© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Test Sequence Generation for
Integration Testing of Component
Software*

LEONARD GALLAGHER!, JEFF OFFUTT?

! Information Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA, 2 Information and Software Engineering, George Mason
University, Fairfax, VA 22030, USA

Email: lgallagher@nist.gov, offutt@gmu.edu

Ensuring high object interoperability is a goal of integration testing for object-
oriented software. When messages are sent, objects that receive them should
respond as intended. Ensuring this is especially difficult when software uses
components that are developed by different vendors, in different languages, and
the implementation sources are not all available. A finite state machines model
of inter-operating OO classes was presented in a previous paper. The previous
paper presented details of the method and empirical results from an automatic
tool. This paper presents additional details about the tool itself, including
how test sequences are generated, how several difficult problems were solved,
and the introduction of new capabilities to help automate the transformation
of test specifications into executable test cases. Although the test method is
not 100% automated, it represents a fresh approach to automated testing. It
follows accepted theoretical procedures while operating directly on object-oriented
software specifications. This yields a data flow graph and executable test cases
that adequately cover the graph according to classical graph coverage criteria.
The tool supports specification-based testing and helps to bridge the gap between
theory and practice.

Recewed 30 August 2006; revised 24 August 2007

INTRODUCTION

system and each component is assumed to execute

Many object-oriented (OO) applications are con-
structed from a combination of previously written,
externally obtained components with some new compo-
nents added for specialization. Source is often not avail-
able for the previously written components, yet new
objects must interoperate via messages with objects in
the existing components. This research is concerned
with ensuring that objects inter-operate correctly, par-
ticularly when new objects are added to existing com-
ponents.

In this paper, a class is the basic unit of semantic
abstraction and each class is assumed to have state
and behavior [1, 2]. A component is a collection of one
or more classes that collectively implement a coherent
function. Components inter-operate to implement the

*This paper is an extended version of Automatically Testing
Interacting Software Components, published in the Workshop
on Automation of Software Test (AST 2006), pages 57-63, May
2006, Shanghai, China.

independently, thereby allowing asynchronous behavior.
For simplicity, we assume the interface to a component
is just the union of the interfaces to its classes. An
object is an instance of a class. FEach object has
state and behavior, where state is determined by the
values of variables defined in the class, and behavior is
determined by methods defined in the class that operate
on one or more objects to read and modify their state
variables. The behavior of an object is modeled as the
effect the methods have on the variables of that object
(the state), together with the messages it sends to other
objects. Variables declared by the class that have one
instance for each object are called instance variables,
and variables that are shared among all objects of the
class (static in Java) are class variables. This research
is independent of programming language and the paper
uses a mix of Java and C++ terminology.

Our test scenario is that a new or modified component
is being integrated into an existing collection of

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

2 GALLAGHER & OFFUTT

components. Thus we are testing how the new
component interacts with the existing components.

Behavior of objects is captured as a set of transition
rules for each method and described as finite state
machines that are extended with transition triggering
information [3, 4, 5]. A transition is triggered by
a call to a method with a particular signature, and
is comprised of a source state, a target state, an
event, a guard, and a sequence of actions. FEvents are
represented as calls to member functions of a class.
A guard is a predicate that must be true for the
transition to be taken; guards are expressed in terms of
predicates over state variables (possibly from multiple
classes) and input parameters to the method. An
action is performed when the transition occurs; actions
are usually expressed as assignments to class member
variables, calls sent to other objects, and values that
are returned from the event method. A sequence of
actions is assumed to be a block of statements in which
all operations are executed if any one is executed.

Pre-conditions and post-conditions of methods can be
derived directly from the transitions. The pre-condition
is a combination of the predicates of the source state
and the guard; the post-condition is the predicate of
the target state. Note that the post-condition derived
from a transition is not the strongest post-condition.
If the tester desired, state definitions could be more
refined, allowing stronger post-conditions, which would
yield larger graphs and more tests. Whether to do so
is a choice of granularity that results in a cost versus
potential benefit tradeoff.

A state transition specification for a class is the set
of state transition rules for each method of the class.
Given a state transition specification for each class, the
goal of this research is to construct test specifications
that are used to construct an executable test suite. Hong
et al. [6] developed a class-level flow graph to represent
control and data flow within a single class. Our previous
paper [7] extended their ideas to integration testing of
multiple interacting classes.

The state transition specification is stored in a
relational database consisting of six tables, as described
in our previous paper [7]. The tables can be populated
in a semi-automatic fashion from existing object-
oriented finite state specification tools (such as the UML
state machine). Some manual effort is currently needed
to identify all the guards necessary to determine which
transition is followed when a given method is invoked
and which actions are performed as side-effects of that
transition. All other database tables and operations
mentioned in this paper are derived algorithmically
from these six.

Transitions that are relevant to the component under
test are used to create a component flow graph, which
includes control and data flow information. Classical
data flow test criteria are applied to this graph and
converted to test specifications in the form of candidate
test paths, and then to executable test cases.

In traditional data flow testing [8], the tester is
provided with pairs of definitions and uses of variables
(def-use pairs), and then attempts to find tests to cover
those def-use pairs. This research stores information
about the specification in the database, represents
object behavior as branch choices in a directed graph,
provides the tester with full def-use paths instead of
just def-use pairs, and provides control mechanisms to
construct calls of external methods that force traversal
of the identified paths.

The rest of this paper describes our tool in more
detail. Section 2 describes how the behavior of an OO
component is modeled as a directed graph of states and
transitions. Section 3 discusses how data flow criteria
are applied to this model; in particular, how definitions,
uses, and def-use paths are described. Section 4
describes how the test criteria are used to generate
sequences of transitions to cover def-use pairs. Section
5 gives numerous details about how test sequences
are automatically generated, and a detailed example
is shown in Section 6. The architecture of our test
environment is described in Section 7, related work is
summarized in Section 8, and conclusions are given in
Section 9.

2. BEHAVIOR IN A DIRECTED GRAPH

A combined class state machine represents the variables,
methods, parameters, states and transitions of all
state transition specifications for all classes in a
system of interoperating components. If a specific
component is identified as the test component in this
system, then transitions from the classes in the test
component form the basis of transitions that are
relevant to that component. Relevant transitions that
call mutator methods in other components of the system
represent outward data flow, whereas transitions that
call actor functions in other components represent
inward data flow. The collection of all transitions
in other components that have a method called by a
relevant transition become relevant transitions to the
test component. The transitive closure of this process
defines the collection of relevant transitions for the test
component.

A component flow graph represents all data and
control flow relevant to a test component. It is a
directed graph derived from the relevant transitions as
follows:

e Every relevant transition is a transition node

e Every state that is either a source state or a target
state of a relevant transition is a state node

e Every non-trivial guard of a relevant transition is
a guard node

e There is a directed edge from every guard node to
its corresponding transition node

e There is a directed edge from every transition node
to its target state

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

OO COMPONENT TESTING 3

FIGURE 1. Path Derived From a Relevant Transition

e There is a directed edge from the source state node
of a transition to either the guard node of that
transition or to the transition node itself if the
guard is trivially true

In general, every relevant transition ¢ produces a path
in the component flow graph from its source state node,
through the guard and transition nodes, to the target
state node. This is shown in Figure 1.

The path in Figure 1 represents control flow from
the state that an object is in when a method event
is invoked, to the guard node that evaluates to true,
to the action of the transition with that guard, to the
target state of the transition. Actions on variables are
also represented by transitions with associated get and
set methods. Transitions with get (or actor) methods
typically do not have non-trivial guards, and never
change the state of an object, so usually produce paths
in the component flow graph only from state nodes
where the method is defined through the transition node
and back to the same state node.

In multi-class systems, state and guard predicates are
allowed to call actor functions from other classes and
the action of a transition is allowed to invoke actor or
mutator functions in other classes. Control and data
flow resulting from these actions is represented by edges
that connect nodes from different classes, as follows:

e If a state or guard predicate, or the action of a
transition, calls an actor method in another class,
there will be an edge from every transition node
of the called method back to the node representing
the calling state, guard or transition.

e If the action of a transition calls a mutator function
in another class, there will be an edge from the
transition node that represents that transition to
the source state node of every transition of the
called method in the other class. In addition, if
the mutator method returns a value, there will be
an edge from every transition node of the called
method back to the transition node of the action
that makes the call.

To illustrate how the component flow graph
represents data and control flow across communicating
objects, consider three objects, objl, 0bj2 and 0bj3,
which are instances of classes A, B and C (note that to
make the example small, these components are single
classes, whereas in general, the components can be
much larger). Class A defines a transition t;, which
represents a mutator function f(), and whose action
defines a variable v. This transition as represented in
a component flow graph is presented in Figure 2. The

transition node is 77, the guard node is G'1, and S, and
Sp are the source and target state nodes. Transition
nodes that define a variable are labeled, such as def v
on node T7. Uses of v are represented by points u; on
edges and inside transition nodes. Both S, and .S, use
v (u; and ug) in their predicate definitions. Function
f() is invoked from some other transition, which is
represented by transition node T,. The get function
for v is represented by transition node Ty, if 0bjl is in
state S, when it is called, and by T,y if 0bj1 is in state
Sh.

Consider 0bj2, and a transition to (transition node
T3). The guard predicate for ¢t (G2) calls the get
function for v in objl. This get is represented by two
edges from obj1, both labeled by get v. G uses v (uy4),
and for it to evaluate to true, the mutator function g()
must be called by some other action (represented by T)
when 0bj2 is in state S.. The action of T5 uses v (us)
and sends a message to obj3 by invoking the mutator
function h(), passing the value of v as a parameter.
Obj2 changes to state Sy as the target state of transition
ty.

