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Abstract

The problems of estimating a common intersection point from a collection of straight lines and of testing the hypothesis that such a point exists
are considered. The relationship to the error-in-variables regression and to the intersection–union principle is explored. Robust rank-based
procedures for this problem are suggested, and the results of Monte Carlo simulation are reported. An example of isokinetic relationship in
hexachlorobiphenyl is reviewed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction: determination of the iso-equilibrium point

The goal of this paper is to develop statistically rigorous
procedures for confidence estimation of a common intersection
point from a collection of straight lines and for testing the
hypothesis that such a point exists. These problems appear in
several chemistry applications, in particular, in the study of the so-
called isokinetic relationship [1–3]. The author encountered them
when consulting on statistical analysis of an empirical depen-
dence study between enthalpies and entropies in a series of related
reactions among polychlorinated biphenyls. In this study it was
important to establish inferential techniques for the compensation
and the iso-equilibrium effects. In statistical terms, the issues are
to confirm a linear relationship between the two variables and to
test the existence of a common intersection point for several linear
models (in which case the isokinetic hypothesis holds.).

An Excel program to test the isokinetic hypothesis has been
presented in [4]. We discuss properties of this likelihood ratio test
in Section 2 which also contains the form of confidence regions
for the intersection point. Section 3 is dedicated to robust rank-
based procedures in this problem. Simulation results and an
example are given in Section 4. Section 5 discusses an example of
isokinetic relationship in hexachlorobiphenyls.
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2. Least squares model

A number, say, ℓ, ℓ ≥ 3, of linear statistical models is
postulated. According to these the data yik has the form

yik ¼ mixik þ bi þ �ik ; k ¼ 1; N ; ni; i ¼ 1; N ; S : ð1Þ
Here mi, bi denote the unknown slope and intercept of the ith

model. In chemistry applications x's correspond to reciprocals
of temperatures, y's are logarithms of rate or equilibrium
constants. In this section ϵik are supposed to be independent
normal errors with mean 0 and the unknown but common
variance σ2. The unbiased estimates of the slope and of the
intercept are provided by the classical least squares estimators,

m̂i ¼
P

k xik � Pxið Þ yik � Pyið Þ
S2i

; ð2Þ

̂b
?

i ¼ Pyi � m̂i
Pxi: ð3Þ

Here x̄ i=ni
−1 P

k xik, ȳ i=ni
−1 P

k yik, Si
2 =

P
k(xik− x̄ i)2.

According to the null hypothesis H0 all lines y=mix+bi have
a common intersection point, i.e. for some x0 and y0,

m1x0 þ b1 ¼ m2x0 þ b2 ¼ N ¼ mS x0 þ bS ¼ y0; ð4Þ
or

bi ¼ y0−mix0; i ¼ 1; N ; S : ð5Þ
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In other words, ℓ straight lines having a common intersection
point is equivalent to the linear relationship among ℓ pairs (bi,
mi) with y0 for the intercept, and −x0 for the slope.

Since m̂i and b̂i
⋆ are dependent, it is convenient to put

b̂i ¼ ̂b
?

i þm̂i
Pxi ¼ Pyi: ð6Þ

Then m̂ i, b̂i are uncorrelated normal with means mi, mi x̄ i+
bi, and variances Var(m̂i)=σ

2Si
−2, Var(b̂i)=σ

2/ni. We also put
SP
2 =∑ik [ yi k− ȳ i− m̂i (xik− x̄ i)]2, which has the distribution of

the form σ2χ2(ν), where ν=∑(ni−2)=N−2ℓ.
To find the maximum likelihood estimators of x0 and y0, one

can use only (complete) sufficient statistics m̂i, ȳ i, and SP
2. The

negative log-likelihood function for these statistics has the form
(up to a constant term not involving unknown mi, x0, y0 and σ

2),

L mif g; x0; y0; rð Þ ¼ N log r

þ 1
2r2

X
i

S2i mi �m̂ið Þ2þ
X
i

ni mi
Pxi � x0ð Þ � Pyi þ y0ð Þ2þS2P

" #
:

ð7Þ

If the minimizer x̂0 were found, the value of mi corresponding
to the largest likelihood is

̂m̂i ¼ S2i m̂i þ ni
Pxi � ̂x0ð Þ Pyi � ̂y0ð Þ

S2i þ ni
Pxi � ̂x0ð Þ2 ¼

P
k xik � ̂x0ð Þ yik � ̂y0ð ÞP

k xik � ̂x0ð Þ2 ; ð8Þ

as

S2i þ ni
Pxi � x0ð Þ2¼

X
k

xik � x0ð Þ2: ð9Þ

Thus, m̂̂i is a convex combination of two slopes, m̂i and ( ȳ i− ŷ0) /
(x̄ i− x̂0).

