
in the absence of damping, magnetization motion reduces to a precession of
the magnetization around the effective field, with frequency:

ω0 = γ0Heff , (7)

i.e. ≈ 28 MHz/mT in units of µ0Heff for a free electron spin.
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Gilbert damping [12] is most simply introduced if adding to the effective
field an Ohmic type dissipation term, namely

Heff = Heff − α
1

γ0Ms

dM

dt
, (8)

where, α is the (dimensionless) Gilbert damping parameter. Introducing (8)
into (6) leads to the so-called LLG equation,

dm

dt
= −γ0 (m × Heff) + α

[

m × dm

dt

]

, (9)

or its numerically more tractable and mathematically equivalent form

(

1 + α2
) dm

dt
= −γ0 [m × Heff + α [m × (m × Heff)]] , (10)

Given a magnetization distribution m(r, t) = M(r, t)/Ms, the LLG equa-
tion specifies the magnetization distribution at time t+dt provided due respect
of boundary conditions is maintained. Alternatively, if a sole magnetization
distribution at equilibrium is sought for, the only condition that needs to be
satisfied reads:

m × Heff = 0 (11)

Because the exchange energy involves the square of the gradient of the magne-
tization components, its variation gives rise not only to the exchange contri-
bution to the effective field in (2) but also to boundary conditions. Boundary
conditions (BC’s) that arise from the sole symmetry breaking of exchange
interactions at surfaces are referred to as “free” BC’s. Their mathematical
expression in the continuum limit reads:

A

(

m × ∂m

∂n

)

= 0 , (12)

which is equivalent to the Neumann boundary condition

∂m

∂n
= 0 (13)

since m2 = 1. In the presence of surface anisotropy, energy density

εKS
= Ks

(

1 − (n · m)
2
)

, (14)

and interlayer exchange, energy density

εJ = J1 (1 − m · m′) + J2

(

1 − (m · m′)
2
)
)

, (15)

where m′ defines the exchange-bias direction at the interface with the ferro-
or ferrimagnetic body, boundary conditions may be expressed [13] either as
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2A

(

m × ∂m

∂n

)

− 2KS (m · n) (m × n)

− J1 (m × m′) − 2J2 (m − m′) (m × m′) = 0 , (16)

or,

∂m

∂n
=

KS

A
(m · n) (n− (m · n)m)

−
(

J1

2A
+

J2

A
(m · m′)

)

((m ·m′)m − m′) . (17)

See also references [3, 14, 15].
Altogether, as long as the exchange parameter A is independent of position

r, a magnetization continuum owing to micromagnetics is at zero temperature
governed by the set of equations:

m = m (r, t)

Heff = Heff(r, t)

Hd = Hd(r, t)

Heff =
2A

µ0Ms
∇2m + Happ + Hd − 1

µ0Ms

δεk
δm

∂m

∂n
=

KS

A
(m · n) [n− (m · n)m] −

[

J1

2A
+

J2

A
(m · m′)

]

[(m · m′)m − m′] ,

(18)

augmented with the LLG equation of magnetization motion (9) or the equi-
librium condition (11).

In case the exchange constant would be position dependent, an additional
term would appear in the exchange components of the effective field. In the
following, the exchange constant is assumed to remain constant, i.e. a sole
function of the ferro- or ferrimagnetic material composition. It has also been
implicitly assumed that the system under study was free of surface-specific
damping. On the other hand, the saturation magnetization, the anisotropy as
well as the damping constant may be modulated according to position without
introducing modifications in the set of equations (18).

This chapter considers the finite difference approach to solving these equa-
tions, where the magnetization is sampled on a uniform rectangular mesh at
points (x0+i∆x, y0+j∆y , z0+k∆z). The computational cell is centered about
the sample point with dimensions ∆x ×∆y ×∆z. The main advantages of the
finite difference approach are ease of implementation, simplicity of meshing,
efficient evaluation of the demagnetizing energy (via, e.g., Fast Fourier Trans-
form (FFT) methods), and the accessibility of higher order methods. A main
disadvantage of this approach is that sampling curved boundaries with a rect-
angular mesh results in a “staircase” type approximation to the geometry,
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which can produce significant errors in the computation. Corrections for this
artifact are possible [16, 17, 18], but are not discussed in the present text. The
next two sections present two approaches to the problem of discretizing the
continuous equations discussed above. The first, Sec. 2, treats (2) as funda-
mental, and focuses primarily on computing an accurate value of Heff directly
from m. We call this the field-based approach. The alternative energy-based
approach, presented in Sec. 3, is directed first at computing the micromag-
netic energy (3). The effective field Heff , which is needed in the LLG equation
(9), is computed from the energy via the discrete analog of (1). The Heff

computed in this manner is the field value averaged across the corresponding
discretization cell. Results using the two methods on a sample problem are
compared in Sec. 5.

2 Finite difference micromagnetics: field-based approach

As stated above, in a field-based approach [13, 19, 20], one is seeking a nu-
merical solution to the LLG equation (18) based on a direct evaluation of the
effective field components under the constraint of problem specific boundary
conditions. In this approach, the energy (density) plays a role only to the
extent that the effective field is the gradient of the former.

Looking at (18) immediately reveals that a number of derivatives will re-
quire evaluation, namely first and second-order derivatives of the magnetiza-
tion components in order to define the divergence of the magnetization (∇·m)
and the components of the exchange field (∇2m), respectively. The magne-
tization components along boundaries also need to be evaluated in order to
define surface charges (m · n) that do contribute to the demagnetizing field.
Boundary conditions need to be incorporated in the evaluation of the effec-
tive field without loss of accuracy. Finally, solution of the LLG equation does
require both stability and accuracy. This paragraph is organized as follows:
in a first step we describe the various steps to be taken in order to provide
a numerical estimate of the demagnetizing field. In the next step, starting
with an evaluation of the exchange field in the bulk, it is first shown how
boundary conditions may be included without too heavy a cost in accuracy,
at least for so-called free boundary conditions. The third step explains how
general boundary conditions may be introduced. Because the problem of an
accurate solution of the LLG equation is common to both the field-based and
energy-based finite difference methods, it is treated separately (see section 3)

2.1 Demagnetizing field evaluation

For a magnetization continuum, the demagnetizing field, in full similarity to
electrostatics, arises from volume and surface charges

λV = −µ0Ms (∇ ·m) , in the volume ,

σS = +µ0Ms (m · n) , at free surfaces ,
(19)
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and derives from the scalar potential expressed as follows

Hd(r) = −∇Φd(r) ,

Φd(r) =
1

4πµ0

[
∫

V

λV(r′)

|r − r′| d
3r′ +

∫

S

σS(r′)

|r− r′| d
2r′

]

.
(20)

Figure 1 illustrates the geometrical relations between vectors entering (20).
It follows from 19 and 20 that the demagnetizing field may be directly

expressed as

Hd(r) =
1

4πµ0

[

∫

V

(r − r′)λV(r′)

|r− r′|3
d3r′ +

∫

S

(r − r′)σS(r′)

|r− r′|3
d2r′

]

. (21)

To the existence of a demagnetizing field corresponds a magnetostatic
energy density functional

εdemag = −1

2
µ0 (Hd · M) = −1

2
µ0Ms (Hd ·m) , (22)

where the 1/2 prefactor stems from the fact that M is the source of Hd.

V

O

P'

P

d3r'

M(r')

S n

d2r'

r

r'

r-r'

M(r)

Hd (r)

Ha

Fig. 1. Geometry attached to (20).

Four remarks ought to be made here. First, charges must sum up to zero
because of the fundamentally dipolar nature of magnetism. Second, contrary
to the Zeeman contribution to the total energy, the magnetostatic energy,
obtained through summation over the volume and external surface of the
element of the energy density (22), is necessarily positive or nil. It follows
that, in a soft magnetic material, where the magnetostatic energy becomes the
leading term, energy may only be minimized by the pole avoidance principle.
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This means that, whenever possible, the magnetization will tend to be parallel
to external boundaries and adopt configurations satisfying ∇ · m = 0 in
the volume. Clearly, this may only be achieved at the expense of exchange
energy as well as anisotropy energy when present. Third, because of the long
range decay of magnetostatic interactions, large errors are inevitably made
when truncation of the integrals is attempted. Last, but not least, one easily
recognizes in the integrals of (20) a convolution product. Therefore, from a
numerical point of view, much of the computation load may be relieved via
an extensive use of Fast Fourier Transforms (FFT’s).