Transition t3 handles the function call of h() when
0bj3 is in state S,, if the guard predicate for t3 evaluates
to true. The guard of t3 (G3) uses the value of
the incoming parameter p, which has the value of v,
represented by use ug. The action of t3 uses the value in
a computation (u7). After the action of ¢3 is complete,
obj3 changes to the target state Sy.

In the figure, edges from transition nodes to state
nodes that result from calling mutator functions in
another class are labeled with the name of that function
(callf(), callg(), and callh()). Function names are also
put on edges from transition nodes to guard, state,
and transition nodes if the edge is a result of a call
to a get function in another class (get v). Edges from
source state nodes to guard and transition nodes are
also labeled with the function that is called (f(), g(),
and h()). These labels are used to access metadata
about the functions when the component flow graph is
traversed.

In a general data flow graph, uses of a variable in
a state predicate are represented by use labels on all
edges leaving the corresponding state node (uq, uz, ug);
uses of a variable or parameter in a guard predicate
are represented by use labels on all edges leaving the
corresponding guard node (ug4, ug). These are called
predicate uses. Uses of a variable in the action of a
transition are called computational uses (us, uz). Uses
of a variable in a passed parameter are called parameter
uses (ug, ur).

To summarize, Figure 2 represents the data and
control flow resulting from definition of variable v
by a call of function f in objl, the predicate and
computational use of v’s value in 0bj2, the passing of
that value as a parameter to function h(p), and the
resulting predicate and computational parameter use of
v in the guard and action of ¢3 in 0bj3. This is a flexible

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

4 GALLAGHER & OFFUTT

call f ()

FIGURE 2. Portion of Component Flow Graph

model that can and should be adapted by developers.
For example, if things such as counters are important to
the FSM, they can be captured in the state predicates
(we are currently employing this technique for another
application). Space requirements and limitations are
discussed in the previous paper [7].

How complete our model is will depend on how
complete the design model is. We simply need to ensure
that all metadata from the finite-state specification
is captured. The database representation covers
100% of the state transitions identified in the source
specification, including the guard predicates that are
pre-conditions for each transition, and the actions
(i.e. variable definitions and uses and messages sent
to other objects) of each transition. If the initial
specification covers all possible behaviors via defined
state transitions, then this model captures them all.
Thus, if each class in the source specification is defined
as a state machine, with defined methods that produce
state transitions under specific guard predicates and
defined action blocks that describe actions that are
triggered as part of the transition, then the database
representation is equivalent to the source specification
and all possible behaviors can be derived from that
specification. The difficulty comes when portions of
the source specification are textual sentences that must
be represented more specifically as actions that can
be processed, but this is common to all non-formal
source specifications. One advantage of this approach
is that once the methods and possible states are in
the database, it is possible to do some rather rigorous
testing to ensure that all possible combinations are
addressed.

3. COVERAGE CRITERIA

Testing has long used data and control flow through
programs [8]. Graphs are defined with nodes
representing basic blocks, and edges representing
branching statements in the program. A definition (def)
of a variable z is a node in which z is given a value, and
a wuse is a node in which that value is accessed, either
through the same name or a different name via aliasing.
Data flow graphs form edges from definition nodes to
use nodes, where there is a def-clear control subpath
from the def to the use in the control flow graph. A
def-clear subpath for a variable x is a control subpath
that does not have another definition of z. A DU-pair
is a definition and a use of the same variable such that
there is a def-clear subpath from the def to the use. A
DU-path is a def-clear subpath from a specific definition
to a use.

A number of different coverage criteria can be
defined on data flow graphs, including all-defs, all-
uses and all-paths. These have been discussed and
compared extensively in the literature [8, 9, 10, 11, 12].
The object-oriented testing methodology described here
follows the lead of other researchers and focuses on defs
and uses of class variables in each object. This allows a
tester to focus on testing criteria that require traversal
of a def-use path in the component flow graph from
a transition node that defines a variable to a node or
edge that uses the variable, with no re-definition of the
variable at any node along the path.

The all-uses testing criterion applied to a component
flow graph requires tests to execute at least one path
from each definition of a variable at a transition node

THE COMPUTER JOURNAL VoOL. 00 No. 0, 2006

OO COMPONENT TESTING 5

to each reachable use at another node or edge. In Figure
2, applying the all-uses criterion to variable v in class A
requires tests that will force execution of def-use paths
from transition node T; to each of the uses u; to u7. In
the portion of the component flow graph pictured, one
sees that uses u; and ug are not reachable from 77 and
that any path from T to u; will include subpaths from
T} to each of the uses uz, uq, us and ug.

In general, it is desirable to find two different kinds
of paths in the component flow graph. One is a def-
use path from the definition of a variable to a use that
includes as many other uses as possible. Another is
an ext-int path from an external transition that can
be executed by a tester, which in turn forces execution
of other, possibly internal transitions that need to be
executed as part of a def-use path. Both types of paths
are shown in Figure 2. The path T7 : Sy : Ty : G :
Ty : Se : G3 : T3 is of the def-use type and paths
Ty : Sq : Gy Ty and Ty : S, : Gy : Ty are of ext-
int type. In the def-use path, execution of transition
T} defines v and moves obj1 to the rest state Sp. Then
execution of transition T5 gets the value of v from obj1
and forces traversal of the remainder of the path. If
the methods of 77 and 7% are internal functions that
cannot be executed directly by a tester, then one must
be able to find external functions that can be executed
by a tester in a sequence that forces traversal of the
def-use path.

Construction of def-use paths must satisfy the
following properties:

e Paths must respect the order of execution of
statements in the action of a transition

e Function labels on adjacent transition-to-state-to-
guard edges must be identical

e Guard predicates must be feasible with respect to
passed parameters and current state

e Paths that exit and then re-enter a class must
satisfy a state compatibility rule to ensure that the
state after exit is identical to the state of re-entry

The state compatibility rule requires that if a path
leaves a transition node 7 from class A to go to a node
derived from some other class, and if the path later
returns to the same or another transition node Ty of
class A, then the target state of 77 must be equal to the
source state of T5. This requirement ensures that the
action that causes class A to change state is captured
as part of the path.

Construction of ext-int paths must satisfy all of
the properties of def-use paths, but in addition must
not have any rest states that would require additional
user actions to traverse the path. This ensures that
execution of the identified external transition triggers
successive actions that result in execution of the
identified internal transition.

Our previous paper [7] includes an algorithm that
allows construction of both types of paths. Given the

set of all def-use pairs in a component flow graph it is
possible to partition that set as follows:

e Pairs for which a def-use path can be constructed

e Pairs in which the wuse is provably not reachable
from the def

e Pairs that remain unresolved and for which it is still
unknown whether there exists a feasible, def-free,
path from the def to the use

The def-use paths generated are test specifications for
the all-uses criterion over the component flow graph.
Using the ext-int paths, it is then possible to generate
executable test cases that result in traversal of the test
specifications. Coverage is determined by the number of
def-use pairs that can be resolved by a def-free traversal
of a test specification from the identified def to its use.

4. TEST SPECIFICATION COVERAGE

Given test specifications for the all-uses criterion over
a component flow graph, it is desirable to construct
a sequence of externally executable functions that
when executed will cause traversal of as many of the
underlying def-use paths as possible. A tester begins
with each object of the software system in some initial
state. The initial states determine which external
transitions may be executed by calling various external
functions.

As an illustration of the methodology, consider
the three objects that determined the portion of the
component flow graph in Figure 2. To develop a test
sequence for the def-use path T : S, : Ty : Go : T :
Se : G3 : T3, a tester begins with objects 1, 2 and 3 in
some initial states S1, So and S3. The goal is to execute
a sequence of external functions {Fili = 1,2,...} that
will properly place each object into states that support
execution of the ext-int paths T, : S, : G1 : T1 and
Ty : Sc: Gy : To. The desired sequence of actions and
effects can be seen in Figure 3.

Figure 3 is called a “feather graph,” because there is a
primary path (from the def at T} to the use at T3), and
external paths are needed to put the objects represented
by the primary path into the proper states. These
external paths “feather” in to the primary path and
are essential to ensure controllability [13] of the system
under test. First, if 0bj3 is not already in state S,
some external function F; must be executed to move it
from initial state S5 to state S, through some transition
T4. Next, if obj2 is not already in the source state Sy
for transition T}, some external function F, must be
executed to move it from initial state So to state S,
through some transition 75. This must be done while
keeping 0bj3 in state S.. Next, if objl is not already
in the source state S, for transition 7T, some external
function F3 must be executed to move objl from its
initial state S7 to state S, through some transition T§.
Then external function F); can be executed while 0bj1 is
in state S, to invoke transition T, which in turn calls
function f, which results in transition 77, which defines

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

6 GALLAGHER & OFFUTT

FIGURE 3. External Function Calls to Traverse a Def-Use Path

variable v and puts obj1 in state Sy. State S is defined
to be a rest state for the given def-use path; another
external method must be invoked by the tester to force
continued traversal of the path. Rest states for this and
other paths are labeled in the figure. Next, external
function F5 can be executed while 0bj2 is in state S,
to invoke transition 7}, which in turn calls function g
that results in transition T5. The action of transition T5
gets the value of v from 0bj1 and then sends a message
to obj3 that calls function h and completes traversal of
the desired def-use path from T; to T3. Note that the
def-use path Ty : Sy : Ty : Go : 1o : S. : G3 : T3 has
only one rest state Sp; the other state node in this path,
Se, is a rest state for a different path, i.e. S3: Ty : Se.
The recognition of rest states for a given path in the
component flow graph is an important part of test case
generation.