Algebra shows that the weighted sum of “residuals” ȳ i− m̂i

(x̄ i − x̂ 0) estimates y0,

̂y0 ¼
P

i
niS2i

Pyi�m̂i
Pxi� ̂x0ð Þð Þ

S2i þni
Pxi� ̂x0ð Þ2P

i
niS2i

S2i þni
Pxi� ̂x0ð Þ2

: ð10Þ

However, determination of x̂ 0 demands numerical minimi-
zation of the function of x0,

G x0ð Þ ¼
X
i

niS2i
Pyi � m̂i

Pxi � ̂x0ð Þð Þ2
S2i þ ni

Pxi � x0ð Þ2 �
P

i
niS2i

Pyi� m̂i
Pxi�x0ð Þð Þ

S2i þni
Pxi�x0ð Þ2

� �2
P

i
niS2i

S2i þni
Pxi�x0ð Þ2

¼
X
i

niS2i
S2i þ ni

Pxi � x0ð Þ2
Pyi � m̂i

Pxi � x0ð Þ �
P

j
njS2j

Pyj� ̂mj
Pxj�x0ð Þð Þ

S2j þnj
Pxj�x0ð Þ2P

j
njS2j

S2j þnj
Pxj�x0ð Þ2

2664
3775
2

:

ð11Þ
To use iterative optimization methods, one needs an initial

approximation for x̂0, which is discussed below. The two-
dimensional likelihood optimization in x0, y0 is considered in
[5].
After x̂0 is found, the (biased) maximum likelihood estimator
of σ2 is determined from the formula,

̂r2 ¼ G ̂x0ð Þ þ S2P
N

; ð12Þ
and

max L mif g; x0; y0; rð Þ ¼ N þ N
2

log ̂r2: ð13Þ
It is easy to see that in the unconstrained model

max L mif g; bif g; rð Þ ¼ N þ N
2

log
S2P
N

: ð14Þ

These formulas give the form of the likelihood ratio test
statistic, based on NG(x̂0) / SP

2, which has approximate χ2-
distribution with ℓ−2 degrees of freedom.

The test statistic in [4],

F ¼ mG ̂x0ð Þ
S � 2ð ÞS2P

; ð15Þ

is suggested to reject the null hypothesis: when FNFα(ℓ−2, ν),
the α-critical point of F-distribution with ℓ−2 and ν degrees of
freedom. Indeed for large N, one can replace N by ν and the
approximate χ2-distribution with ℓ−2 degrees of freedom by
the F-distribution with ℓ−2 and ν degrees of freedom.

The statistic (15) can be motivated by the intersection–union
principle. Indeed, the likelihood ratio test of the null hypothesis
(4) for a known x0 in our notation has the form

Fx0 ¼
mG x0ð Þ
S � 1ð ÞS2P

: ð16Þ

Thus, F=(ℓ−1)(ℓ−2)−1 minx0 Fx0 with Fx0 having the (exact)
F-distribution with ℓ−1 and ν degrees of freedom [6]. If our
null hypothesis is rejected when minx0 Fx0 exceeds Fα(ℓ−1, ν),
then the level of the resulting test will be bounded above by α
[7], i.e. the corresponding test will be conservative. But since
Fα(ℓ−2, ν)b (ℓ−1)(ℓ−2)−1 Fα(ℓ−1, ν), the definition (15)
attempts to compensate for conservativeness of the intersection–
union test by using smaller degrees of freedom, ℓ−2, not ℓ−1.