Decomposing the magnetic volume into cells (index i′,j′,k′) with constant
magnetization divergence and the outer surface into tiles (index l′,m′,n′) with
constant charge density (see Fig 2) immediately leads to an easy and yet
accurate numerical estimate of the demagnetizing field at location r. Eq. (21)
then reduces to a finite sum, namely,

Hd(r) =
1

4πµ0

∑

i′,j′,k′

[

λV(i′, j′, k′)

∫

V ′(i′,j′,k′)

(r − r′)

|r − r′|3
d3r′

]

+
1

4πµ0

∑

l′,m′,n′

[

σS(l′,m′, n′)

∫

S′(l′,m′,n′)

(r − r′)

|r − r′|3
d2r′

]

, (23)

where r′ now spans either the volume of cell i′, j′, k′ or the area of tile
l′,m′, n′. The integrals in Eq. (23) therefore reduce to purely geometrical co-
efficients that only need to be computed once. Eq. (23) may thus be rewritten
as:

Hd(r) =
1

4πµ0

∑

i′,j′,k′

λV(i′, j′, k′)CV(r, i′, j′, k′)

+
1

4πµ0

∑

l′,m′,n′

σS(l′,m′, n′)CS(r, l′,m′, n′) . (24)

Note that such a decomposition is achieved if assuming the magnetization
to be a trilinear function of the coordinates x,y,z within the magnetic volume
whilst being constant over the area of a tile. All interaction coefficients CV and

CS are definite integrals with kernels x−x′

|r−r
′|3 , y−y′

|r−r
′|3 , z−z′

|r−r
′|3 for the x, y and z

demagnetizing field components, respectively. For instance, the x component
of the demagnetizing field arising from a volume cell is given by Eq. (24) with

Cx
V =

x′

2
∫

x′

1

y′

2
∫

y′

1

z′

2
∫

z′1

x− x′

|r − r′|3
dx′dy′dz′ . (25)
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O

P

r
r'r'

(i',j',k')

(l',m',n')

x
yz

Fig. 2. The demagnetizing field at point P(r) is built-up from contributions arising
from volume cells with constant magnetization divergence and surface tiles with
constant charge density. In this drawing, the physical frontier consists in the top
and bottom planes, and the continuous rim boundary (in black). The numerical rim
boundary is stair-case like (in red).

Similarly, the z component of the demagnetizing field arising from a tile
parallel to the xy plane is given by Eq. (24) with

Cz
Sxy =

x′

2
∫

x′

1

y′

2
∫

y′

1

z − z′

|r − r′|3
dx′dy′ . (26)

For parallepipedic volume cells and rectangular surface tiles, all interac-
tion coefficients may be evaluated with the help of the integrals listed in Ap-
pendix A. H111 integrals apply to constant divergence volume cells whereas
H110, H011 and H101 integrals apply to tiles parallel to the xy, yz and xz
planes, respectively.

Lastly, for both a regular meshing and a regular sampling of the field (vol-
ume cells centers or apices seem natural choices), translational invariance of
the interaction coefficients allows for the use of Fast Fourier Transforms in
the evaluation of the demagnetizing field [21, 22, 23, 24, 25]. FFT’s consid-
erably reduce the computational load in numerical micromagnetics. Because,
however, the magnetization distribution is not usually periodic, zero-padding
techniques need to be implemented [26]. Further discussion on the use of FFT’s
in numerical micromagnetics is deferred to section 3.4. We note in closing this
section that a direct evaluation of the field at the apices of the volume cells
leads to weak divergences of the demagnetizing field [27]. It has been shown
both numerically [28] and analytically [29] that the log-type divergence of the
demagnetizing field along the edges and at the apices of a uniformly magne-
tized parallelepiped are balanced via tiny rotations of the magnetization close
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to boundaries that take place over distances smaller than the exchange length.
Methods relying on the direct evaluation of the demagnetizing field therefore
practically restrict the choice of the field sampling points to cells centers.

2.2 Derivatives evaluation

Consider a regular, differentiable one-dimensional scalar function f(x) sam-
pled at regular intervals, a (see Fig. 3-a). Second order Taylor expansion
readily yields expressions for the first and second central derivatives that are

widely used in numerics, namely df
dx = fi+1−fi−1

2a and d2f
dx2 = fi+1−2fi+fi−1

a2 ,
respectively.

Data 1

x

i i+1 i+2
i-1i-2

f(x)

a

Data 1

i i+1
i-1i-2

f(x)

x

Data 1

ii-1i-2

xRf(x)

x

a) b)

c)
Fig. 3. Mesh geometry (a) Function of the sole scalar x. (b) Mesh points second to
closest to boundary. (c) Mesh points closest to boundary.

However, the numerical derivation of the structure of a simple Bloch wall
using such expressions soon reveals that second order Taylor expansion leads
to restricted accuracy. Fourth order expansion has actually been found to
prove much superior [30, 31, 24, 13]. Taylor expansion of function f(x) around
x = xi reads :

f(x) =

∞
∑

k=0

(x− xi)
k

k!
f (k)(xi) =

∞
∑

k=0

(x− xi)
k

k!
f

(k)
i , (27)
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where, f (k)(x) = f(x) if k = 0 and dkf
dxk otherwise. Application of (27) to

nearest and next nearest neighbors to grid point i and truncation to the 4th

order yields a set of four equations, namely











−2a (−2a)2

2!
(−2a)3

3!
(−2a)4

4!

−a (−a)2

2!
(−a)3

3!
(−a)4

4!

+a (+a)2

2!
(+a)3

3!
(+a)4

4!

+2a (+2a)2

2!
(+2a)3

3!
(+2a)4

4!





















f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i











=









fi−2 − fi
fi−1 − fi
fi+1 − fi
fi+2 − fi









(28)

The set of linear equations (28) provide numerical estimates for the first, sec-
ond, third, and fourth derivatives of f at grid point i. In particular, the general
form of the first and second derivative based on second nearest neighbors ex-
pansion reads

f
(1)
i =

fi−2 − 8fi−1 + 8fi+1 − fi+2

12a
,

f
(2)
i =

−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12a2
,

(29)

respectively.

2.3 Boundary conditions implementation: “free” boundary
conditions

Expressions above cease to be valid when the grid point becomes closest or
next-to-closest to the boundary of the magnetic volume. Specific, accuracy
preserving, expansions need to be worked out. The general principle in the
present approach is to replace equations that are missing because of the lack
of grid point(s) outside the magnetic volume by equations including explicit
reference to boundary conditions, Eq. (17).

Consider first a point second to closest to boundary (see Fig. 3-b). Grid
point i + 2 is missing for this particular geometry. However, defining xR as
the right boundary coordinate along the x axis, the last equation in (28) may,
assuming f (1)(xR) to be known along the boundary, be replaced by:

f (1)(xR) = f
(1)
i +(xR−xi)f

(2)
i +

1

2!
(xR−xi)

2f
(3)
i +

1

3!
(xR−xi)

3f
(4)
i , (30)

a result stemming directly from the derivation of Taylor’s expansion (27),
namely

f (1)(x) =
∞
∑

k=1

(x− xi)
k−1

(k − 1)!
f (k)(xi) . (31)

For the geometry depicted in Fig. 3-b, xR − xi = 3a/2 and (28) becomes :
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−2a (−2a)2

2!
(−2a)3

3!
(−2a)4

4!

−a (−a)2

2!
(−a)3

3!
(−a)4

4!

+a (+a)2

2!
(+a)3

3!
(+a)4

4!

1
(

+3a
2

) (+3a/2)2

2!
(+3a/2)3

3!





















f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i











=









fi−2 − fi
fi−1 − fi
fi+1 − fi
f (1)(xR)









(32)

Similarly, for a point closest to boundary (see Fig. 3-c), grid points i+ 1 and
i+ 2 are missing. The two first equations of (28) need now to be replaced by
a single equation, whilst the two remaining equations need to be truncated to
the third order. For the geometry illustrated in Fig. 3-c, the minimal set of
equations now reads







−2a (−2a)2

2!
(−2a)3

3!

−a (−a)2

2!
(−a)3

3!

1
(

+a
2

) (+a/2)2

2!













f
(1)
i

f
(2)
i

f
(3)
i






=





fi−2 − fi
fi−1 − fi
f (1)(xR)



 , (33)

where, xR − xi = a/2. In both cases, first and second derivatives are fully
determined provided f (1)(xR) be known along the boundary. The implemen-
tation of BC’s is, however, not unique. For instance, Eq. 33 could include
four internal mesh points instead of only three. Donahue and Porter [32] have
evaluated the accuracy of several numerical schemes allowing for the evalu-
ation of the exchange energy (4) and the enclosed derivatives. Their general
conclusion is that the so-called “12-neighbors” scheme, i.e. 4 neighbors along
each axis of the Euclidian space, is accuracy preserving up to order 4, at least
for “free” BC’s. The derivation above belongs to the “12-neighbors” class.