The generated test sequence is Fi, Fy, F3, Fy, F5.
Care must be taken to choose input parameters
carefully to ensure that guard predicates will be
satisfied and that the desired transitions will be
executed. We have developed tools to automate the
construction of test sequences, as described in the
following sections.

5. TEST SEQUENCE GENERATION

If an object-oriented software system is represented
by a combined class state machine, and if a specific
component of that system has been identified for
integration testing, then the processes described in
Sections 2 and 3 can be used to construct a component
flow graph, a set of def-use candidate test paths, and
a set of ext-int transition triggering paths. Section 4
gives an example of constructing a single sequence of
external function invocations to force the traversal of
a single def-use path. This section describes a more
general approach for constructing test sequences that
force coverage of as many def-use paths as possible,
thereby determining coverage results for integration
testing of the identified component with the remainder
of the software system.

Let CTP be the set of all def-use paths and FXT the
set of all ext-int paths generated from a component flow
graph. CTP is the set of all candidate test paths that
determine the test specifications for integration testing
of the selected component. Let F' be the set of all
external functions defined in the combined class state
specification that could be called in black box testing.
Functions in F' make up the external interface to the
software system and are available for execution as part
of a test suite. The goal of this research is to identify
a sequence of functions F; from F' that when executed
in the identified order will cover as many paths in C'T P
as possible.

Given a software system consisting of multiple
objects, its system state at a given point in time is
defined to be the state of each object at that time.
Suppose a program is in some initial system state S.Sg
and suppose an external function Fj is executed with
some choice of values for any of its input parameters.
Depending on the object states identified by S.Sp,
and depending on the values chosen for any input
parameters, traversal of a subset of paths in EXT will
be initiated. Since none of the paths in EXT have any
rest states, if the guard predicates are satisfied each
path will be traversed to its ending transition node. By
construction of the EXT paths, these ending transition
nodes may be the head definition nodes of a number of
def-use paths in C'T'P, each of which will be initiated
and traversed up to its first rest state. If a path in CT P
has no rest states, then the entire def-use path will be
completed and one can conclude that execution of Fj
covers any such path for which all of its guard predicates
evaluate to true. At the completion of all triggered
transitions with compatible guards, the software system
will be in a new system state S.S;. The test generation
module records both the function and the new system
state. Any system being tested should be in the same
system state; if not, it fails the test at this point in the
test sequence.

The tester then executes a second external function
F5 to initiate another subset of ext-int paths from FXT.

THE COMPUTER JOURNAL VoOL. 00 No. 0, 2006

OO COMPONENT TESTING 7

Some of these paths may then, in turn, initiate a set
of new def-use paths from CTP. In addition, every
execution of a transition in the middle of an ext-int
path, or in the middle of a leg between rest states
of a def-use path, may call functions that trigger the
next transition in a previously initiated def-use path
that is currently in a rest state. Figure 4 presents
the possibilities of choosing successive functions from
F' to initiate new EXT paths, which in turn initiate
new C'T'P paths or force traversals along existing C'T'P
paths to the next rest state. Rest state nodes in a def-
use path are labeled r, and transition nodes that force a
traversal from a rest state to a new leg in a def-use path
are labeled t. The test generation module identifies and
records all of this intermediate action and is able to
predict the new system state at the conclusion of all
triggered events. The state of each object in a system
being tested must not fail the state predicate of any
state in the resulting system state.

An external function F; may initiate multiple new
paths in EXT, and each EXT path may initiate or
extend multiple paths in CTP. At each iteration,
these new, potential, test paths are added to the
existing partially traversed paths that remain active
from previous iterations. Let AT P be the collection of
all such active test paths at this stage of test sequence
generation. This set and its associated metadata
drives subsequent test sequence generation. The test
generation module identifies, records and maintains the
following metadata for every path p in AT P:

e Whether p is a new path, directly generated from
execution of the new Fj, or an existing path in a
rest state from a previous iteration

e For new paths, the point in the path where the
EXT path joins up with the CT P path

e For paths in a rest state, the prior action that
caused the previous leg to be traversed, the location
of the rest state node in the path, and the next
action that if executed would cause traversal of the
next leg

e The variable v defined by the C'T'P portion of p,
and the def-use pair that would be resolved by
successful traversal of p.

e Markers to indicate the current position in p, and
identification of the sequence of transitions that
would be executed to reach the next rest state in p

e Indicators to determine if p is pushed along by
execution of the next action or pulled along by
the reading of some exposed data from the object
associated with the current rest state

For any path in ATP, the path segment from the
current position in the path to the next rest state is
defined to be the current active leg. The test generation
module helps the human tester analyze, very carefully,
the sequence of all transitions in the active legs of all
paths in AT'P. This step currently requires manual
intervention from the tester, who can use domain

knowledge and analyze the predicates in ways that are
currently beyond the ability of the tool. Many of the
paths in AT'P will be mutually inconsistent. Some
will have conflicting guard predicates, some will violate
the state compatibility rule for paths, and some will re-
define a variable that has already been defined by the
definition node at the head of the C'T'P portion of the
path.

The process begins with all transitions triggered by
execution of an external function F; and considers,
in sequence, the transitions in the current active leg
of all paths triggered by F;. Analysis at this step
of test sequence generation will remove from further
consideration any paths in AT P that would produce
inconsistencies in the parallel traversal of all current
active legs. Whenever two or more paths identify
alternative choices for guard predicates to be satisfied
before traversing to the mnext transition, the test
generation module presents these choices to the tester
and, based on the then current system state, helps the
tester decide which transition choices are feasible at
this point in the execution. The human tester merely
responds to choices about which guard predicates are to
be satisfied at each step of the process; the tool presents
only feasible choices and handles all other aspects
of the process. The tester decides which transition
alternatives to pursue, then the test generation module
takes the following actions:

e Delete all paths from AT P that have transitions in
the current active leg with guard predicates that
are inconsistent with the guard predicates of the
chosen transitions

e Identify and delete any paths in AT P that violate
the state compatibility rule

e Delete any paths currently in a rest state whose
next action is inconsistent with any triggered
transition up to this point in the analysis

e Identify and delete any paths in AT P that are
currently at a rest state, but for which the triggered
actions of the current external function result in re-
definition of the def variable

e When a path is fully traversed, mark the CTP
segment as executed; for optimization of choices,
subsequent calls of external functions emphasize
initiation of CT P paths that are not yet executed.

e Delete all completed paths from AT P

e If a path in AT P is currently in a rest state, but
its next action is triggered by the next transition
of some existing active leg, then activate the next
leg of that path

Deleted def-use paths are not lost forever. They may
reappear later after execution of a subsequent external
function, possibly with different input parameter values,
and with selection of new EXT paths that may re-
initiate the desired path. This time, different transition
choices may cause complete traversal to the use node of
this def-use path.

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

8 GALLAGHER & OFFUTT

External System ext-int def-use
Functions States Paths Paths

F SS EXT CTP

F SS

1 0

O O O—~O—~0O—0 O~O—~0—~0

N
F, a O~O~O—~x
F, SS,. OO0~

FIGURE 4. Generating an External Test Sequence

For each execution of an external function Fj, the
test sequence generation algorithm iterates through all
the active legs in AT P until all remaining paths are
at a rest state. At this point the module records the
current system state, S.9;, as the state that each object
in the system should reach after considering all possible
actions triggered by F;. A system under test passes test
F; if each object in the system is in a state consistent
with the recorded system state. With assistance from
the application, the human tester will then choose a
new external function Fj,; to execute as the next test
function in the test sequence, and the process continues.

The algorithm for test sequence generation helps
a human tester make the above choices in a way
that allows maximal coverage of untraversed def-use
paths. It considers every external function that could
be executed during the current system state, S.S;,
and counts the number of feasible, untested paths
in EXT x CTP that might be initiated and the
number of paths in AT'P that might be progressed
along the next leg. With knowledge of these counts,
a human tester can choose the next external function
F; 11 that has the best possibility of maximizing these
counts toward covering the most remaining untraversed
def-use paths. Testers who have more knowledge
and experience will naturally choose more effective
functions. However, even inexperienced testers who
make uninformed choices with respect to choosing
from among conflicting guard predicates should still
get useful test cases because incompatible paths are
automatically eliminated from further consideration.
Further research may help automate this existing
human role in test sequence generation.

After completing the analysis of the triggered effects
of each external function call F;, the test generation
module adds F; to the sequence of test functions
being generated and records the following two pieces
of information:

e The set of def-use paths covered by F;
e The expected system state S.5;

The construction of test sequences continues until as
many def-use paths as possible have been completely
traversed from def to use. In some cases this may
involve construction of multiple test sequences, each
starting with a different initial system state. In other
cases, a single test sequence may suffice to cover all
def-use paths in CTP. In either case, the set of
executable test sequences generated by this process
determines a test suite for integration testing of the test
component with the remainder of the system. Each
test sequence in a test suite is executed against the
implementation. After the triggering effects of each
F;, the implementation should be in the system state
predicted by SS;. If an implementation fails to be in
a system state compatible with SS; it fails the test
sequence. An implementation passes the test suite if
each test sequence in the test suite is completed with
no test sequence failures.