The known duality between hypothesis testing and confi-
dence sets gives the (1−α)-confidence region for x0,

R1 ¼ x0 : G x0ð Þ V Fa S � 1; mð Þ S � 1ð ÞS2P
m

� �
: ð17Þ

A necessary condition for this region to be an interval is that

lim
jx0jYl

G x0ð Þ¼
X
i

S2i m̂i � Pmð Þ2NFa S � 1; mð Þ S � 1ð ÞS2P
m

:

ð18Þ
Here m̄=ℓ

−1∑i m̂i.
When x0 and y0 are both known, the likelihood ratio test of

the null hypothesis (4) has a similar form

Fx0y0 ¼
mG x0; y0ð Þ

S S2P
; ð19Þ

where

G x0; y0ð Þ ¼
X
i

niS2i
Pyi−m̂i

Pxi � x0ð Þ � y0ð Þ2
S2i þ ni

Pxi � x0ð Þ2 : ð20Þ
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Now Fx0y0 has the F-distribution with ℓ and ν degrees of
freedom. As above, one obtains the (1−α)-confidence region
for (x0, y0),

R ¼ x0; y0ð Þ : G x0; y0ð Þ V Fa S ; mð Þ S S
2
P

m

� �
: ð21Þ

Under condition (18) this region typically has an elliptical
shape. Since (niSi

2) / [Si
2 +ni ( x̄ i−x0)2] ≤ ni, R always contains

the ellipsoid,X
i

ni
Pyi � m̂i

Pxi � x0ð Þ � y0ð Þ2 V Fa S ; mð Þ S S
2
P

m
: ð22Þ

To find an initial approximation to optimize G(x0), one can
use the fact that under the null hypothesis the least squares
estimators m̂i and ȳi satisfy a linear statistical relationship,

m̂i ¼ mi þ di; ð23Þ
Pyi ¼ y0 þ mi

Pxi � x0ð Þ þ �i: ð24Þ
Provided that Var(m̂i)≡σm

2, Var( ȳi)≡σb
2, and x̄i≡ x̄ (which

implies balancedness of the model), the results of the error-in-
variables regression theory are applicable assuming that the
ratio σb

2/σm
2 =λ, λN0, is known. In practice, for moderately

unbalanced models, one can take n and x̄ to be average values
of ni and x̄i, and estimate λ as (S1

2/n1+…+Sℓ
2 / nℓ) / ℓ. A

classical solution of error-in-variables regression parameter
estimation [8] leads to the following estimators of x0 and y0,

̂x0 ¼ Px�
sbb � ksmm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sbb � ksmmð Þ2þ4ks2mb

q
2smb

; ð25Þ
and

̂y0 ¼ Pm ̂x0 � Pxð Þ þ Py: ð26Þ
Here

smm ¼
X
i

m̂i � Pmð Þ2; ð27Þ

sbb ¼
X
i

Pyi �
PPy

� �2
; ð28Þ

smb ¼
X
i

m̂i � Pmð Þ Pyi �
PPy

� � ð29Þ

with y==ℓ
−1P

i ȳ i. An experienced chemometrist might have a
reasonable idea about the relative order of uncertainties in
estimators m̂i and b̂i, which can be used to choose λ. For
example, if σm

2≪σb
2, i.e. if Si

2≫ni, then one can employ the
classical linear regression formulas,

̂x0 ¼ Px� smb
smm

: ð30Þ

In the perfectly balanced case when ni≡n, Si
2≡S2, and

x̄i= x̄, all weights in (10) are equal, (26) holds, and x̂0 is the
minimizer of the ratio of two quadratic polynomials in x0,

G x0ð Þ ¼ S2
P

i
Pyi �

PPy� m̂i � Pmð Þ Px� x0ð Þ	 
2
S2=nþ Px� x0ð Þ2 : ð31Þ

Thus (25) is met with λ=n−1S 2.
An alternative initial approximation can be obtained by
averaging the coordinates of intersection points for pairs of
lines. Now we sum up the results of this Section.

Theorem 2.1. The likelihood ratio test of H0 when the errors
are normally distributed is given by Eq. (15), where x̂0 is the
minimizer of the function G(x0), with Eq. (25) furnishing an
initial approximation. The confidence region R for (x0, y0) is
indicated in Eq. (21), and the confidence region for x0 is
provided by Eq. (17).

3. Least-absolute-deviations regression

The normality assumption in the linear regression model (1)
may not hold as in many applications the errors have a heavier
tail distribution than normal. For this reason procedures insen-
sitive to outliers are desirable.