Eqs. 32 or 33 may be applied mutatis mutandis to the left boundary
x = xL. Altogether, Eq. 28 and Eqs. akin to 32 and 33 fully specify the
1st, 2nd and 3rd derivatives of function f(x) within the interval ]xL, xR[,
provided boundary values of the first derivatives vs x be known. For “free”

BC’s, f (1)(xL) = f (1)(xR) ≡ 0, or more generally,
∂mxS

∂x =
∂myS

∂x =
∂mzS

∂x = 0
for a flat boundary perpendicular to x located at position xS. Generalization
to three dimensions in the Euclidian space proves straightforward. Even for
“free” BC’s, however, an evaluation of the relevant magnetization components
along boundaries is still required in order to compute the contribution of sur-
face charges to the demagnetizing field. Referring to Fig. 3-c, Taylor expansion
(Eq. (27)) up to e.g. the third order yields

f(xR) = fi + (xR − xi)f
(1)
i +

1

2!
(xR − xi)

2f
(2)
i +

1

3!
(xR − xi)

3f
(3)
i , (34)

where i here is the index of the mesh point closest to boundary. Assum-
ing a constant charge density for the surface element centered on xR, the
surface charge +µ0Ms (m · n) is simply +µ0MsmxR

with mx(x) = f(x) in
Eq. 34. Here also, generalization to three dimensions in the Euclidian space
is straightforward.
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Summarizing at this point, knowing the distribution m(r) inside a mag-
netic volume bounded by flat boundaries, all necessary derivatives of the mag-
netization components as well as estimates of surface charges are available
through Taylor expansion and explicit use of BC’s reading ∂m

∂n
= 0 in the case

of “free” BC’s. High accuracy (up to O(h4)) may be preserved in this process.
As an example, the magnetization distribution within a soft and thin rect-

angular platelet is displayed in Fig. 4. The initial state was uniformly mag-
netized along the diagonal of the rectangle. At remanence, the magnetization
becomes essentially uniform and parallel to the element’s long edges, thus
avoiding both volume and surface charges along the most part of the latter.
Close to the extremities, however, the magnetization distribution is bending
in such a way as to allow for a decrease of surface charges along the element
short edges at the expense of exchange and volume magnetostatic energy. Ac-
tually, in sub-micron size thin soft magnetic elements, the number of possible
magnetization states becomes discrete [33, 34, 35, 36, 37]. The magnetization
state shown in Fig. 4 is called a S-State. Platelets displaying S-States may be
found in four variants according to the direction of the magnetization in the
main section of the element (≈ +x or ≈ −x), and the magnetization compo-
nent along the element short edges (+y or −y). Reversing the magnetization
rotation direction close to one extremity would lead to a so-called C-State
with, again, four possible variants characterized by a single energy.

Fig. 4. Magnetization distribution characteristic of a so-called S-State in a thin
film element: the magnetization keeps parallel to the long edges of the element, thus
avoiding both volume and surface charges along the most part of the latter. Close to
the extremities, however, a gradual bending of the magnetization distribution allows
for a decrease of surface charges along the element short edges at the expense of
exchange and volume magnetostatic energy. Ni80Fe20 like materials parameters (Ex-
change constant: A = 1.3 × 10−11 J/m, saturation magnetization Ms = 800 kA/m);
Dimensions: 500 nm × 125 nm × 3 nm; Meshing: 256 × 64 × 1 (One-layer-of-cells
type simulation).

Although the thickness in that particular element remains smaller than
the exchange length for the material considered (3 nm vs 5.68 nm), the de-
composition of the element into three layers of cells reveals interesting features
of the magnetization distribution at equilibrium. The minute splay across the
thickness of the magnetization displayed in Fig. 5 actually leads to a decrease
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of both the exchange and the magnetostatic energies (see the caption of Fig. 5
for details). Fig. 5 emphasizes the stringent need for rather small mesh sizes
(a relatively small fraction of the exchange length) if the fine features of the
magnetization distribution are to be revealed with a satisfying accuracy.

Fig. 5. Magnetization distribution characteristic of a so-called S-State in a thin film
element owing to 3-Dimensional micromagnetics. Close to the upper left boundary,
the in-plane magnetization is fanning-in, leading to positive volume charges; in the
top and bottom computation cell-layers (top and bottom figures, respectively), the
z-component (out-of-plane) of the magnetization is positive (red background) and
negative (blue background), respectively. The fanning-out of the magnetization along
the normal to the magnetic element allows for charge compensation between the in-
plane and out-of-plane magnetization distributions, leading to an overall reduction
of both the exchange and demagnetizing field energy. The magnetization distribution
around the bottom right corner behaves symmetrically (in-plane fanning-out, out-
of-plane fanning-in). Ni80Fe20 like materials parameters (Exchange constant: A =
1.3 × 10−11 J/m, saturation magnetization Ms = 800 kA/m) ; Dimensions: 500 nm
× 125 nm × 3 nm; Meshing: 511 × 127 × 3.
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2.4 Boundary conditions implementation: extended boundary
conditions

Additional work needs to be performed when dealing with general bound-
ary conditions (17). General boundary conditions are expressed in terms of
boundary values for the magnetization. Boundary magnetization values (look
at Eq.(34)) are functions of derivatives defined at given mesh points that
themselves depend on specific derivatives along boundaries (see Eqs.(32) and
(33)). It ensues that for each boundary point where an estimate of a boundary
derivative is required, an implicit equation needs to be solved. Consider again
the boundary point in Fig. 3-b or c. The requested boundary derivatives read
∂mx(xR)

∂x ,
∂my(xR)

∂x , ∂mz(xR)
∂x . In components form, neglecting the J2 biquadratic

exchange term, extended boundary conditions for the right boundary (normal
along +x) read:

∂mR
x

∂x
=
KS

A
mR

x

[

1 −mR
x

2
]

− J1

2A

[(

mR ·m′
)

mR
x −m′

x

]

∂mR
y

∂x
= −KS

A
mR

x

2
mR

y − J1

2A

[(

mR · m′
)

mR
y −m′

y

]

∂mR
z

∂x
= −KS

A
mR

x

2
mR

z − J1

2A

[(

mR · m′
)

mR
z −m′

z

]

,

(35)

where mR = m (xR). Combined with relations akin (34) and (32) or (33),
Eq. (35) provides a set of non-linear equations (3rd order in the general case)
in the variables mR

x ,m
R
y ,m

R
z that may easily be solved via e.g. Newton’s

method. A proper numerical implementation ensures that extended BC’s are
strictly equivalent to “free” BC’s if KS = J1 = 0.

2.5 Energy

The energy to be evaluated embodies the exchange, anisotropy, Zeeman and
demagnetizing field energies that sum-up to the total energy expressed in
(3). Additional energy terms do arise from extended boundary conditions,
namely EKS

=
∫

S εKS
dS and EJ =

∫

S εJ dS. Owing to the numerical scheme
outlined above, both the magnetization and the effective field are meant to
be continuous functions of position sampled at regularly spaced volume mesh
points. The magnetization also needs to be evaluated at the center of surface
tiles in order to satisfy to BC’s and allow for the computation of surface charge
densities. Whenever the magnetization is evaluated, its unit norm (m ·m = 1)
must be enforced.

Zeeman, anisotropy and exchange energy

Consider the right-hand expression of the exchange energy in (4). Its discrete
counterpart reads :
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Eexch = −AVCell

∑

i,j,k

[

〈m〉 ·
(

〈∂
2m

∂x2
〉 + 〈∂

2m

∂y2
〉 + 〈∂

2m

∂z2
〉
)]

, (36)

where, 〈V〉 is the average value of V within a given cell. As discussed in
section 3, however, the cell-averaged value of any variable is equal to its value
at cell center, be it a volume cell or a surface tile, to order 2, because all nearest
order corrective terms sum up to zero. Although higher order corrections
may be worked out, such corrective actions have almost no incidence on the
numerical estimate of the relevant energy, as exemplified in Fig. 6-a. The
same conclusion holds true for the estimate of the Zeeman (applied field)
and anisotropy energies as demonstrated in sections 3.1 and 3.2, respectively.
Similar arguments also apply to energy terms linked to specific boundary
conditions for which the energy densities in the continuum limit are given by
(14) and (15).

Demagnetizing field (or magnetostatic) energy

In the present field-based scheme, quantities that are constant per cell or tile
are the magnetization divergence and the surface charge density. It is therefore
natural to seek an expression for the energy that embodies these quantities.
An expression for the energy is readily available if assuming the scalar poten-
tial (20) to be known (up to this point, only the field has been evaluated at
discrete points). If either the magnetization divergence or the surface charge
density are piecewise constant, the scalar potential is not. Therefore, the tran-
scription of the continuous energy expression

Edemag =
1

2

∫

V

λV(r)Φd(r) d3r +
1

2

∫

S

σS(r)Φd(r) d2r , (37)

into a discrete summation requests the evaluation of the average value of the
potential < Φd > over each cell or tile (see Section 3.4 where a similar proce-
dure is applied to the evaluation of the average field within a cell). Eq. (37)
thus becomes:

Edemag =
1

2

∑

i,j,k

[λV(i, j, k)〈Φd(i, j, k)〉]+1

2

∑

l,m,n

[σS(l,m, n)〈Φd(l,m, n)〉] ,

(38)

where,
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Fig. 6. Energy per unit volume vs in-plane mesh size for the S-State magnetization
distribution shown in Fig. 4. a) Exchange, b) magnetostatic, c) total energy per
unit volume. Open and full symbols refer to direct and cell-averaged summation,
respectively. The magnetostatic energy is approximated by Eqs.(41) and (38) for
direct and cell-averaged summation, respectively. The fitting curves should be viewed
as mere guides to the eye. Ni80Fe20 like materials parameters (Exchange constant:
A = 1.3 × 10−11 J/m, saturation magnetization Ms = 800 kA/m) ; Dimensions:
500 nm × 125 nm × 3 nm; One-layer-of-cells type simulation.