6. CRUISE CONTROL EXAMPLE

As an example of how the test generation module helps
a human tester construct a test sequence, consider the
Cruise Control specification from our previous paper [7].
The Cruise specification consists of multiple objects, the
most important of which are: CruiseUser, CruiseUnit,
Throttle, Engine, Gauges, and Wheel. The CruiseUser

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

OO COMPONENT TESTING 9

models the human controls available for Cruise and
includes an On/Off toggle switch, a Cancel button, and
Set/Decel and Resume/Accel buttons. The CruiseUnit
specifies cruise control logic; it receives messages from
CruiseUser and sends messages to the Throttle, which
in turns sends messages to the Gauges and the Engine.
The Engine gets Gear and DriveRatio information from
the Transmission and sends messages to the Wheel.
The Wheel simulates a Differential, which allows it to
respond gradually to increases or decreases in axelRpm
as set by the Engine. The Wheel then sends Speed
information to the Gauges. The CruiseUnit reads Speed
from the Gauges and takes any appropriate actions.
The Engine object has an ExternalDrag variable to
simulate wind and hills; this variable can be controlled
by the tester to simulate those conditions.

When modeled as interacting finite state machines,
cruise control is one component of a larger automo-
bile system consisting of six components and twelve
classes: Acceleration (GasUser, Throttle, Transmission,
Wheel), Brakes (BrakeUser, BrakeControl), CruiseC-
ontrol (CruiseUser, CruiseUnit), Engine (Engine),
InstrumentPanel (Gauges), SystemControl (AutoSys-
tem, Ignition). The combined finite state specifica-
tion has 44 states, 106 functions, 58 state variables,
44 parameters, and 263 transitions, of which only 160
proved to be relevant for integration testing of the
CruiseControl component with the other five compo-
nents. Using the definitions of Section 2, this specifi-
cation yields a component flow graph with 293 nodes
and 740 edges. Then, applying the methods of Section
3, we found 188 locations where the action of a transi-
tion defines a state variable and 1015 locations where a
variable is directly or indirectly used, yielding a total of
4319 distinct def-use pairs involving the 58 state vari-
ables. Using the all-uses testing criterion and the algo-
rithms from our previous paper [7], we were able to
generate 2372 candidate test paths covering 2063 def-
use pairs while proving that 1494 def-use pairs had no
feasible path from def to use, leaving only 762 def-use
pairs for which it could not be determined if a feasible
test path exists. Externally accessible components in
the example system have 12 external methods that pro-
duce 24 distinct external transitions when considering
different possible source states and guard predicates.
The collection of candidate test paths has 160 distinct
head nodes that define a variable, so it is necessary to
again use the methods of Section 3 to construct ext-
int paths for the potential 3840 external transition to
internal CTP head node pairs. We found 4598 ext-int
paths for 811 such pairs and were able to prove that
the remaining 3029 pairs had no feasible ext-int path.
Many of the generated ext-int paths were superfluous
and only about one hundred were actually used in test
sequence construction.

This methodology has a resource issue in that
generation of the candidate test paths and the ext-int
paths requires a significant amount of off-line storage

of intermediate results. Generation of these paths was
suspended when total database size exceeded 2 gB, even
though not all def-use pairs or source to target nodes
had been resolved; this explains the 762 unresolved def-
use pairs mentioned above.

6.1. Building a Test Sequence

The goal at this point is to use the techniques described
in Sections 4 and 5 to generate a sequence of external
function calls that will link the ext-int paths to the
candidate test paths, covering as many of them as
possible.

Returning to the cruise control example, suppose the
initial system state of the automobile system is that
the automobile is parked and turned off. At that time
there is only one feasible external test function; i.e. use
the ignition to start the car. Inserting the key into the
ignition causes AutoSystem to be created, which in turn
creates several other components. This simple action
covers 25 CTPs. All of the activated components should
be in the predicted states, else the implementation fails
the test.

Turning the key starts the car and activates the
remainder of the components, covering 26 additional
CTPs. At this point all of the automobile system
components are active, there are 431 active candidate
test paths, and the tester has several choices: use
GasUser to increase the gas flow, adjust the controls
on CruiseUser, put the Transmission into gear, and
adjust the engine.ExternalDrag function to increase or
decrease engine rpm. Any of these actions will result in
coverage of additional CTPs, but counting how many of
the active test paths will be advanced by these actions
leads the tester to choose to increase the gas, covering
an additional 25 CTPs and leaving 466 active test paths.

Again the tester has multiple options for external
actions, but chooses to put the car in a forward gear,
thereby covering 50 additional CTPs and leaving 507
active test paths. Continuing in this manner, the tester
uses the metadata that is available at the end of each
external call to make an informed choice of the most
productive next action. At the end of each action,
the components must be in the predicted states or the
implementation fails the test. The tester always has
the option to turn on cruise control, but that action by
itself only covers one CTP; however, it adds a number of
new active test paths and activates a number of sleeping
paths that were in rest states. At each subsequent step
the tester now has options to turn off the engine, turn off
cruise control, push any of the buttons on CruiseUser,
or accelerate to highway speed. The tester chooses to
click the Cancel, Set/Decel and Resume/Accel buttons
on CruiseUser to ensure that they do nothing while
the cruising speed is still below the highway threshold.
These actions cover a small number of additional CTPs.
Finally the tester uses GasUser.position to increase the
gas flow and bring the automobile to highway speed. At

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

10 GALLAGHER & OFFUTT

this point the tester has successfully covered 215 CTPs
and there are 550 active test paths at various rest states.

The metadata on active test paths now shows that
it is a good time to put the system into cruise control.
First the tester pushes the Set/Decel button down, and
then, as a second action, releases it to let it spring back
to its neutral position. The first action only covers 4
CTPs, but adds 9 new active test paths. The second
action, to release the button, adds 272 new active
test paths and covers 57 CTPs, leaving the automobile
cruising at highway speed with the Throttle in an
automatic state and under the control of CruiseUnit,
and with 619 active test paths at various stages of
coverage.

When turned On, the CruiseUnit can be in one of four
states: Cruise, Accel, Decel, and Override. While in
the Cruise state, a Cancel() message from CruiseUser or
from AutoSystem (after sensing Brake or Clutch actions
or a Danger such as excessive speed or overheating) can
cause a transition to the Override state. A Set/Decel
or Resume/Accel message from CruiseUser will cause
CruiseUnit to transition to the Decel or Accel states;
acceleration or deceleration will continue until the user
releases the button, causing a return to the Cruise state
at a new cruise speed, or until a threshold speed is
reached or some Danger is detected by another object,
causing a transition from Accel or Decel to Override.
While in the Cruise state, the CruiseUnit keeps reading
the speedometer and sending Checkstate() messages to
itself to determine if any adjustments are needed to
maintain the cruise targetSpeed.

When the Ignition is On, the Throttle can be in
any of the states Idle, Automatic or Manual. The
Automatic state is achieved when the throttle Floor
and Position variables are equal and above idle position,
probably meaning that the throttle is under the control
of CruiseUnit. The AutoSystem object can also set
the throttle Floor variable, which it does when the
car is warming up. The GasPedal sets the throttle
Position variable and Throttle is in the Manual state
when Position > Floor. Throttle transitions into the
Idle state whenever Position is less than or equal to an
idle threshold position.

Since the Wheel also simulates a Differential, it
can be in Accel, Decel, or DirectDrive states. A
message from the Engine will set a new axelRpm,
which causes the Wheel to go into Accel or Decel
states. While in either of these transition states,
the Wheel incrementally changes its wheelRpm and
repeatedly sends Checkstate() messages to itself until
wheelRpm reaches the target axelRpm. This then
causes a transition back into the DirectDrive state and
the Wheel stops sending Checkstate() messages to itself.

The issue at this moment in test sequence generation
is to determine the best external function to execute
as the next test in the test sequence in order to cover
the maximal number of untested paths in CTP. The
tester can request that the test generation module show

different views and counts of the active test paths in
ATP. One view of ATP may now show a list of
partially traversed paths whose next action will be the
final action of that path. Examples of final actions may
be new Danger circumstances that will cause Cancel()
messages to be sent to CruiseUnit, or transitions that
do not normally happen such as using two hands to
simultaneously push multiple buttons on CruiseUser,
or turning the cruise switch Off while CruiseUnit is in
the Accel or Decel states.

Figure 5 shows a series of possible functions and
transitions. Suppose the view of AT P shows that a
maximal number of paths will be completed, and a
number of other paths extended to a new rest state,
if CruiseUnit transition c05t026 is executed. This
transition occurs if CruiseUnit is in the Cruise state and
if the function Checkstate() is executed while the guard
predicate defined by CurrentSpeed > TargetSpeed
and Throttle.Position()=Throttle.Floor() is satisfied.
The metadata for ATP also shows that the CTP
segments for all of these paths begin with definition of
the Position variable in Throttle (by various different
functions) and end with a use of Position in the Guard
predicate of transition c05t026. Since Checkstate() is
constantly calling itself while CruiseUnit is in the Cruise
state, the tester only needs to find a way to increase the
CurrentSpeed without redefining the Position variable.

The tester can request another view of AT P, which
does a cross product with EXT, to determine all of
the externally executable functions that will trigger
transition c05t026 when executed in the current system
state. ~ The metadata for this result shows that
ExternalDrag(x) in the Engine object should cause an
increase in Gauges.Speed that will satisfy the guard
predicate of c05t006 and complete all of these paths
without redefining Position in Throttle. Based on this
evidence, the tester wishes to add ExternalDrag(x) to
the test sequence. The test generation module then
leads the tester through the eight iterations displayed
in Figure 5. At each iteration, the module presents
all choices that may be feasible at that point in the
execution of transitions in the active legs of paths
in ATP. With knowledge of the current state, the
tester is able to choose feasible transitions that will
successfully complete the identified paths, and possibly
pick up several additional paths along the way. The test
generation module will record all of the state transitions
along the way to determine the resulting system state
after execution of this test case.