In this section we accept a setting when errors ϵ's have a
density f with zero median, f(0)N0. One of the commonly used
robust estimators of the slope mi is

emi ¼ wmed
yik � yij
xik � xij

� �
; k ¼ 1; N ; ni; i ¼ 1; N ; S ; ð32Þ

where wmed means the weighted median of data points in the ith
regression model taken over all values kb j, such that xik ≠ xij,
with the weights |xik−xij|. In other words, the ni(ni−1)/2 ratios,
(yik−yij) / (xik−xij), are sorted from smallest to largest, and the
observation in this series corresponding to the cumulative sum of
similarly ordered weights closest to ∑kb j |xik−xij|/2 is the
weighted median, e.g. [9]. This estimator is known to minimize
the sum of absolute deviations∑k |yik−mixik| (or∑k |yik−y0−mi

(xik−x0)|), as well as the Wilcoxon-type dispersion measure,

D mið Þ ¼
ffiffiffiffiffi
12

p

ni þ 1

X
k

rk mið Þ � ni þ 1

2

� �
yik � mixikð Þ: ð33Þ

Here rk(mi) is the rank of yik−mixik among their ordered values.
ThusD(mi) provides ameasure of goodness-of-fit for the ithmodel.

Another popular estimator is

emi ¼ med
yik � yij
xik � xij

� �
; i ¼ 1; N ; S ; ð34Þ

the median of empirical slopes. This estimator attempts to make
the residuals and x's uncorrelated after the Kendall tau
coefficient,P

k; j sign rk mið Þ � rj mið Þ� �
qi k � qi j
� �

ni ni � 1ð Þ : ð35Þ

Here for fixed i, qik denotes the rank of xi k . For both of these
statistics the corresponding estimator of the intercept is the
median of residuals, ẽik=yik− m̃i xi k ,ebi ¼ med eei kð Þ: ð36Þ

In the symmetric case, f (−x)= f (x), the recommended
intercept estimator is med{(ẽ i k+ ẽi j) / 2}, but it will not be the
maximum likelihood estimator in our setting.



Table 2
The rescaled by σ2 mean squared errors of estimators of x0, y0 based on normal
theory x̂0 and ŷ0, and rank-based x̃0 and ỹ0 for several sample numbers ℓ

ℓ=3 ℓ=4 ℓ=5 ℓ=10 ℓ=20

I (15) 0.077 0.044 0.031 0.012 0.006
(40) 0.113 0.068 0.047 0.021 0.008

II (15) 0.140 0.094 0.063 0.024 0.012
(40) 0.082 0.053 0.033 0.015 0.008

III (15) 0.077 0.066 0.043 0.022 0.011
(40) 0.013 0.012 0.011 0.005 0.002

IV (15) 4.57e6 2.33e6 7.24e5 8.6e4 2.0e4

(40) 0.223 0.131 0.087 0.037 0.016
V (15) 0.186 0.116 0.098 0.033 0.014

(40) 0.152 0.093 0.077 0.021 0.010
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Different estimators of the slope, m̌i, and of the intercept, b̌i,
are found as minimizers of the sum of absolute deviations
∑k |yik−mixik−bi| for i=1,…,ℓ. By using these statistics, one
can construct the likelihood ratio test assuming that the
errors obey the Laplace (double exponential) distribution with a
density,

f uð Þ ¼ 1
2r

exp � juj
r

� �
: ð37Þ

In this case the (negative) log-likelihood function has the
form

L mif g; bif g; rð Þ ¼ N log rþ 1
r

X
i;k

jyik � mi xik � bij; ð38Þ

so that m̌i and b̌i are maximum likelihood estimators which can
be evaluated after the algorithms in [10]. Also

L mif g; x0; y0; rð Þ ¼ N log rþ 1
r

X
i;k

jyik � y0 � mi xik � x0ð Þj;

ð39Þ
and emi in (32) is the maximum likelihood estimator of mi for
any fixed x0, y0 so that it is the maximum likelihood estimator
under the null hypothesis.

As in Section 2, the likelihood ratio test statistic is

eF ¼
2 N � Sð Þ min x0

P
i; k j yik � ey

0
� emi xi k � x0ð Þj �P

i; k jyi k � m̌i xik � b̌ij
h i

S � 2ð ÞPi; k jyi k � m̌i xi k � b̌ij
;

ð40Þ
where

ey0 ¼ ey0 x0ð Þ ¼ med yi k � emi xi k � x0ð Þf g: ð41Þ
The distribution of F̃ under H0 can be approximated by the