4πµ0 VCell 〈Φd(i, j, k)〉 =
∑

i′,j′,k′

λV(i′, j′, k′)

∫

V (i,j,k)

d3r

∫

V (i′,j′,k′)

1

|r − r′| d
3r′+

∑

l′,m′,n′

σS(l′,m′, n′)

∫

V (i,j,k)

d3r

∫

S(l′,m′,n′)

1

|r− r′| d
2r′

(39)

for volume cells, and
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4πµ0 STile 〈Φd(l,m, n)〉 =
∑

i′,j′,k′

λV(i′, j′, k′)

∫

S(l,m,n)

d2r

∫

V (i′,j′,k′)

1

|r − r′| d
3r′+

∑

l′,m′,n′

σS(l′,m′, n′)

∫

S(l,m,n)

d2r

∫

S(l′,m′,n′)

1

|r − r′| d
2r′

(40)

for surface tiles. Cell or tile average scalar potential evaluation requires
integrals of type F 222, F 221 plus circular permutations, F 220 plus circular
permutations, where F 000 = 1

r , F 100 =
∫

F 000dx, F 110 =
∫

F 000dxdy etc [6].
All necessary integrals are tabulated in Appendix B. For instance, the contri-
bution of a tile belonging to the (xy ≡ [110]) surface to the averaged potential
within a volume cell (≡ [111]) involves the F 221 integral etc. All interaction
integrals are positive definite so that interactions between charges of similar
sign, whether volume or surface, contribute positively to the energy whereas
interactions between opposite sign charges contribute negatively.

Although potential theory is the only approach to energy evaluation consis-
tent with the present field-based model, a rough estimate of the magnetostatic
energy may still be gained from the numerical equivalent to Eq. (3), namely

Edemag = −1

2
µ0VCell

∑

i,j,k

(Hd(i, j, k)) · M(i, j, k)) , (41)

where it is implicitly assumed that the magnetization and the demagnetizing
field are constant within each volume cell.

Results pertaining to the S-State in Fig. 4 are displayed in Fig. 6. The
exchange energy per unit volume vs mesh size (Fig. 6-a) is seen to depend
very little on the use or not of cell-averaged variables in (36). Convergence
of the exchange energy on the other hand is only attained for rather small
mesh sizes. Markedly different behaviors for the demagnetizing field energy
are obtained when using cell-averaged potential theory (Eq.(38)) or the rough
estimate (41) (Fig. 6-b). In both cases, small mesh sizes are required in order
to define the asymptotic value of the magnetostatic energy, thus following a
trend similar to that of the exchange energy. More surprising at first sight is
the fact that both estimates of the magnetostatic energy do not converge to
the same value for a vanishing mesh size. It ought to be noted that the best
agreement between the two kinds of estimates is obtained for cubic cells (size
3 nm, here). It may therefore be concluded that the rough estimate (41) be-
comes particularly poor for cells aspect ratios markedly departing from unity.
The total energy per unit volume vs mesh size consistent with the assumptions
of the present numerical model is shown as full symbols in Fig. 6-c. It appears
relatively independent of mesh size although this result is physically meaning-
less: only the respective asymptotic values [38] of the energy contributions are
representative of the physical reality. The exchange and magnetostatic ener-
gies actually display opposite curvature convergence behaviors, pointing at a
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subtle change in the balance between exchange and magnetostatic interactions
with decreasing mesh size.

3 Finite difference micromagnetics: energy-based

approach

In an energy-based approach, the magnetic energy is given primacy, and is
computed directly from the discretized magnetization, whereas the effective
field is derived from the resultant energy. The effective field obtained in this
manner is a cell-averaged field. This method is obviously convenient if one
is interested in finding equilibrium magnetization patterns via direct energy
minimization (using, for example, conjugate-gradient methods), but also has
the advantage that the energy, being an integral quantity, has less variation
than the field and is therefore more easily approximated. As noted in Sec. 2.1,
the demagnetizing field can diverge at corners of a sample, yet this logarith-
mic divergence is integrable, so that the energy contained in any discretization
cell remains finite. This effect is seen too in Fig. 6-b, where the result using
(41) leads to an incorrect result, even in the small cell limit. Although the
discretization in this example is sufficient to represent variations in the mag-
netization, it does not pick up variations in the demagnetizing field along the
film normal [16, 39]. To correct for this one has to either move to a multi-
layer simulation, or else use a potential averaging approach as in (38) or as
discussed in this section.

3.1 Zeeman energy

As stated before, Zeeman energy is the magnetostatic energy from the inter-
action of a given magnetization state with an external field,

EZ = −µ0

∫

V

M · Happ d
3r. (42)

Here Happ includes fields directly applied, and also fields resulting from cur-
rents inside the device, i.e.,

Hcurrent =
1

4π

∫

V

J(r′) × r − r′

|r − r′|3 d
3r′. (43)

Assuming that both M and Happ are twice differentiable, we can write

M(r) = M(ri) +B (r − ri) +O(‖r − ri‖2) (44)

Happ(r) = Happ(ri) + C (r − ri) +O(‖r − ri‖2) (45)

where B and C are the 3×3 matrices corresponding to the partial derivatives
of M and Happ, respectively, and ri is an arbitrary point suitably close to r.
Consider this simple approximation to the Zeeman energy:
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EZ ≈ −µ0

∑

i

M(ri) · Happ(ri)|Vi|, (46)

where the index i runs over all cells in the simulation, ri denotes the center
of the rectangular cell i, and |Vi| is the volume of cell i. Given (44) and (45),
we estimate the error in (46) as
∣

∣

∣

∣

∣

EZ − (−µ0)
∑

i

M(ri) · Happ(ri)|Vi|
∣

∣

∣

∣

∣

≤ µ0

∑

i

∣

∣

∣

∣

∫

Vi

M(r) · Happ(r) − M(ri) ·Happ(ri) d
3r

∣

∣

∣

∣

(47)

≤ µ0

∑

i

∣

∣

∣

∣

∫

Vi

M(ri)
TC (r − ri) + Happ(ri)

TB (r − ri)

+O(‖r − ri‖2) d3r

∣

∣

∣

∣

, (48)

where ·T denotes the vector transpose. Since ri is at the center of the rectan-
gular cell Vi,
∫

Vi

(M(ri)
TC + Happ(ri)

TB)(r − ri) d
3r = 0 (49)

because the integrand is an odd function with respect to ri. Thus we see that
∣

∣

∣

∣

∣

EZ − (−µ0)
∑

i

M(ri) · Happ(ri)|Vi|
∣

∣

∣

∣

∣

≤ µ0

∑

i

∫

Vi

O(‖r − ri‖2) d3r (50)

≤ O(∆2)|V |, (51)

where |V | =
∑

i |Vi| is the total volume of the space, and ∆ is the maximum
cell dimension.

In this approximation, all of the M(ri) · Happ(ri) terms are weighted
equally. Higher order methods can be obtained by varying the weights, similar
to the well-known Simpson’s rule [40, 41].

The discretized field expression derived from this approximation to the
energy is simply

HZ,i = Happ(ri). (52)

3.2 Magnetocrystalline anisotropy energy

Magnetocrystalline anisotropy energy models the preferential magnetization
orientation in a material, and depends chiefly on the crystalline structure of
the material. For uniaxial materials the energy is given by

EK,uniaxial = −
∫

V

K1(m · u)2 d3r, (53)
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where K1 is the material anisotropy coefficient (in J/m3), m is the unit mag-
netization direction (M/Ms), and u is the (unit) anisotropy axis. If K1 is
positive, then u is the easy axis, while if K1 is negative then u is normal
to the easy plane. For some materials, a second term K2 sin4 φ is important,
where K2 is a second anisotropy coefficient and φ is the angle between m and
u. This equation should be modified at material interfaces and defects [42].

For cubic materials with crystal axes oriented parallel to the coordinate
axes, the energy takes the form

EK,cubic =

∫

V

K1(m
2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2(m

2
xm

2
ym

2
z) d

3r. (54)

For a rotated crystal orientation, mx should be replaced with the projection
of m onto the first coordinate axis, my with the projection onto the second
(orthogonal) axis, and mz with the projection onto the remaining axis.

If we assume that m, u, K1 and K2 are twice differentiable, at least within
each cell, then we can expand the integrands in (53) and (54) in a the manner
of (44) and (45), and obtain an analogous discrete approximation for the
magnetocrystalline anisotropy energy. In the uniaxial case this is

EK,uniaxial ≈ −
∑

i

K1(ri) (m(ri) · u(ri))
2 |Vi|, (55)

and for the cubic we have

EK,cubic ≈
∑

i

[

K1(ri)
(

m2
x(ri)m

2
y(ri) + m2

y(ri)m
2
z(ri) + m2

x(ri)m
2
z(ri)

)

+K2(ri)
(

m2
x(ri)m

2
y(ri)m

2
z(ri)

)]

|Vi|. (56)

Using the same argument as in the Zeeman energy section, these approxima-
tions are also seen to be of order ∆2.