The tester knows that a decrease in Engine drag
will cause an increase in speed. So in the initial
iteration, the tester chooses input parameter x for
ExternalDrag(x) to be less than the existing drag to
increase the speed just enough to be recognized by the
CruiseUnit, but not so much as to trigger any excessive
speed or other Danger conditions. As shown in Figure
5, the Engine reads information from the Transmission
and sends messages to both Gauges and Wheel.

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

11

OO COMPONENT TESTING

FEYS ananb [1ed oy uo ()areysyoay) sind {()paadg sednen) = paad§iuarLing s10§ ‘paads 1031e) 01 250[0 A19A paads €201S0° Oesyoey) JIUNAsIID) S
sok *sa3nen) 01 paads JOMO] MaU SPUAS UOT)B)0I 19311) SAYORAT UOTIEIOT [9AYA\ CIMETD Oaesyday)
ou ()2IBISNIYD TIAY A S[[BD $93nBD) 0) Paads 1omo] SpuUas ¢A[[LIUAWIOUT UOTIRIOI [9AYAY SISLaIdd | 1951e) 01 194 10U puR SUISLAIOAP UOIIRIOT [9AYA T10€19 ()areisyoay) [99YM
ou 91e)S JoSur(J J9IUd (Fururem Jogue puds spdgxewr 0) paads 108 pdsIao3uep =< x 6001602 (x)paads
sak Iy/uny ur paads sagnen) sjog pds1aSuep > x 800602 (x)paads safnen
"paads aseaIdul 01 /701500 PIM
‘paadgiaSie], oY) punole L[[I0S0 Jou Aewr Jsnfpear 0y pasu Aew ‘sown a[dnnuw payndIX LTOS0°
Sk 10 Aewr paadg JuaLIND Y], "9ZOISOD Ul asned Ay} JO YIS aY) 0} ANISUIS s1 a1ay suaddey jeyp 9ZOISO? J1 ‘paadgiasie) uredar 0y ysnouo 2q 10 €20150° L
QA0QY SY Kew g# woiy paadg ur Juaunsnlpy ‘dAoqe sy 10 9700 ()areIsyooy) JIUNISII)
FE)S "9JB)S [999(J OIUI SA0T [IAYAN "9A0QE Sy wdy[oxe JuaLnd > X [(x)udygexy
ou *918)S [900Y OJUI SA0T [YA\ "9AOQE SY wdy[oxe JuoLnd < X $00IE [xudyxy [y M.
SoA wdi ur yor] 'segnen sjoS ann 900Y602 (xX)yoe[, sagnen)
9201502 9
sok QA0QE SY QA0QE SY 1o Suisned ()areisyooy) JUNISIID
Sk 91e)S ONBWOINY UL ST A[NOIY], UM I[IOIYL, Y} Aq 195-31 $19T UoNISOg[epad onn 001809 (x)unisodd 19snsen
sok [99Y A\ 01 WdY[XY MU SPUas pue
UOISSTUWISUBI], WIOIJ ONEYIALIP $135 (sa8nen) 0) spuds pue wdy Mmou saje[nofed {MofJsen) s1os-y onn 00102 (X)morJsen QurSug
9201502 S
sak QA0QE SY QA0QE SY 10 Suisned ()arersyooy) JUISIMI)
sok qe)s dnewoIny ur sKes ANOIY, (UoNISOJ[epad 1os)sen)
1959y {((XBW X)UIJA)MO[SBD)"dUITUH [[BO {SIN[BA MU 0] 19S UONISOJ Pue JOo[] QNeA WNWIUW < X 6001019 (x)1001
"PIOYSAIY) SIY) 03 9S0[0 Jou paads asInId
ou Q1S Jp] 0JuI $903 AMNOIYL, ()uonisod[epad 1essen) JuaLIMd 9snedaq uaddey 1, ued soproop 191s9],
$1959Y ¢ (WNWIUIW)MO[SLD) dUISUH [[BO {SIN[EA WNWIUIW 0} JOS UOTISOJ PUR J00[oN[eA WNWIUM => X 500012 (x)1001 Moy,
ou q1e)s JoSue(J0Jud (Fururem Jesue puds ‘pdgxewr 0) paads o8 pdgio3uep =< x 6001609 (x)paads
FEIS Iy/uny ur paads sagnen) s1oS pdsIaguep > x 001602 (x)paadsg sagnen
sok ananb [1es oy uo [[eo ()reIsyoay) Jayjoue sind 9gOIGHO ‘A[[BUL] "SSB[O J9S)ISINID) 9201509 v
wolj uopoe Josn e ‘ordurexa 104 ‘onanb [[eo uo nd oq pnoos s[[ed 1aylo ‘Suisned o[y woty Suisned | ()aeIsydoyD JIUNISII)
SoK *91BIS QALI(JIOII(OIUT SA03 [AL "SIZNED) 01 paads JoySIY Mau SPUAS UoMIR)0I 19318 SAYOLAI UOTIRIOT [OAYA SIOIETD [EIREL)
ou ()2123S)99UD " [OdY A\ S[[BI SaSnen) 0) paads JoySIY Spuds ‘A[[BIUWIIOUI UOTIEIOT [9AYA SISBAIOU] [19318) 01 19K J0U pue JUISLaIoul UONLIOL [99YAN LI0IETD VB REe) [99UM
ou 91e)s 13U IR (Sururem 13ue puds :pdgxewr 03 paads 108 pdsio3uep =< x 6001602 (x)paadsg
Sk Iy/uny ur paads segnen) s1o§ pds1a3uep > x 8001602 (x)paads sognen
ou SQLIBA SUONIPUOd 1AY)Q SIOYI0 § (VB REN)
sk ananb [1ed ayy uo ()elsyday) sind (paad§iuarind 13s-21 0) "91e)S dnewony €
()peadgsadnen [ed tasned Junowre [BIUSAWAIUI AQ UONISOJ PUB JOO[] ASBIIOAP 0] MNOIY], S[[eD ur 9oy I, pue paadgiadie], < paadgiuarin) 9201509 ()areIsyoy) JIuNIsIMI)
ou "91B)S QALI(JIORIL(OIUT SA0T [93Y A\ "SATnen) 03 paads 1oyS1y mau Spuag uoMe)0l 10518} SAYOLAI UOIIBIOT [OAYA NOIIE B REe)
FES ()21LISNIYD TIYA S[[BI S93neD) 0] Paads IoYSIY SPUaS :A[[BIUSUIAIOUI UOTIBIOT [9AYA SISBAIOU] | 19318) 01 194 J0U pUR JUISLAIOUT UOTIRIOL [9AYAN PI0IETD (B REL) [99YM
ou q1e)s JoSue(JoJud (Fururem Jesue puds ‘pdgxewr 0) paads o8 pdgio3uep =< x 6001609 (x)paads
RIS Iy/uny ur paads sagnen) s1oS pds1aguep > x 001602 (x)paadsg sagnen
ou SOLIBA SUONIPUOd 1AYIQ SIOYI0 § BB e) 4
REXS ananb [1ed oy uo ()reysyoay) sind (()paadg sednen = paad§iuaring s19§ ‘paads 1031e) 01 25010 A19A paadg €TMS0° Oaesyoey) U 3smMI)
ou Q)B1S [999(] SIAUD [AYA\ PAYOLAI 19TI8) UdYM 935 03 ()IBISYOYD [OAYM
S[[e9 :saSnen) 0] paads JoMO] SPUSS ¢A[[EIUSWIOUT UONLIOI [9AYAN SISLIOdP {wdy[oXe 1951e) S1o8 wdy[oxe JuaLnd > X €00E 12 (x)udyroxy
sk Q)B]S [200Y SIAUD [AYA\ PAYOELAI 1a5Ie) UayM 93 03 ())BISYOYD) [OAYM
S[[ed ‘saSnen) 0) paads JoYSIY SPUS (A[[BIUSUIAIOUT UOIIRIOI [OAYAY SISeaIdul swdy[oxe 1931e) s108 wdy[oxe JuaLNd < X HO0IETD (Xudyexy [99YM
SoK ‘wdi ur yoey'sagnen) syo8 ann 9001602 (xX)yoe[, sagnen)
ou SOLIBA SUONIPUOd 1Y SIOYI0 § B R e) 1
SIK ananb [1e5 oYy uo ()aresyoayD sind (()paadgsasnen = paadSiuaLing s1o8 ‘paads 1931e) 0) 350[0 A19A paadg €TMS0° Oaesyoey) JNuNIsMI)
oK wdy[oxe 9sea1dul 0 [29YA\ 03 wdy[oxe mau 0
SPUQS {UOISSTWISULI], WO} ONBYIALIP §193 is93nen) o) widi su1Sus mau spuas d[qeLreA eip s1a§ onn S001L02 (-)3eaqxg auiug
asoy) uondy paens uonIsuel], uonouny sse[) PI

FIGURE 5. Active Leg Iterations for ExternalDrag Test Case

THE COMPUTER JOURNAL VoOL. 00 No. 0, 2006

12 GALLAGHER & OFFUTT

In iteration 1, the tester is asked to choose from
among all of the possible Checkstate() transitions in
CruiseUnit. While the car is in the Cruise state, this
function is continually called. Since the car is currently
cruising normally, and there are no external influences
(other than external drag), a transition is chosen
that simply resets the currentSpeed and calls another
Checkstate(). All other Checkstate() transitions are
rejected. The Engine sets a new axelRpm for the Wheel
that the tester knows will increase speed, so the tester
chooses Accel instead of Decel. The tachometer is set
in Gauges with no guard choices necessary.