F-distribution withℓ−2 and 2(N−ℓ) degrees of freedom. Indeed,
2∑ik |yik−m̌ixik− b̌i | / σ has approximate χ2-distribution with
2∑(ni−1)=2(N−ℓ) degrees of freedom, and the numerator in
Eq. (40) is a multiple of χ2-random variable withℓ−2 degrees of
freedom.
Table 1
The observed significance level of the normal-based test (15) and the rank-based
test (40) for α=0.05 and several sample numbers ℓ

ℓ=3 ℓ=4 ℓ=5 ℓ=10 ℓ=20

I (15) 0.05 0.05 0.05 0.05 0.05
(40) 0.04 0.04 0.04 0.04 0.04

II (15) 0.08 0.07 0.06 0.05 0.05
(40) 0.02 0.02 0.01 0.01 0.01

III (15) 0.04 0.04 0.05 0.05 0.05
(40) 0.03 0.03 0.03 0.02 0.02

IV (15) 0.02 0.02 0.02 0.02 0.04
(40) 0.01 0.01 0.006 0.005 0.004

V (15) 0.05 0.05 0.05 0.05 0.04
(40) 0.02 0.02 0.02 0.01 0.01
It is known [11] that the approximate joint distribution of m̌i, b̌i,
as well as of b̃i, m̃i, is normal with the mean (bi, mi) and the
covariance matrix

1

4 f 2 0ð Þni S2i
S2i þ ni

Px 2
i �ni

Pxi
�ni

Pxi ni

� �
: ð42Þ

By using this fact one can apply the results of the error-in-
variables robust regression theory [12] and estimate (x0, y0)
under H0 as the minimizer of

2 f 0ð Þ
X
i

j ebi þ emi x0 � y0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ebi þ emi x0 � y0


 �r ¼
X
i

Sijebi þ emix0 � y0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i =ni þ Pxi � x0ð Þ2

q :

ð43Þ
In the balanced case

ey0 ¼ med ebi þ emix0
� �

; ð44Þ
while x̃0 is the minimizer in x0 of the ratio,P

i j ebi þ emix0 � ey
0
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2=nþ Px� x0ð Þ2
q : ð45Þ

This point is a good initial approximation to x0 in Eq. (40).

Theorem 3.1. The likelihood ratio test of H0, when the errors
have a Laplace distribution, is given by F̃ in Eq. (40) with m̃i

defined by Eq. (32) and ỹ0 as in Eq. (41).

According to our simulations some of which are reported in
Section 4, the test based on Eq. (40) is conservative. Upon the
whole the procedure (40) turns out to be quite robust against y-
outliers, which are of most interest in chemical applications.
Also it has much higher power against many alternatives for
which the regression lines do not intersect.

The corresponding (1−α)-confidence set for (x0, y0) has the
form

x0; y0ð Þ :
X
i; k

j yi k � y0 � emi xi k � x0ð Þj
(

V
S FaðS ; 2ðN � S ÞÞ

2ðN � S Þ þ 1

� �X
i; k

j yi k � m̌i xi k � ̌bijg;

ð46Þ



Table 3
The power of the normal-based test (15) and of the rank-based test (40) against
the parallel lines alternative for α=0.05 and several sample numbers ℓ

ℓ=3 ℓ=4 ℓ=5 ℓ=10 ℓ=20

I (15) 0.04 0.05 0.06 0.06 0.06
(40) 0.99 0.99 0.99 0.99 0.99

II (15) 0.06 0.06 0.06 0.06 0.07
(40) 1.00 1.00 1.00 1.00 1.00

III (15) 0.05 0.05 0.05 0.05 0.06
(40) 0.99 0.99 0.99 1.00 1.00

IV (15) 0.05 0.06 0.08 0.12 0.17
(40) 0.98 0.99 0.99 0.99 0.99

V (15) 0.01 0.02 0.04 0.04 0.04
(40) 0.99 0.99 0.99 1.00 1.00

Table 5
The data in the HEXA example

x y1 k1 y2 k2 y3 k3 y4 k4

3.28947 −3.8014 8 −3.6950 9 −3.5981 8 −3.3868 6
3.35570 −4.0126 13 −3.8342 13 −3.7163 13 −3.3131 13
3.43643 −5.0970 6 −4.6106 6 −4.3681 5 −4.0172 5
3.52113 −6.3649 8 −5.5038 9 −4.9789 10 −4.3025 10
3.61011 −8.2089 8 −7.0854 7 −6.1159 8 −4.9982 8