The discretized field expressions derived from the discretized energies are

HK,uniaxial,i = 2K1(ri) (m(ri) · u(ri))u(ri)/µ0Ms (57)

HK,cubic,i = −2D(ri)m(ri)/µ0Ms, (58)

where D is the diagonal matrix with entries

D11 = K1(ri)
(

m2
y(ri) +m2

z(ri)
)

+K2(ri)m
2
y(ri)m

2
z(ri) (59)

D22 = K1(ri)
(

m2
x(ri) +m2

z(ri)
)

+K2(ri)m
2
x(ri)m

2
z(ri) (60)

D33 = K1(ri)
(

m2
x(ri) +m2

y(ri)
)

+K2(ri)m
2
x(ri)m

2
y(ri). (61)

3.3 Exchange energy

As noted in Sec. 1, the exchange energy may be represented using either of
the expressions in (4). In practice, the latter relation,

Eexch = −
∫

V

Am ·
(

∂2m

∂x2
+
∂2m

∂y2
+
∂2m

∂z2

)

d3r. (62)
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is somewhat easier to work with and is the form used in the following discus-
sion.

The first step in providing a numerical approximation to (62) is to find a
discrete form for the second derivative operator. As mentioned in section 2.2,
the simplest approximation, which holds if m is four times differentiable, is

∂2m

∂x2
(r) =

1

∆2
x

(m(r +∆xx̂) − 2m(r) + m(r−∆xx̂)) +O(h2), (63)

where∆x is the discretized cell dimension along the x̂ direction. The analogous
equations for ∂2m/∂y2 and ∂2m/∂z2 (involving ∆y and ∆z), lead to a seven
point approximation to the integrand in (62), involving m at the point ri and
its six closest neighbors:

Eexch ≈ −
∑

i

|Vi|A
∑

j

m(ri) · (m(ri + ǫj) − m(ri)) /|ǫj|2. (64)

Here ri + ǫj , varying over j, specifies each of the six nearest neighbors to
ri in the discretized mesh. By the same argument used in the previous two
sections, this estimate will be of O(∆2). The corresponding expression for the
discretized exchange field is

Hexch =
2A

µ0Ms

∑

j

(m(ri + ǫj) − m(ri)) /|ǫj|2. (65)

One may be tempted to replace m(ri) · m(ri) in (64) with |m|2 = 1,
obtaining

Eexch ≈ −
∑

i

|Vi|A
∑

j

(m(ri) ·m(ri + ǫj) − 1) /|ǫj |2, (66)

or to drop the “-1” altogether, which shifts Eexch by a constant amount with-
out affecting the exchange field. Either way, however, leads to numerical prob-
lems because the term m(ri) ·m(ri + ǫj) effectively loses significant precision
in the common case where m(ri) and m(ri + ǫj) are nearly parallel. This
can be seen by realizing that m(ri) · m(ri + ǫj) = cos θ, where θ is the angle
between m(ri) and m(ri + ǫj), and cos θ ≈ 1 − θ2/2. The torque depends on
the component perpendicular to m(ri), which is represented by the θ2 term.
If |θ| ≪ 1, then when stored with a finite number of digits the expression
1 − θ2/2 loses a great deal of the precision in θ2. On the other hand, if one
first subtracts m(ri) from m(ri + ǫj) as in (64) then the dot product will
be between two nearly perpendicular vectors, and precision is significantly
retained [39].

Large angles between neighboring spins m(ri) and m(ri + ǫj) also cause
problems, but of a rather different nature. Here the problem arises because
(64) always underestimates the exchange energy, and the larger the neigh-
boring spin angle θ the larger the underestimate. As a result, magnetization
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configurations with regions of high exchange energy that are located between
grid points tend to have overall smaller total exchange energy than otherwise
identical configurations shifted so that the points of high exchange energy are
on or near grid points. This can cause artificial, discretization-induced pinning
of high exchange energy structures such as vortices [43] or induce a Peierl’s
like friction for Bloch points motion [44]. Figure 7 illustrates this problem
on a small, thin plate. In this example, maximum pinning is 18 mT, which
occurs with an in-plane cell size of just under 7 nm. Moreover, the pinning is
found to be non-monotonic with ∆, at first worsening as ∆ is decreased, only
abating after the vortex core is resolved.
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Fig. 7. Discretization induced vortex pinning fields for a 120 nm × 120 nm ×

3 nm Ni80Fe20 (Ms=800 kA/m, A=13 pJ/m, K=0 J/m3) plate, as a function of
in-plane discretization cell size (one-layer-of-cells type simulations). Initial zero-field
magnetization configuration is an equilibrium centered vortex state. Field is applied
in-plane, parallel to plate edge, and gradually increased until vortex jumps from one
discretization cell to the next.

A related issue can occur in under-meshed 180◦ Néel walls [45]. If the angle
between neighboring spins across the center of the wall is too large, then the
wall demagnetizing field can overwhelm the coarse mesh weakened exchange
field and force the Néel wall to collapse into a structure where the entire wall
is squeezed between adjacent spins, as illustrated in Fig. 8(a). The problem is
fixed when a sufficiently fine mesh is used, as in Fig. 8(b).

Simulations in Figs. 7 and 8 were performed using the OOMMF public
code [46].
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(a)

(b)

Fig. 8. Néel wall in 750 nm × 120 nm × 30 nm Ni80Fe20 rectangle, equilibrium
states. (Same material parameters as quoted in Fig. 7.) (a) Wall collapses in coarse
grid simulation (∆=15 nm), as compared to (b) fully resolved wall using fine grid
(∆=5 nm). Color indicates x-axis component of the magnetization. Multi-layer cubic
cells used in both simulations.

3.4 Self-magnetostatic energy

Self-magnetostatic, or demagnetization energy, is the energy associated with
dipole-dipole magnetostatic interactions of material within itself. It is de-
scribed by

Edemag = −µ0

2

∫

V

M ·Hd d
3r, (67)

where the demagnetization field Hd at position r is

Hd(r) = − 1

4π

∫

V

∇·M(r′)
r− r′

|r − r′|3 d
3r′+

1

4π

∫

S

n̂(r′) ·M(r′)
r − r′

|r − r′|3 d
2r′.

(68)

Eq.(68)) is identical to (21) and displayed here anew for convenience. Note
that Edemag involves long range interactions, and in terms of M requires
integration over V × V .

If we let g(r) = r/|r|3, then integration by parts allows one to rewrite (68)
as

Hd(r) = − 1

4π

∫

V

∇g(r − r′)M(r′) d3r′. (69)

From this formulation it is clear an approximation to M of the form (44) is
sufficient to produce an approximation to Hd of second order, and moreover
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that at this level of approximation the linear portion of M can be ignored.
Thus we have

Hd(r) = − 1

4π

∑

i

∫

Vi

∇g(r − r′)M(r′i) d
3r′ +O(∆2) (70)

=
1

4π

∑

i

∫

Si

n̂(r′) ·M(r′i)
r − r′

|r − r′|3 d
2r′ +O(∆2). (71)

This shows that, to second order, the demagnetization field at point r can be
computed by treating each cell in the discretization as a uniformly magnetized
block. Likewise, second order accuracy can be maintained in (67) by replacing
M in each cell with its value at the center, so we have

Edemag ≈ −µ0

8π

∑

i,j

∫

Vi

M(ri) ·
∫

Sj

M(r′j) · n̂(r′)
r − r′

|r − r′|3 d
2r′ d3r (72)

≈ −µ0

8π

∑

i,j

MT (ri)

(

∫

Vi

∫

Sj

r − r′

|r − r′|3 n̂T (r′) d2r′ d3r

)

M(rj). (73)

This can be rewritten as

Edemag ≈ µ0

2

∑

i,j

|Vi|MT (ri)N(ri, rj)M(rj), (74)

where N(ri, rj) is the 3× 3 matrix arising from the 5-fold integration in (73)
divided by −4π|Vi|. The term (µ0|Vi|/2)MT (ri)N(ri, rj)M(rj) is seen to be
the (exact) magnetostatic energy arising between uniformly magnetized cells
at positions ri and rj . It is clear from the definition that N depends only on
the difference ri − rj , so N(ri, rj) = N(ri − rj) = Ni−j .

If we compute the effective demagnetization field from (74), we obtain

Hd,i = −
∑

j

Ni−jMj. (75)

Note that as elsewhere in Sec. 3, Hd,i is computed from the energy expression
(73) rather than the field expression (71), so that Hd,i can be interpreted as
being the average value for the demagnetization field in cell i arising from a
cell j having uniform magnetization Mj .