In iteration 2 the speedometer speed has not yet
changed, so the same Checkstate() alternative is chosen.
The Wheel sends a new speed to the Gauges, forcing
the tester to choose whether or not this new speed
exceeds some danger speed. The tester knows it
does not because the system state was not close to
this threshold. If, instead, the system was close to
this danger threshold, the tester could have chosen
the c09t009 alternative resulting in a totally different
analysis of paths in ATP. The tester does not
know how quickly the Wheel will reach its new target
rotation speed, but knows from previous experience
that different paths taken by the Wheel at this point
will have no effect on the final system state or on the
eventual effects seen by CruiseUnit.

In iteration 3, the CruiseUnit finally picks up the
new speedometer speed from the Gauges. The tester
chooses the Checkstate() alternative that recognizes
this increase in speed as sufficiently above the target
speed to require an adjustment. The Gauges choices
remain the same while the Wheel reaches its target
rotation speed. The desired transition (c05t026) has
been executed; the test generation module recognizes
this and marks all of the identified C'TP paths as
covered by this test case. The only thing left is to
determine if any other paths are completed by these
actions and what the resulting system state will be.

In iteration 4 the CruiseUnit has sent a correction
message to the Throttle, which re-defines the Position
variable. All paths in ATP that are not already
completed and that have Position as their definition
variable are then deleted. Fortunately, the CT P paths
of interest were completed in the previous iteration and
have already been marked as covered. The usage of
Position takes place in the guard node that precedes
the action of the transition node that redefines Position.
The tester rejects the Throttle.Floor(x) alternative that
would put the Throttle into Idle because the throttle
floor and position were increased, not decreased.

Iteration 5 shows the effects of the Throttle sending a
new gas flow message to the Engine and a new gas pedal
position to the GasPedal. The tester cannot make any
choices here. Depending on how long the CruiseUnit
pauses in the action of c05t026 before rechecking
speed, it may send multiple correction messages to
the Throttle, but that has no effect on any of the

candidate test paths. It may, however, cause excessive
adjustments to the speed, resulting in further potential
corrective actions by the CruiseUnit.

In iteration 6, the Wheel finally sees the correction
initiated by the CruiseUnit. The tester knows that this
will be a decrease in axelRpm, so chooses the Decel
option over Accel. The tester faces the same CruiseUnit
Checkstate() options as in previous iterations and
chooses whether or not the CruiseUnit is still pausing
from the original transition c05t026. If the CruiseUnit
has stopped pausing, it will send another correction to
decrease speed because the Wheel has not yet sent a
new decreased speed to Gauges.

In iteration 7, the wheel has finally sent a new
decreased speed to Gauges, which may be enough to
cause the CruiseUnit to be satisfied, but may not
be enough or may be too much. These corrective
actions may continue while the speedometer speed
oscillates above and below the targetSpeed maintained
by CruiseUnit. The specification being tested does
not prohibit such oscillation; it only requires that
each object respond to method calls in the prescribed
manner. Additional specification constraints could
be added to require that the speed reach stability
within a reasonable amount of time (adding a real-time
dimension to the specification).

Iteration 8 shows that the effects of the change in
engine drag have finally been fully achieved. The
test generation module will have recorded that the
CruiseUnit never left the Cruise state and that the
Throttle never left the Automatic state. However, the
Wheel moved from DirectDrive to Accel to Decel and
then back to DirectDrive. The system under test passes
this test case if after an appropriate period of time all
of these objects are in the final predicted states. The
system under test fails this test case if speed continues
to oscillate or if the effects of these actions cause some
other object in the system to change state.

Using the above methods, we were able to generate
one test sequence consisting of 145 test cases that
covered 1001 candidate test paths and 954 def-use pairs.

6.2. Fault Detection Effectiveness

To study the effectiveness of this approach for detecting
faults, we created 108 faults for the initial automobile
specification and then constructed two sets of tests to
run against 108 implementations, each containing one
seeded fault. The first test set was the single test
sequence consisting of the 145 test cases generated using
the finite-state methodology explained above. The
second test set was a single test sequence manually
constructed from intuitive use of cruise control and
consisting of normal actions to start the car, go to
highway speed, activate cruise control, brake to slow
speed, resume to recover cruise speed, use ExternalDrag
to maintain cruise speed up and down hills, turn cruise
off, slow to slow speed, turn cruise on, test to make

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

OO COMPONENT TESTING 13

TABLE 1. Basic Information

TABLE 2. Detection Effectiveness

sure cruise controls inactive at slow speeds, brake to
stop, and turn ignition off. The intuitively generated
test sequence consisted of 41 test cases.

Summarizing the analysis presented in our previous
paper [7], we found that the test sequence generated
using the finite-state methodology found 106 faults
for 98% effectiveness, while the intuitively generated
test sequence discovered only 24 of the faults for 22%
effectiveness. Clearly this testing scenario favors the
finite-state methodology because it generated more
than three times as many tests as did the intuitive
method. However, the manually generated tests require
intensive human effort to decide what new expectations
to test, while the finite-state approach initiates a dialog
with the tester to determine potentially good actions
to take at each step of the process, provides metadata
to help the user make good choices, and creates new
test actions to cover candidate test paths not previously
covered.

6.3. Numeric Summary of Data

Tables 1 and 2 summarize the numbers in Section
6. Table 1 summarizes the numbers of the various
attributes of the software studied, starting with the
number of components and classes, on through the
number of candidate test paths and ext-int paths.
Table 2 summarizes the results of running tests on the
faulty versions of the example system. The first column
shows data from the automatically generated tests and
the second column shows data from the manual tests.
The automated method resulted in many more tests,

Atttribute Value Automated | Manual
Components 6 Method Method
Classes 12 CTPs covered 1001 of 2372 | Unknown
States 44 Def-use pairs covered | 954 of 2063 | Unknown
State variables 58 Tests 145 41
Transitions 263 Faults 108 108
Relevant transitions 160 Faults found 106 24
Component flow graph nodes 293 Percentage found 98% 22%
Component flow graph edges 740
Variable defined locations 188
Variable us.ed locations 1015 but because of the automation, they are cheaper to
Def-use pairs 4319 generate.

Path generated 2063
No path possible 1494
Indeterminant 762 7. TEST TOOL ARCHITECTURE
Candidate Test Paths (CTP) . 2372 . The test tool architecture is presented in Figure 6.
- - (covering 2063 pairs) The combined class state machine of the software
Ext-int pairs 3840
system specification is represented in a database
Path generated 811 . .
; of six relational tables. The tables represent
N_O path possible 3029 the Classes, Variables, Functions, Parameters,
Ext-int Paths (EXT) . 4598 . States, and Transitions of the combined class state
(covering 811 pairs) machine. Upon choosing a component of the system

for integration testing, the Test Sequence Generator
constructs the component flow graph and follows the
processes described in Sections 2 through 5 to generate
one or more sequences {(F;,SS;)|li = 1,..,n} of
executable external functions and predicted system
states, both represented by Executable Test Sequences
in the figure. The Test Harness imports an executable
test sequence with predicted system states, executes
each test against a claimed implementation of the
specification, and determines if the implementation
passes or fails the test sequence by checking the actual
system states against the predicted states.

The Java Rapid Prototype Machine reads a database
representation of a finite-state specification, and
produces a generic test simulator written in Java. The
machine consists of a simple kernel that is able to wait
for, queue, and process input tasks from either a user
or from the Test Harness. An input task is codified
as an instance of a Java wrapper class that stores
data fields traditionally associated with object-oriented
programming, such as an objects identity, state, and
behavior, applied to that object (a function). The
object in question is an instance of a class defined
by the tables of the database representation. An
interpreter evaluates an input task and queries the
database representation to simulate the actions of
each defined transition. The resulting Java reference
implementation provides an optional Graphical User
Interface for test writers to add visual components for
simulation purposes. The Test Harness is designed to
support testers who want to run a sequence of test cases
under the reference implementation, or against a real
implementation inserted into the testing architecture in
place of the reference implementation.

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

14 GALLAGHER & OFFUTT

Test Suite Executable
Generator
Y
DB Rep Test
of Spec Harness
Java |
Rapid Prototype J?}’ gp;p
Machine
Graphical

User Interaface

FIGURE 6. Test Tool Architecture

8. RELATED WORK

Intra-class testing [14] is when tests are constructed for
a single class, usually as sequences of calls to methods
within the class. Integration testing attempts to test
interactions among different classes; thus inter-class
testing [7] refers to when more than one class is tested
together.

This research project is specifically developing
methods to carry out inter-class integration testing of
object-oriented software. Although many papers have
been published in intra-class testing, the authors have
not found many papers on inter-class testing. This
research also uses ideas from the rich literatures on data
flow testing, intra-class object-oriented testing, object-
oriented data flow testing, integration testing, and
automatic test data generation. Some of the highlights
of these areas are discussed below.

Testing has long used data and control flow through
programs [8]. Several data flow coverage criteria have
been defined, including all-defs, all-uses and all-paths.
These have been described extensively in the literature
[8, 15]. This research uses the all-defs and all-uses
criteria, as have other researchers [16, 17, 18, 19, 20, 21,
22]. Although some may question the value of all-defs,
others believe it to be useful and if all-uses is satisfied,
all-defs comes for free anyway.

Data flow testing criteria [8, 19, 23] force tests to
execute from data definitions to data uses in different
ways. Most research papers have derived graphs
directly from the code; which can be called traditional
or code-based data flow testing. This paper defines data
flow on finite state machines that are derived from the
behavior of classes.