The variable x denotes the values of inverse temperature, yℓ is the averaged
logarithms of rate, kℓ is the number of repeats, ℓ=1,…, 4.
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and this region is always convex. Similarly, with S(xo)=∑i,k |yik−
ỹ0−m̃i(xik−x0)|, the (1−α)-confidence interval for x0 is

x0 : S x0ð ÞV S � 1ð ÞFa S � 1; 2 N � Sð Þð Þ
2 N � Sð Þ þ 1

� �X
i;k

j yik � m̌i xik � b̌ij
( )

:

ð47Þ
4. Monte Carlo simulation results

Monte Carlo simulation was used to evaluate comparative
performance of the normal-based method given in Eq. (15) and
with the robust rank-based test from Eq. (40). We used the
following error distributions: (I) the normal with σ=0.1, (II) the
Laplace distribution with σ=0.196/ log 10=0.8512…, (III) the
logisitic distribution, with σ=0.196/ log 19, (IV) the Cauchy
distribution with σ=0.196/ tan(0.45π), (V) the contaminated
normal distribution with the distribution function 0.8Φ(x/σ)+
0.2Φ(x/(3σ)), σ=0.196/3.47. The choice of σ was motivated
by matching 95%th percentiles of all these distributions. The
Table 4
The confidence coefficients (upper lines) and the standard errors (lower lines) of
the normal-based confidence interval (17) and of the rank-based interval (47) for
several sample numbers ℓ

ℓ=3 ℓ=4 ℓ=5 ℓ=10 ℓ=20

I (17) 0.96 0.95 0.95 0.95 0.95
0.051 0.039 0.029 0.015 0.010

(47) 0.92 0.89 0.87 0.82 0.80
0.053 0.045 0.039 0.021 0.017

II (17) 0.94 0.94 0.93 0.92 0.91
0.077 0.065 0.051 0.047 0.045

(47) 0.95 0.96 0.96 0.95 0.93
0.043 0.027 0.012 0.010 0.007

III (17) 0.95 0.95 0.95 0.96 0.96
0.033 0.025 0.016 0.005 0.003

(47) 0.94 0.93 0.92 0.87 0.84
0.022 0.016 0.011 0.004 0.002

IV (17) 0.60 0.66 0.73 0.82 0.87
0.343 0.348 0.203 0.068 0.005

(47) 0.98 0.98 0.97 0.94 0.89
0.025 0.019 0.014 0.006 0.003

V (17) 0.95 0.95 0.95 0.95 0.95
0.024 0.017 0.012 0.005 0.004

(47) 0.95 0.93 0.88 0.80 0.79
0.015 0.010 0.008 0.003 0.002
simulations were performed for ni≡40 with xik, k=1,…, n
being uniformly distributed on the interval (−0.5, 0.5), bi≡0,
mi= i, i= 1,…, ℓ. Different x designs, namely, those
corresponding to the order statistics from normal or double
exponential distributions and different, smaller values of ni
were also employed. These results are not reported here as the
conclusions were similar. In these simulations H0 holds with
x0=y0=0.

Table 1 contains the observed values of the significance level
of tests (15) and (40) when α=0.05. It turns out that the rank-
based test (40) is conservative while (15) maintains its
significance level rather well (except for the Cauchy distribu-
tion.) Table 2 reports the observed values of the mean squared
errors of estimators of x0, y0 for the normal theory based x̂0, ŷ0,
and of the Laplace distribution motivated procedure x̃0, ỹ0 from
(40). These errors are rescaled by the corresponding values of
σ2. Not unexpectedly, the estimator x̃0, ỹ0 while exhibiting in
the case I almost the same performance as the normal theory
based procedure, outperforms that rule in all other cases. For the
Cauchy distribution the contrast is most dramatic as the ratio of
the sum of the mean squared errors of x̂0 and ŷ0 and of x̃0 and ỹ0
exceeds 107. Also for non-normal distributions the latter
estimators typically have much smaller bias than x̂0 and ŷ0.

The empirical power of these tests is reported in Table 3 in
the case when mi≡0, bi= i, i=1…, ℓ, i.e., the regression lines
are parallel. Even for the normal distribution the power of the
Fig. 1. The data in the HEXA example. The variable x stands for inverse
temperature, y's are the averaged logarithms of rate constants.



Fig. 2. Four fitted straight lines in the HEXA example. The first sample line is
solid, the second dotted (:), the third is dashed (–), and the fourth is marked by
dashdots (-.).