It remains now to compute Ni. It follows from the magnetic reciprocity
theorem [3] that Ni must be symmetric. (Reference [47] discusses also addi-
tional properties of Ni.) This means that the 3 × 3 matrix Ni holds only 6
independent entries,

Ni =





Nxx,i Nxy,i Nxz,i

Nxy,i Nyy,i Nyz,i

Nxz,i Nyz,i Nzz,i



 . (76)

The entries, Nxx,i etc., can be evaluated analytically [48, 47, 49]. First, define
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f(x, y, z) =
1

2
y(z2 − x2) sinh−1

(

y/
√

x2 + z2
)

+
1

2
z(y2 − x2) sinh−1

(

z/
√

x2 + y2
)

− xyz arctan(yz/xR) +
1

6
(2x2 − y2 − z2)R (77)

g(x, y, z) = xyz sinh−1
(

z/
√

x2 + y2
)

+
1

6
y(3z2 − y2) sinh−1

(

x/
√

y2 + z2
)

+
1

6
x(3z2 − x2) sinh−1

(

y/
√

x2 + z2
)

− 1

2
y2z arctan(xz/yR) − 1

2
x2z arctan(yz/xR)

− 1

6
z3 arctan(xy/zR) − xyR/3, (78)

whereR =
√

x2 + y2 + z2, and sinh−1 is the inverse hyperbolic sine, sinh−1(x) =
log(x +

√
1 + x2). Note that the f(x, y, z) and g(x, y, z) are nothing else

than the F 022(x, y, z) and F 112(x, y, z) defined in Appendix B, respectively.
They describe magnetostatic interactions between parallel and perpendicular
charged tiles, respectively. Then

4π∆x∆y∆zNxx,i =

8f(xi, yi, zi) − 4
∑

v∈A

f(v) + 2
∑

v∈B

f(v) −
∑

v∈C

f(v) (79)

4π∆x∆y∆zNxy(x, y, z) =

8g(xi, yi, zi) − 4
∑

v∈A

g(v) + 2
∑

v∈B

g(v) −
∑

v∈C

g(v), (80)

where A is the set of “nearest neighbors” to (xi, yi, zi), B is the set of next
nearest neighbors, and C is the set of corners of the 3×3 cube about (xi, yi, zi):

A = {(xi ±∆x, yi, zi), (xi, yi ±∆y, zi), (xi, yi, zi ±∆z)} (81)

B = {(xi ±∆x, yi ±∆y, zi), (xi ±∆x, yi, zi ±∆z),

(xi, yi ±∆y, zi ±∆z)} (82)

C = {(xi ±∆x, yi ±∆y, zi ±∆z)}, (83)

so that |A| = 6, |B| = 12, and |C| = 8. The other four elements of Ni are
computed analogously, by permuting x, y, z and ∆x, ∆y , ∆z, with Nyy,i and
Nzz,i using (79) and Nxz,i and Nyz,i using (80).

If we let φ represent the operator on f and g in the right hand side of
(79) and (80), we see that φ/|V |2 is a second order discrete approximation to
the differential operator −∂6/∂x2∂y2∂z2 [50]. If we define ψx/∆

2
x to be the

second order discrete approximate to −∂2/∂2x, ψx(f)(x) = −f(x−∆x, y, z)+
2f(x, y, z) − f(x + ∆x, y, z) (and likewise ψy and ψz), we see that φ can be
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decomposed as ψx ◦ψy ◦ψz. This admits a relatively efficient approach to the
evaluation of Nxx for the entire range of (x, y, z) of interest. First, evaluate
f at each point on the mesh. Then, evaluate ψz(f) at each point on the
mesh, which can be done essentially in place. If there are n points in the
mesh, evaluating ψz(f) requires 2n subtractions. Then, evaluate ψy on the
new values, and finally ψx, for a total of 6n subtractions (as compared to
26n additions/subtractions in a direct implementation of (79)). The other
five terms of Ni can be evaluated using the same method.

As can be seen from (75), Hd,i is a discrete (three dimensional) convolution
of Ni with Mi, so it can be computed efficiently using Fast Fourier Transform
(FFT) techniques [51]. A few details of the application of the FFT in this case
bear mentioning [52, 53].

The basics of the technique are to take the FFT of the Ni and Mi se-
quences, say Ñk and M̃k, multiply these together pointwise to obtain H̃d,k,

and then take the inverse FFT of H̃d,k to obtain Hd,i. Since the FFT and
inverse FFT can be computed with operation count of O(n log n) (where n is
the size of the set {i}), the computation of the entire set {Hd,i} can be com-
puted in O(n log n), as opposed to O(n2) resulting from a direct evaluation of
(75).

However, the magnetization data in (75) should be interpreted as being
finite in extent but lying in an infinite space. Since convolution-by-FFT pro-
duces a cyclic (periodic) convolution, the magnetization data need to be zero-
padded to double length in each of the x, y, and z directions in order to
remove wraparound artifacts. Note that this results in an eightfold increase
in the number of points. The interaction coefficient sequence Ni also needs to
be extended to this size, however it is not zero-padded but rather is extended
through the origin into “negative” territory, where, following the usual FFT
conventions, index −i = (−ix,−iy,−iz) is stored at the index corresponding
to (nx − ix, ny − iy, nz − iz).

Since the interaction coefficient sequenceNi is determined by the geometry
of the problem, the FFT of this sequence, Ñk, can be computed once during
program initialization and saved for subsequent use. Moreover, the various
symmetries of the Nxx, Nxy, . . . terms [47], and the fact that these sequences

are real (as opposed to complex), result in the transformed sequences Ñxx,k,

Ñxy,k, . . . having the same symmetries and also being purely real. As a result,

only one octant of Ñk needs to be stored, and that storage can be as real (as
opposed to complex) values.

The Mi sequence is also real; this property can be used to accelerate the
FFT by almost a factor of two and reduce the storage requirements for M̃k by
half. (M̃k is complex valued, but is conjugate symmetric with respect to the
origin, so only one half-space needs to be stored.) The fact that large portions
of the zero-padded Mi array are zero can also be used to significantly speed
up the FFT.
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3.5 Boundary conditions
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Fig. 9. One dimensional convergence study of exchange energy on an impressed
magnetization spiral. Horizontal axis is the (constant) angle between neighboring
spins, 720◦/number of spins. Circles represent second order exchange method dis-
cussed in Sec. 3.3, triangles are a fourth order method presented in reference [32].
Open symbols (top line) are results using “free” boundary condition, ∂m/∂n = 0;
these show only first order convergence because the magnetization spiral does not
obey this boundary condition. Closed symbols (bottom two lines) use the correct
Dirichlet boundary conditions, and recover the quoted convergence rates, second and
fourth order, respectively. The leftmost point on the lowest curve shows the limit of
numeric accuracy imposed by round-off errors.

As discussed in Sec. 2.3 and 2.4, at grid points where the stencil for an
expression extends beyond the boundaries of the part being simulated, the
stencil will need to be adjusted. Typically this involves replacement of miss-
ing magnetization values (i.e., points corresponding to stencil values outside
the part boundary) with relations involving boundary conditions and possi-
bly additional points inside the part. These considerations apply not just to
part boundaries, but across any interface where the magnetization fails to
fulfill the smoothness requirements for the given expression. We consider in
this subsection only the “free” boundary conditions arising in the case of no
surface anisotropy. As discussed in Secs. 1 (equations (14)-(17)) and 2.4, other
constraints are possible.
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In general, boundary conditions may influence any of the energy terms.
However, for the second order relations discussed here (Sec. 3), only the ex-
change energy is directly affected. Indeed, expressions (46) and (52) for the
Zeeman term, expressions (55)-(58) for anisotropy, and (74) and (75) for de-
magnetization may be used unaltered at boundaries or in situations where M
is discontinuous across cell faces.

However, examination of (64) reveals that that formula is undefined at
boundaries; for example, if ri is on the leftmost edge of the discretized mesh,
then ri −∆xx̂ is outside the mesh, so we have no value for m there.

The most common solution to this problem is to introduce a “ghost” spin
at the missing location, with value the same as the nearest spin inside the
boundary, i.e., define m(ri −∆xx̂) = m(ri). Here we implicitly assume that
the boundary runs along the discretization cell surfaces, and is therefore ex-
actly halfway between ri − ∆xx̂ and ri. With this definition, the interpo-
lated magnetization m(r) satisfies the usual Neumann boundary condition
∂m/∂n = 0. This approach is sometimes referred to as using “mirror bound-
ary conditions,” because the magnetization is in some sense reflected across
the boundary. It should be noted that this simple scheme for defining the
value of the ghost spin only works for the second order method. The relations
are more complicated when higher order methods are involved [32]. Also, the
computed value for the field (65) at the edge spin ri is only first-order accurate
in ∆x. However, the boundary region has narrow width ∆x, so in the energy
computation (64) a factor of ∆x is introduced into the |Vi| term; therefore the
computed value for the total energy remains second order in ∆x [32].