Most object-oriented testing research has focused on
intra-class testing. This includes work by Hong et al.
[6], Parrish et al. [24], Turner and Robson [5], Doong
and Frankl [25] and Chen et al. [26]. Intra-class testing

strategies focus on one class at a time, and do not
address problems in the interfaces between classes, or
in inheritance and polymorphism. In their TACCLE
methodology [27], Chen et al. used algebraic axioms to
define class semantics and construct test cases as paths
through a state-transition diagram with path selection
based on ground terms that are non-equivalent. They
tried to extend this methodology to multiple classes
by defining inter-class semantics in terms of contracts,
however, this increases the complexity substantially and
is difficult to re-use when other components are added
to the system.

Harrold and Rothermel applied traditional data-flow
analysis to classes [14]. Their approach emphasized (1)
intra-method testing, in which tests are constructed
for individual methods; (2) inter-method testing, in
which multiple methods within a class are tested in
concert; and (3) intra-class testing in which tests are
constructed for a single class, usually as sequences
of calls to methods within the class. Harrold and
Rothermel represent a class as a Class Control Flow
Graph (CCFG), which contains information that can
be used during testing.

Hong et al. [6] developed a class-level graph to
represent control and data flow for individual classes.
Our research extends their ideas to perform integration
testing on multiple interacting classes.

Some related work has been done on the subject of
testing web software. Kung et al. [28, 29, 30] have
developed a model to represent web sites as a graph,
and provide preliminary definitions for developing tests
based on the graph in terms of web page traversals.
They define intra-object testing, where test paths are
selected for the variables that have def-use chains
within an object, inter-object testing, where test paths
are selected for wvariables that have def-use chains
across objects, and inter-client testing, where tests are

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

OO COMPONENT TESTING 15

derived from a reachability graph related to the data
interactions among clients.

Inter-class testing, which this paper addresses, has
seen much less attention. Most previous papers have
used the program source. Yoon and Choi addressed
the problem of integrating an externally procured class,
for which the source is not available, into a pre-
existing component, for which the source is available.
Jin and Offutt [31] developed coupling-based testing,
which requires tests to cover code-level control and
data couplings between methods in different classes.
Chen and Kao [3] describe object flow testing, in
which testing is guided by data definitions and uses in
pairs of methods that are called by the same caller.
Testing should cover all possible type bindings in the
presence of polymorphism. Kung et al. [32] address
object-oriented testing of inheritance, aggregation and
association relationships among multiple classes by
automatically generating an object-relation diagram
and finding a test in order to minimize the effort to
construct test stubs.

Alexander and Offutt [33, 34, 35, 36] extended
coupling to cover inheritance and polymorphism
couplings. Alexander’s research led to a categorization
of inter-class OO software faults [37], which was then
used to develop a collection of mutation operators
for inter-class problems [38]. Ma, Offutt and Kwon
developed a mutation testing tool, muJava, to carry
out inter-class testing [39].

A related problem is that of deciding which order to
test a group of classes, the class integration and test
order (CITO) problem [40]. This problem is orthogonal
to the problem of actually developing tests.

One of the hardest problems in testing has long
been automatic test data generation (ATDG) [41, 42,
43, 44, 45, 46]. To automate the generation of test
data according to test criteria requires solutions to
very difficult analysis problems. This is often a hit-
or-miss process, with the tester throwing test inputs
at the software, hoping that the data flow system
eventually reports that the DU-pairs were covered. It is
sometimes very difficult for a tester to find a test case
that will cover a particular DU-pair, and attempts have
been made to generate tests by generating and solving
predicates [47].

The general problem is undecidable. In the terms of
this paper, ATDG will not always succeed because some
def-use pairs cannot be satisfied by any candidate test
path and the problem of finding executable test cases is
generally undecidable. This has been called the feasible
path problem in previous research [48, 49, 50, 51].

9. CONCLUSIONS

This paper presents technical details about an
automated tool to support integration testing of object-
oriented software. The assumed test scenario is that a
new or modified collection of classes (a component) is

being integrated into an existing collection of classes
(such as a component or system). The classes are
represented as interacting finite state machines, which
model the information that is normally included in
design models such as UML statecharts, and augmented
with details about definitions and uses of class variables.
This augmentation is currently done by hand, but this
information could be obtained by a detailed analysis of
the implementation.

The combined class state machine and component
flow graph are new to this research, and this paper
describes in detail how the behavior of OO software
is represented in them and details for how they are
constructed. The test criteria used are based on
traditional data flow criteria, but applying them to
these types of models is new and introduces numerous
complexities. This paper describes how this model
works with specific examples.

The use of a database to store definition/use
information simplifies the construction of full def-
use paths from definitions to uses. Storing and
manipulating complete path predicates for traditional
code-based data flow is impractical due to size. The
database allows these potentially large predicates to be
managed more efficiently.

As with any automated test systems, undecidable
problems prohibit complete solutions. In this research,
some candidate test paths cannot be resolved into
executable test cases. This sometimes happens because
resolving the test paths is too complicated, and
sometimes because they represent truly undecidable
portions of the problem space. This problem is common
to all automatic test data generation techniques.

One advantage of this work is that potential
concurrent actions among objects is fully captured
in the component flow graph and in the generation
of candidate test paths through that graph. The
model assumes that receipt of asynchronous messages
is handled by queuing and that any one of the received
messages could be the next to execute. This ensures
that all possible executions are considered by the
candidate test paths. If certain concurrent executions
are not feasible, that information will be detected
during testing and the infeasible path segments can
be removed in subsequent test path generation. More
details of the concurrency and asynchronous aspects of
this work are in the previous paper [7].

9.1. Future Work

Future research will focus on additional automation of
existing manual steps in this methodology. One current
direction is to provide automation for translating soft-
ware specifications into the database representation. If
the specifications are in a state-machine representation
(such as UML statecharts), then much of the meta-
data can be captured automatically. However, UML
statecharts do not specify the details of the transition

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

16 GALLAGHER & OFFUTT

actions. Indeed, this information is seldom included in
design models, so this may still need to be supplied by
the human. Another possibility is to extract this infor-
mation from the implementation. Although a challeng-
ing problem, it is feasible to analyze the source to deter-
mine what state variables are modified in each method,
and use that to describe the transition actions.

Another target of more automation is the identifica-
tion of infeasible path segments in the component flow
graph, which should be avoided in def-use and ext-int
path construction.

Section 5 emphasizes the goal of trying to “force
coverage of as many def-use paths as possible.” Without
additional information about the specification it is not
possible to know whether some def-use paths are more
important to test than others. One approach might
be to incorporate usage statistics into the model to
determine “high-priority” edges in the component flow
graph and to prioritize def-use paths depending on the
number of high-priority edges they cover. This could
result in more effective test sequence generation.

The cruise control system is modeled with 12 classes,
44 states, and 43 relevant variables that appear in 4319
def-use pairs, so although it is not large it is certainly
non-trivial. We are currently assessing the utility of this
approach on a larger and significantly different example,
a healthcare standardization organization (HL7) that
is defining hundreds of application roles that send and
receive messages among themselves.

The information accumulated as part of this approach
might also be useful during regression testing. At the
end of test sequence development the database contains
the original six tables that represent the specification,
together with the derived component flow graph (293
nodes and 740 edges in the Cruise Control example), the
candidate test paths (2372 in Cruise Control), and the
sequences of test cases (145 tests with predicted system
states in Cruise Control). Subsequent changes to the
specification could result in changes to the component
flow graph and the candidate test paths, and thus allow
the test cases that cover those paths to be redefined. In
addition, small additions or small modifications to the
specification leave many of these parts unchanged, so
it should be possible to automatically determine which
tests need to be altered and re-run, and which tests do
not.

Although the testing approach in this paper was
intended for use during software development, a natural
question is whether it could also be applied to test
legacy software. The first requirement is that the
software would have to use an OO design. The
most significant effort involved in using this approach
to test legacy software would be the effort required
to represent (i.e. re-specify) the legacy system as a
collection of communicating components, with each
component specified in terms of states and transitions.
Some systems may not lend themselves to the finite

state model; however, for those that do, the effort
should be worthwhile.

ACKNOWLEDGMENTS

We would like to thank Tony Cincotta for implementing
the rapid prototype machine and the test harness, and
Julie Zanon, Hankim Ngo and Boris Etho-Assoumou for
different features of a web application that implements
the algorithms of the test suite generator.

REFERENCES

[1] Booch, G. (1991) Object-Oriented Design With Applica-
tions. Benjamin-Cummings Publishing Co. Inc., Read-
ing, MA.

[2] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
and Lorensen, W. (1991) Object Oriented Modeling and
Design. Prentice Hall.

[3] Chen, M.-H. and Kao, M.-H. (1999) Testing object-
oriented programs - an integrated approach. Proceed-
ings of the 10th International Symposium on Software
Reliability Engineering, Boca Raton, FL, November,
pp. 73-83. IEEE Computer Society Press.

[4] Chow, T. (1978) Testing software designs modeled by
finite-state machines. IEEFE Transactions on Software
Engineering, SE-4, 178-187.

[5] Turner, C. D. and Robson, D. J. (1993) The state-
based testing of object-oriented programs. Proceedings
of the 1993 IEEE Conference on Software Maintenance
(CSM-93), Montreal, Quebec, Canada, September, pp.
302-310. IEEE Computer Society Press.

[6] Hong, H. W., Kwon, Y. R., and Cha, S. D. (1995)
Testing of object-oriented programs based on finite
state machines. Proceedings of the Asia-Pacific
Software Engineering Conference, Brisbane, Australia,
December, pp. 234-241. IEEE Computer Society Press.