Fig. 4. The graph of function G(x0) for the HEXA set. The straight line
corresponds to ℓFα(ℓ, ν)SP

2/ν.
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test (15), which is based on this distribution, is just slightly
above its nominal level α=0.05. This power does not exceed
0.17. However, Eq. (40) has almost zero probability of Type II
error. In the Table 4 the standard error (half-width) and
confidence coefficient of the confidence intervals (17) and (47)
of both procedures are given.

For all considered non-normal distributions the rank-based
methods outperform the normal theory based inferential
procedures. In this sense the double exponential distribution
seems to provide a better model than the normal distribution.
Note that one can choose one of these models by using the
likelihood ratio test of the most powerful invariant test [13]
applied to the residuals.

5. HEXA example

Dr. H. Bamford (Chesapeake Biological Laboratory, Uni-
versity of Maryland) has kindly provided the author with a data
Fig. 3. Two confidence regions for the intersection point (x0, y0) in the HEXA
example.
set of enthalpies and entropies for hexachlorobiphenyls. In this
set summarized in Table 5, with the number of different samples
ℓ=4, x's correspond to reciprocals of temperatures (enthalpies),
and y's reported in this table are the averaged logarithms of rate
or equilibrium constants (entropies).

In the experiment for each fixed value of the temperature (five
distinct values are given in the first column of the Table 5), several
repeated measurements were taken. Thus for the first value T=1/
3.28947 the first sample had k1=8 repeats, the second had k2=9,
etc.. The total sample sizes are: n1=8+13+6+8+8=43, n2=9+
13+6+9+7=44, n3=8+13+5+10+8=44, n4=6+13+5+10+
8=42. The full data set is reproduced in [14]. Fig. 1 shows the
scatter-plot of these samples.

The slope estimators are m̂1=−14.1876, m̂2=−10.4815,
m̂3=−7.9460, m̂4=−10.8954, and ȳ1=−5.3429, ȳ2=−4.7703,
ȳ 3 = − 4.4921, ȳ 4 = − 3.9640; x̄ 1 = 3.4328, x̄ 2 = 3.4275,
x̄3=3.4367, x̄4=3.4437; S1

2 =0.5556, S2
2 =0.5513, S3

2 =0.5706,
S4
2 =0.5251, SP

2 =0.0895. The null hypothesis consists in
Fig. 5. The graph of function S(x0) for the HEXA set. The straight line
corresponds to [0.5(ℓ−1)Fα(ℓ−1, 2(N−ℓ))/(N−ℓ)+1]∑|yik− m̃ixik− b̃i|.
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existence of a common intersection point of the fitted lines
portrayed in Fig. 2.

The normal theory procedure (15) gave the following
answers: x̂0=3.279 and ŷ0=−3.155; F=2.2076 degrees of
freedom 2 and 165, so that the P-value is about 0.126. The
corresponding values obtained from rank-based method (47) are
x̃0=3.289, ỹ0=−3.185 with larger P-value 0.877. The approx-
imate normal error-in-variables estimators (25) and (26) were
3.269 and −3.064.

The two 95%-confidence regions for x0, y0 are portrayed in
Fig. 3. The normal-based confidence region from Eq. (21)
(centered at 3.269, −3.075) is much wider than the rank-based
region obtained from the corresponding test Eq. (46) (centered
at 3.291, −3.190.) This phenomenon has been confirmed by
many simulations of non-normal distributions. The normal
theory gives 95%-confidence region for x0 based on Eq. (15) as
(3.148, 3.292), while that obtained from rank-based (47) is
much shorter: (3.2674, 3.3159) (Figs. 4 and 5).

6. Conclusions and acknowledgement

The suggested robust testing procedure (40) is a good
alternative to the normal distribution based test (15). The nature
of the latter method is elucidated. An advantage of the rank-
based method is that commonly it leads to smaller confidence
intervals (regions) for the intersection point, whereas the normal
theory based procedure may result in very wide or even infinite
intervals especially when outliers are present. Typically the
rank-based procedure has larger power function, much smaller
bias and smaller mean squared error for distributions whose tails
are heavier than normal.
This research was supported by NSA grant #H98230-06-1-
0068. The author is grateful to Stefan Leigh for his interest in
this work, and for NIST summer students Van Molino and Chiu
Yeung for help with calculations.
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