The usual artifact of applying an incorrect boundary condition is a loss
in accuracy arising from a reduction in method order. This effect is shown in
Fig. 9, where a uniform magnetization spiral is impressed upon a one dimen-
sional rod. The magnetization pattern is not relaxed, but rather held fixed
while the exchange energy is computed for different discretization scales. For
this reason the usual “free” boundary conditions, ∂m/∂n = 0, do not hold.
To obtain full method accuracy it is necessary to apply the correct boundary
conditions, which in this case are of the Dirichlet type.

4 Solving the LLG equation

When attempting to solve the LLG equation, accuracy needs to be preserved
both in space and time. In order to look for time accuracy monitoring tools
that might easily be implemented in a given code, let us first take the vector
product of the right-hand side of the LLG equation (9) with dm/dt. One gets

heff · dm
dτ

= α

(

dm

dτ

)2

, (84)

where, τ = γ0Mst, m = M/Ms, heff = Heff/Ms. Equation (84) is local. Al-
ternatively, starting from the general expression of the system’s free energy
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functional, its rate of change may, provided the applied field be time indepen-
dent, be written as [3]

d
∫

εT
dτ

= −µ0M
2
s

∫
(

heff · dm
dτ

)

. (85)

There exists no local counterpart to this expression, due to the non-local
nature of magnetostatic interactions. It follows from (84) and (85) that the
damping parameter is related to the rate of change of the total free energy
and the rate of change of the magnetization through

α = − 1

µ0M2
s

[

∫

dεT/dτ
∫

(dm/dτ)
2

]

. (86)

As expected, the damping parameter may stay positive only if the overall
energy decreases as time elapses. Two numerical equivalents to this important
relation may be written down, namely

< α >=
γ0∆t

µ0Ms

[

−∑N
i=1∆εi

∑N
i=1∆m2

i

]

, (87)

where i is the node index, N the total node number, and the reduced time
has been replaced by the physical time step in the calculation, and

αMS = N
γ0∆t

µ0Ms







−∑N
i=1∆εi

(

∑N
i=1∆mi

)2






, (88)

which represents a transcription of (86) for the average magnetization, i.e.
for the macro-spin equivalent to the magnetization distribution. Because of
Schwartz’ inequality, one always finds

αMS ≥< α > . (89)

This seemingly innocuous relation contains a deep meaning: any experiment
which measures the time evolution of some average of the magnetization dis-
tribution is bound to yield a value larger than the true Gilbert damping
parameter. On the other hand, it turns out that (87) provides an extremely
sensitive tool when evaluating the accuracy of the numerical time integra-
tion of the LLG equation [54]. Note in passing that the variational form
∆εi = −Heff,i ·∆Mi provides the most accurate estimate of the energy change
within the time step ∆t.

A typical calculation of the kind is illustrated in Fig. 10 dealing with the
effect of a spin-polarized current flowing through a sub-micron size elliptical
element. Momentum transfer from the conduction electrons to the magneti-
zation induces magnetization motion for large enough current densities and
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Fig. 10. Onset of magnetization motion under the influence of a spin-polarized
current flowing across a sub-micron size elliptical element. The magnetization dis-
tribution at rest is stabilized by a field applied along the ellipse long axis and equal
to 1.5HK, where HK is the shape anisotropy field of the elliptical platelet. Current
density: J = 0.5 A/µm2 flowing from time t = 0 on. A tiny constant field (80 A/m or
1 Oe) is applied along the short ellipse axis, hence the non-zero value of the average
my component prior to current application. Left: element-averaged magnetization
components vs time along the long (mx) and short (my) elliptical axes, respectively.
Open symbols refer to the Crank-Nicholson solution with an implicit character re-
stricted to exchange interactions; Full symbols refer to a 4th-order Runge-Kutta
time integration. Right: volume-averaged damping parameter (Eq. 87) owing to the
semi-implicit Crank-Nicholson (time step 12.5 fs) or explicit 4th-order Runge-Kutta
(time step 25 fs) time integration schemes. Co-like materials parameters (Exchange
constant: A = 1.3×10−11 J/m, saturation magnetization Ms = 1500 kA/m, damping
coefficient α = 0.006); Dimensions: 170 nm × 80 nm × 2.5 nm; One-layer-of-cells
type simulation.

may lead to the existence of precessional states [55, 56, 57, 58, 59], [60] and
loc. cit. Shortly after switching the current on, magnetization motion proves
undistinguishable whether using a semi-implicit Crank-Nicholson integration
scheme or the 4-th order explicit Runge-Kutta algorithm (Fig. 10-left). At
longer times, however, magnetization trajectories would prove somewhat dif-
ferent. Energy dissipation, on the other hand, as monitored via Eq. 87, proves
distinctively different (Fig. 10-right) for the two time integration schemes.
The Runge-Kutta algorithm leads to a numerical damping parameter equal
to the nominal value in this calculation to a better than 10−6 relative accuracy
for the 25 fs time step considered. Rather large fluctuations in the numeri-
cal damping parameter < α > are seen to arise from the implicit integration
scheme in spite of its unconditional stability. Generally speaking, < α > is
seen to be significantly depressed whenever the magnetization becomes sta-
tionary, a result ascribed to residual numerical noise in the solution of a large
set of linear equations (sparse matrix) by means of iterative methods. Such
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considerations become particularly important when dealing with long time
integrations such as requested in spin transfer problems.

5 Comparing methods

Numerical methods outlined in sections 2 and 3 do differ in the order of ap-
proximations for exchange interactions and boundary conditions. More signif-
icantly, perhaps, they differ in the evaluation of the demagnetizing field, direct
evaluation at nodes in the first case, field averaged over the cell volume in the
second. The approach described in section 3 uses constant magnetization cells,
i.e., zero order expansion for the magnetization m(r). Note, however, that cell
averaging, or indeed more complex integration approaches, may equally be
applied to cells with a constant divergence (1st order expansion for the mag-
netization). The real question that arises from the different modeling options
is the degree of coherence in approximation levels. Magnetization dynamics
raises an additional issue, namely, is there a best numerical implementation for
the LLG equation? In other words, should a mapping of the magnetization and
the effective field onto the nodes of a regular mesh be preferred to motion in-
volving a cell-averaged magnetization and a cell-averaged field, or vice-versa?
The point being that in general, 〈m(t)×Heff(t)〉 6= 〈m(t)〉× 〈Heff(t)〉. We do
not provide general answers to these questions in the following but, rather,
analyze the convergence proper to each approach when dealing with the re-
versal of a rectangular platelet under the action of a slightly off-axis magnetic
field applied at time t = 0. The specifics of the test problem considered here,
which is the second part of µMAG Problem No. 4 [61], are shown in Fig. 11.
At time t = 0 a uniform field is applied in-plane at 190◦ counterclockwise from
the positive x-axis. The applied field causes the spins in the middle portion of
the sample to rotate clockwise, and the spins on either end to rotate counter-
clockwise. The differing rotation directions results from the relative angle of
the applied field with respect to the initial position of the spins in the middle
of the plate in contrast to the spins at the ends, but the origin of the motion
is perhaps not immediately obvious. The damping parameter α is relatively
small, so the spin evolution is dominated by precessional motion. In the mid-
dle part of the sample, H× m is directed upward (+z), so the initial motion
of the spins in the middle is up and out of the film plane. In response, a large
opposing demagnetization field is generated directed into the film plane (−z).
Precession about this demagnetizing field results in the clockwise rotation of
these spins, as seen in Fig. 11(b). At the ends, the initial spin motion is in the
−z direction, the resulting demagnetizing field points along +z, and so the
rotation of the spins at either end is counterclockwise.

After approximately 0.16 ns, the respective rotations generate two 360◦-
character domain walls, one on either end (Fig. 11(c)), which are gradually
pushed off the sample as the center domain expands (Fig. 11(d)). As the walls
are forced off the ends, the confined geometry leads to very tight magnetization
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Fig. 11. Magnetization states for µMAG Problem 4b [61]. Sample is a Ni80Fe20

slab with dimensions 500 nm × 125 nm × 3 nm, material parameters A=13 pJ/m,
Ms=800 kA/m, K=0 J/m3, α = 0.02, γ0 = 2.211×105 m/A·s. Dynamic simulation,
starting in a zero-field equilibrium “S”-state (a). At time t = 0 fs a uniform applied
field, µ0Happ = (−35.5,−6.3, 0) mT, is instantaneously applied. By 60 fs (b), domain
rotation has begun. Large angle (≈ 360◦) domain walls are formed by 160 fs (c),
which are slowly pushed outwards (450 fs, (d)) and off the ends by 520 fs (e). In
(b), the color indicates the z-component of the magnetization: red is +z (out of the
page), blue is -z (into the page). In (c)-(e), color indicates in-plane magnetization
angle. These images taken from a simulation using the energy-based method, with
255 × 63 × 1 cell count.
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(a) (b)

Fig. 12. Details at left edge of simulation in Fig. 11, at times t = 500 fs (a) and
t = 520 fs (b). Cross-tie (or anti-vortex) at top and distorted vortex at bottom form
from ends of 360◦ wall. The half-vortex visible in the middle of the left edge in (a)
is a remanent of the 360◦ wall, which is pushed off the edge by 520 fs (b) as the
cross-tie and distorted vortex move inward. Color indicates the z-component of the
magnetization, with red for mz > 0 (i.e., out of the page), blue for mz < 0, and
white for mz ≈ 0.

structures containing vortices and cross-ties (also called anti-vortices), which
require a very fine mesh to properly resolve (Figs. 11(e-f), 12).