[7] Gallagher, L., Offutt, J., and Cincotta, T. (2007)
Integration testing of object-oriented components using
finite state machines. Software Testing, Verification,
and Reliability, 17, 215-266.

[8] Frankl, P. G. and Weyuker, E. J. (1988) An applicable
family of data flow testing criteria. IEEE Transactions
on Software Engineering, 14, 1483-1498.

[9] Herman, P. (1976) A data flow analysis approach to
program testing. Australian Computer Journal, 8, 92—
96.

[10] Laski, J. (1982) On data flow guided program testing.
Sigplan Notices, 17, 62-71.

[11] Rapps, S. and Weyuker, E. J. (1982) Data flow analysis
techniques for test data selection. 6th International
Conference on Software Engineering, Tokyo, Japan,
May, pp. 272-278. IEEE Computer Society Press.

[12] Zhu, H., Hall, P. A. V., and May, J. H. R. (1997)
Software unit test coverage and adequacy. ACM
Computing Surveys, 29, 366-427.

[13] Binder, R. (2000) Testing Object-oriented Systems.
Addison-Wesley Publishing Company Inc., New York,
New York.

[14] Harrold, M. J. and Rothermel, G. (1994) Performing
data flow testing on classes. Symposium on

THE COMPUTER JOURNAL VOL. 00 No. 0, 2006

OO COMPONENT TESTING 17

[15]

[16]

[21]

[22]

[25]

[28]

[29]

Foundations of Software Engineering, New Orleans,
LA, December, pp. 154-163. ACM SIGSOFT.

Ntafos, S. C. (1984) On required element testing. IEEE
Transactions on Software Engineering, 10, 795-803.
Clarke, L. A., Podgurski, A., Richardson, D. J., and
Zeil, S. J. (1989) A formal evaluation of data flow
path selection criteria. IEEE Transactions on Software
Engineering, 15, 1318-1332.

Frankl, P. G., Weiss, S. N., and Hu, C. (1997) All-uses
versus mutation testing: An experimental comparison
of effectiveness. The Journal of Systems and Software,
38, 235-253.

Frankl, P. G. and Weiss, S. N. (1993) An experimental
comparison of the effectiveness of branch testing and
data flow testing. [FEE Transactions on Software
Engineering, 19, 774-787.

Harrold, M. J. and Soffa, M. L. (1991) Selecting and
using data for integration testing. IEEE Software, 8,
58-65.

Hutchins, M., Foster, H., Goradia, T., and Ostrand,
T. (1994) Experiments on the effectiveness of dataflow-
and controlflow-based test adequacy criteria. Proceed-
ings of the Sixteenth International Conference on Soft-
ware Engineering, Sorrento, Italy, May, pp. 191-200.
IEEE Computer Society Press.

Mathur, A. P. and Wong, W. E. (1994) An empirical
comparison of data flow and mutation-based test
adequacy criteria. Software Testing, Verification, and
Reliability, 4, 9-31.

Offutt, J., Pan, J., Tewary, K., and Zhang, T. (1996)
An experimental evaluation of data flow and mutation
testing. Software—Practice and Experience, 26, 165—
176.

Laski, J. and Korel, B. (1983) A data flow oriented
program testing strategy. IEEE Transactions on
Software Engineering, SE-9, 347-354.

Parrish, A. and Zweben, S. H. (1991) Analysis and
refinement of software test data adequacy properties.
IEEE Transactions on Software Engineering, 17, 565—
581.

Doong, R. K. and Frankl, P. G. (1991) Case studies
on testing object-oriented programs. Proceedings of
the Fourth Symposium on Software Testing, Analysis,
and Verification, Victoria, British Columbia, Canada,
October, pp. 165-177. IEEE Computer Society Press.
Chen, H. Y., Tse, T. H., Chan, F. T., and Chen, T. Y.
(1998) In black and white: An integrated approach
to class-level testing. ACM Transactions on Software
Engineering Methodology, 7, 250-295.

Chen, H. Y., Tse, T. H.,, and Chen, T. Y. (2001)
TACCLE: A methodology for object-oriented software
testing at the class and cluster levels. ACM
Transactions on Software Engineering Methodology, 10,
56-109.

Kung, D., Liu, C. H., and Hsia, P. (2000) An object-
oriented Web test model for testing Web applications.
24th Annual International Computer Software and
Applications Conference (COMPSAC2000), Taipei,
Taiwan, October, pp. 537-542. IEEE Computer Society
Press.

Kung, D., Gao, J., Hsia, P., Toyoshima, Y., and Chen,
C. (1995) A test strategy for object-oriented programs.

(34]

(36]

37]

(38]

(41]

42]

19th Computer Software and Applications Conference
(COMPSAC 95), Dallas, TX, August, pp. 239 —244.
IEEE Computer Society Press.
Liu, C. H., Kung, D., Hsia, P., and Hsu, C. T. (2000)
Structural testing of Web applications. Proceedings
of the 11th International Symposium on Software
Reliability Engineering, San Jose CA, October, pp. 84—
96. IEEE Computer Society Press.
Jin, Z. and Offutt, J. (1998) Coupling-based criteria for
integration testing. Software Testing, Verification, and
Reliability, 8, 133-154.
Kung, D., Suchak, N., Gao, J., Hsia, P., Toyoshima,
Y., and Chen, C. (1994) On object state testing.
Eighteenth Annual International Computer Software €
Applications Conference, Los Alamitos, CA, November,
pp. 222-227. IEEE Computer Society Press.
Alexander, R. T. and Offutt, J. (1999) Analysis
techniques for testing polymorphic relationships.
Proceedings of the Thirtieth International Conference
on Technology of Object-Oriented Languages and
Systems (TOOLS USA ’99), Santa Barbara CA,
August, pp. 104-114. IEEE Computer Society Press.
Alexander, R. T. and Offutt, J. (2000) Criteria for
testing polymorphic relationships. Proceedings of the
11th International Symposium on Software Reliability
Engineering, San Jose CA, October, pp. 15-23. IEEE
Computer Society Press.
Alexander, R. T., Offutt, J., and Bieman, J. M. (2002)
Fault detection capabilities of coupling-based oo test-
ing. Proceedings of the 13th International Symposium
on Software Reliability Engineering, Annapolis MD,
November, pp. 207-218. IEEE Computer Society Press.
Alexander, R. T. and Offutt, J. (2004) Coupling-
based testing of O-O programs. Journal of
Universal — Computer Science, 10, 391-427.
http://www.jucs.org/jucs_10_4/coupling_based_testing_of.
Offutt, J., Alexander, R., Wu, Y., Xiao, Q., and
Hutchinson, C. (2001) A fault model for subtype
inheritance and polymorphism. Proceedings of the
12th International Symposium on Software Reliability
Engineering, Hong Kong China, November, pp. 84-93.
IEEE Computer Society Press.
Ma, Y.-S., Kwon, Y.-R., and Offutt, J. (2002) Inter-
class mutation operators for Java. Proceedings of the
13th International Symposium on Software Reliability
Engineering, Annapolis MD, November, pp. 352-363.
IEEE Computer Society Press.
Ma, Y.-S., Offutt, J., and Kwon, Y.-R. (2005) Mujava
An automated class mutation system. Software
Testing, Verification, and Reliability, 15, 97-133.
Tai, K.-C. and Daniels, F. J. (1997) Test order for inter-
class integration testing of object-oriented software.
The Twenty-First Annual International Computer
Software and Applications Conference (COMPSAC
’97), Santa Barbara CA, August, pp. 602-607. IEEE
Computer Society.
Hanford, K. V. (1970) Automatic generation of test
cases. IBM Systems Journal, 4, 242-257.
Ramamoorthy, C. V., Ho, S. F., and Chen, W. T.
(1976) On the automated generation of program test
data. IEEFE Transactions on Software Engineering, 2,
293-300.

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

18

GALLAGHER & OFFUTT

(43]

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

Clarke, L. A. (1976) A system to generate test data and
symbolically execute programs. IEEE Transactions on
Software Engineering, 2, 215-222.

Lundstrom, S. F. (1978) Adaptive random data
generation for computer software testing. Proceedings
of the National Computer Conference, 777, 777, pp.
505-511.

DeMillo, R. A. and Offutt, J. (1991) Constraint-based
automatic test data generation. IEEE Transactions on
Software Engineering, 17, 900-910.

Korel, B. (1992) Dynamic method for software test
data generation. Software Testing, Verification, and
Reliability, 2, 203-213.

Offutt, J., Jin, Z., and Pan, J. (1999) The dynamic
domain reduction approach to test data generation.
Software—Practice and Ezrperience, 29, 167-193.
Goldberg, A., Wang, T. C., and Zimmerman, D.
(1994) Applications of feasible path analysis to
program testing. Proceedings of the 1994 International
Symposium on Software Testing, and Analysis, Seattle
WA, August, pp. 80-94. ACM Press.

Hedley, D. and Hennell, M. A. (1985) The causes
and effects of infeasible paths in computer programs.
Proceedings of the Fighth International Conference on
Software Engineering, London UK, August, pp. 259—
266. IEEE Computer Society Press.

Jasper, R., Brennan, M., Williamson, K., Currier,
B., and Zimmerman, D. (1994) Test data generation
and feasible path analysis. Proceedings of the 1994
International Symposium on Software Testing, and
Analysis, Seattle WA, August, pp. 95-107. ACM Press.
Offutt, J. and Pan, J. (1997) Detecting equivalent
mutants and the feasible path problem. Software
Testing, Verification, and Reliability, 7, 165—192.

THE COMPUTER JOURNAL VoL. 00 No. 0, 2006