These effects are reflected in the simulation results displayed in Figs. 13
and 14. The simulations all agree fairly well until some time after 0.4 ns, cor-
responding to the annihilation of the 360◦ domain walls. After that, although
the features described in Figs. 11 and 12 prove qualitatively similar in all sim-
ulations, discretization effects are clearly evident, especially in the field-based
simulations shown in Fig. 13. In this figure, the single-layer simulations do
not appear to be converging towards the same limit as the three-layer simu-
lations, although the 127x31x1 solution proves rather close to the converged
500x125x3 energy-based solution (see Fig. 15). Whether or not this result is
purely coincidental is hard to say. We note, however, that the most compact
set of initial 〈my〉 values including both approaches is obtained for the ex-
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Fig. 13. Average my versus time results for test problem from Fig. 11 using field-
based method of Sec. 2, with different x/y/z cell counts as indicated. In-plane counts
127 × 31 yields ≈ 4 nm square cells, 167 × 41 ≈ 3 nm square cells, 255 × 63 ≈ 2 nm
square cells. Single-layer simulations (z cell count=1) appear to converge towards a
different limit than the multi-layer simulations (z cell count=3).

treme meshing conditions, with 〈my〉 = 0.12472109 (field-based), 0.12526786
(energy-based) for the 127x31x1 discretization, 0.12567210 (field-based) and
0.12599484 (energy-based) for the ≈ 1 nm cubic mesh size. The larger vari-
ability in initial conditions in the field approach is undoubtedly responsible in
part for the sizeable differences in time integration observed at later times and
it is not even certain that three layers suffice for full convergence. In contrast,
the results from the energy-based approach shown in Fig. 14 do in this test
manifest only minor z-layer discretization effects, and appear to converge in a
relatively straightforward manner. As noted above, this is probably due more
to the effect of using a cell-averaged demagnetizing field as opposed to any in-
trinsic property of the energy-based approach, and presumably indicates that
the mid-plane (mid-cell) demagnetizing field samples are not generally truly
representative of the field profile through the thickness of the film (cell), an
effect alluded to earlier.

The important point from this comparison, as seen in Fig. 15, is that both
methods converge towards similar limits, and either way a very small cell
size is required to approach that limit. It must be stressed that the cell size
required here, ≈ 1 nm, is much smaller than the exchange length for this ma-
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Fig. 14. Average my versus time results for test problem from Fig. 11 using energy-
based method of Sec. 3, with various x/y/z cell counts as indicated. Single-layer and
multi-layer simulations converge to same limit. Single-layer 500 × 125 × 1 results
(not shown) are indistinguishable from multi-layer 500 × 125 × 3 results.

terial, which by (5) is about 5.7 nm. This illustrates the importance of always
checking for discretization effects in micromagnetic simulations, especially in
confined geometries with small magnetic structures such as vortices and cross-
ties. We note in closing that a subtle influence of the approximation order in
the exchange interactions and boundary conditions may not at this stage be
ruled out.

6 Conclusion

This short review of finite difference methods applied to micromagnetics pro-
vides the reader with all the necessary ingredients to develop his or her own
code. Different approximations have been discussed for exchange interactions
and boundary conditions. Ways to include general boundary conditions have
also been indicated. The appendices provide all required integrals for the
definition of magnetostatic interaction coefficients owing to one’s own choice
regarding discretization. Provided care is taken in the choice of a proper mesh-
ing and time integration step, the field- or energy-based methods described
above lead to comparable meshing sensitivity as evidenced in Fig. 15. On
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Fig. 15. Test problem results comparing field-based (blue curves) and energy-based
(red curves) approaches. Cell count 500 × 125 × 3 corresponds to discretizing with
1 nm cubes.

the whole, numerical micromagnetics relying on finite difference methods has
reached a high maturity level. As already stated, however, available data do
not show convergence towards a single 〈my〉(t) trajectory for this particular
problem. Lastly, if finite difference methods prove extremely efficient in terms
of computation time due to an extensive use of Fast Fourier Transforms, they
display excessive discretization artifacts when dealing with curved geometries.
Although that dependence needs to be quantified more precisely, work con-
tinues on the issue, and practical solutions are expected in the near future.
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A Demagnetizing field : useful integrals

For parallepipedic volume cells and rectangular surface tiles, defining ρ =
√

(u2 + v2 + w2), Lu = 1
2 ln(ρ+u

ρ−u ), Pu = arctan(vw
uρ ), and Lv, Lw, Pv, Pw

through permutation in the variables u, v, w, all interaction coefficients al-
lowing for a direct evaluation of the demagnetizing field at any position in
space (except corners) may be evaluated with the help of the following inte-
grals [62]:

H111
u =

∫ ∫ ∫

u

ρ3
dudvdw = +uPu − vLw − wLv

H111
v =

∫ ∫ ∫

v

ρ3
dudvdw = +vPv − wLu − uLw

H111
w =

∫ ∫ ∫

w

ρ3
dudvdw = +wPw − uLv − vLu

H110
u =

∫ ∫

u

ρ3
dudv = −Lv

H110
v =

∫ ∫

v

ρ3
dudv = −Lu

H110
w =

∫ ∫

w

ρ3
dudv = +Pw

H011
u =

∫ ∫

u

ρ3
dvdw = +Pu

H011
v =

∫ ∫

v

ρ3
dvdw = −Lw

H011
w =

∫ ∫

w

ρ3
dvdw = −Lv

H101
u =

∫ ∫

u

ρ3
dudw = −Lw

H101
v =

∫ ∫

v

ρ3
dudw = +Pv

H101
w =

∫ ∫

w

ρ3
dudw = −Lu .

(90)

B Potential : useful integrals

Defining ρ =
√

(u2 + v2 + w2), Lu = 1
2 ln(ρ+u

ρ−u ), Qu = u arctan(vw
uρ ), and

Lv, Lw, Qv, Qw through permutation in the variables u, v, w, the necessary
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integrals for the computation of the cell- or tile-averaged scalar potential list
as follows [62]:

F 220 =
1

2
u(v2 − w2)Lu +

1

2
v(u2 − w2)Lv − uvQw +

1

6
ρ(2w2 − u2 − v2)

F 202 =
1

2
w(u2 − v2)Lw +

1

2
u(w2 − v2)Lu − wuQv +

1

6
ρ(2v2 − w2 − u2)

F 022 =
1

2
v(w2 − u2)Lv +

1

2
w(v2 − u2)Lw − vwQu +

1

6
ρ(2u2 − v2 − w2)

F 211 =uvwLu +
1

6
w(3u2 − w2)Lv +

1

6
v(3u2 − v2)Lw−

1

6
u(uQu + 3vQv + 3wQw) − 1

3
ρvw

F 112 =uvwLw +
1

6
v(3w2 − v2)Lu +

1

6
u(3w2 − u2)Lv−

1

6
w(wQw + 3uQu + 3vQv) −

1

3
ρuv

F 121 =uvwLv +
1

6
u(3v2 − u2)Lw +

1

6
w(3v2 − w2)Lu−

1

6
v(vQv + 3wQw + 3uQu) −

1

3
ρwu

F 221 =
1

6
uw(3v2 − w2)Lu +

1

6
vw(3u2 − w2)Lv+

1

24
(6u2v2 − u4 − v4)Lw − 1

6
uv(uQu + vQv + 3wQw) +

1

24
ρ(2w3 − 3w(u2 + v2))

F 212 =
1

6
wv(3u2 − v2)Lw +

1

6
uv(3w2 − v2)Lu+

1

24
(6w2u2 − w4 − u4)Lv − 1

6
wu(wQw + uQu + 3vQv) +

1

24
ρ(2v3 − 3v(w2 + u2))

F 122 =
1

6
vu(3w2 − u2)Lv +

1

6
wu(3v2 − u2)Lw+

1

24
(6v2w2 − v4 − w4)Lu − 1

6
vw(vQv + wQw + 3uQu) +

1

24
ρ(2u3 − 3u(v2 + w2))

F 222 =
1

24
u(6v2w2 − v4 − w4)Lu+

1

24
v(6w2u2 − w4 − u4)Lv+

1

24
w(6u2v2 − u4 − v4)Lw−

1

6
uvw(uQu + vQv + wQw) +

1

60
ρ(u4 + v4 + w4 − 3(u2v2 + v2w2 + w2u2)) .
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(91)

All of these integrals are equal to their counterparts in [6]. The F 200 inte-
gral in [6] proves, however, erroneous; it should read: F 200 = uLu − ρ.
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