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Abstract

Machine tool chatter has been characterized as isolated periodic solutions or limit cycles of delay differential equations.
Determining the amplitude and frequency of the limit cycle is sometimes crucial to understanding and controlling the sta-
bility of machining operations. In Gilsinn [Gilsinn DE. Computable error bounds for approximate periodic solutions of
autonomous delay differential equations, Nonlinear Dyn 2007;50:73–92] a result was proven that says that, given an
approximate periodic solution and frequency of an autonomous delay differential equation that satisfies a certain non-crit-
icality condition, there is an exact periodic solution and frequency in a computable neighborhood of the approximate solu-
tion and frequency. The proof required the estimation of a number of parameters and the verification of three inequalities.
In this paper the details of the algorithms will be given for estimating the parameters required to verify the inequalities and
to compute the final approximation errors. An application will be given to a Van der Pol oscillator with delay in the non-
linear terms.
Published by Elsevier B.V.
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1. Introduction

Machine tool dynamics has been modeled using delay differential equations for a number of years as is clear
from the vast literature associated with it. For a detailed review of machining dynamics see Tlusty [1]. For a
discussion of dynamics in milling operations see Balchandran [2] and Zhao and Balachandran [3]. For drilling
operations see Stone and Askari [4] and Stone and Campbell [5]. For an analysis of chatter occurring in
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turning operations see Hanna and Tobias [7], Marsh et al. [8], and Nayfeh et al. [9]. Machine tool chatter is
undesirable self-exited periodic oscillations during machining operations. It has been identified as a Hopf
bifurcation of limit cycles from steady state solutions. For a way of estimating the critical Hopf bifurcation
parameters that lead to machine tool chatter see Gilsinn [6].

In studying the effects of chatter it is sometimes desirable to compute the amplitude and frequency of the
limit cycle generating the chatter. This entails solving the delay differential equations that model the machine
tool dynamics. There is a large literature on numerically solving delay differential equations. Some represen-
tative methods are described in Banks and Kappel [10], Engelborghs and Luzyanina [11], Kemper [12], Paul
[13], Shampine and Thompson [14], and Willé and Baker [15]. Although these methods generate solution vec-
tors that can be studied by harmonic and power spectral methods to estimate the frequency of periodic cycles,
they do not directly generate a representative model of a limit cycle, such as a Fourier series representation.

It is also desirable to know whether a representation of an approximate limit cycle is close to a true limit
cycle. In other words we wish to answer the question as to whether the approximate solution represents suf-
ficiently well a true solution. This is answered with a test criteria by Gilsinn [16], who showed that, given a
representative approximate solution and frequency for a periodic solution to the autonomous delay differen-
tial equation

_x ¼ X ðxðtÞ; xðt � hÞÞ; ð1Þ

where x;X 2 Cn, the space of n-dimensional complex numbers, h > 0, X sufficiently differentiable, there are
conditions, depending on a non-criticality condition (to be defined below) and a number of parameters, for
which (1) has a unique exact periodic solution and frequency in a numerically computable neighborhood of
the approximate solution and frequency. This result was first established in a very general manner for func-
tional differential equations by Stokes [17] who extended an earlier result for ordinary differential equations in
Stokes [18]. However, no computable algorithms were given in the case of functional differential equations to
estimate the various parameters. Only recently have algorithms been developed to computationally verify
these conditions in the fixed delay case. A preliminary announcement of algorithms for computing these
parameters was given by Gilsinn [19]. In this paper we include a more detailed discussion of the algorithms
and apply them to a Van der Pol equation with delay in its non-linear terms.

The notation used in the paper is described in Section 2. The non-criticality condition is defined in Section
3. In Section 4 we construct an exact frequency and 2p-periodic solution of (1) as a perturbation problem. The
main contraction theorem is proven in Section 5. In Sections 6–10 the necessary algorithms needed to compute
the critical parameters for verifying the existence of a 2p-periodic solution of (1) will be given. In particular, a
Galerkin based algorithm for approximating a periodic solution to (1) is given in Section 6. The general Flo-
quet theory for DDEs is described in Section 7. An algorithm for computing the characteristic multipliers of
the variational equation of (1) with respect to the approximate 2p-periodic solution, is given in Section 8. An
algorithm to determine the solution to the formal adjoint equation with respect to the variational equation of
(1) with respect to the approximate 2p-periodic solution, is given in Section 9. An algorithm for estimating a
critical parameter, M, is given in Section 10. An application of these algorithms to the Van der Pol equation
with delay is given in Section 11. The derivation of the coefficients for the pseudospectral differentiation matrix
(73) is given in the Appendix.

2. Notation

Let Cx denote the space of continuous functions from ½�x; 0� to Cn with norm in Cx given by
j/j ¼ max j/ðsÞj for �x 6 s 6 0, where

j/ðsÞj ¼
Xn

i¼1

j/iðsÞj
2

 !1=2

: ð2Þ

Cx is a Banach space with respect to this norm. We will sometimes use the notation CxðaÞ to denote the space
of continuous functions on ½a� x; a�. Let P be the space of continuous 2p-periodic functions with sup norm,
j � j on ð�1;1Þ. Let P1 � P be the subspace of continuously differentiable 2p-periodic functions with the sup
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norm. Let X ðx; yÞ be continuously differentiable in some domain Xn � Cn � Cn with bounded derivatives
where

jX iðx; yÞj 6 B ð3Þ

for i ¼ 1; 2, ðx; yÞ 2 Xn. The subscripts of X indicate derivatives with respect to the first and second variables of
X respectively. We further assume that the first partial derivatives satisfy Lipschitz conditions given by

jX iðx1; y1Þ � X iðx2; y2Þj 6Kðjx1 � y1j þ jx2 � y2jÞ ð4Þ

for ðx1; y1Þ; ðx2; y2Þ 2 Xn.
In order to simplify the notation for (1) we will first normalize the delay h to unity by setting s ¼ t=h. Then,

(1) becomes

dy
ds
ðsÞ ¼ hX ðyðsÞ; yðs� 1ÞÞ; ð5Þ

where yðsÞ ¼ xðshÞ. Therefore we will assume h ¼ 1 in (1). We will also make one further transformation. Since
the period T ¼ 2p=x of a periodic solution for (1) is unknown we can normalize the period to ½0; 2p� by intro-
ducing the substitution of t=x for t and rewriting (1), with h ¼ 1, in the form

x _x ¼ X ðxðtÞ; xðt � xÞÞ: ð6Þ
For w1;w2 2 P we denote the total derivative of X ðx; yÞ by

dX ðx; y; w1;w2Þ ¼ X 1ðx; yÞw1 þ X 2ðx; yÞw2: ð7Þ
Let AðtÞ;BðtÞ be continuous 2p-periodic matrices. Then a characteristic multiplier is defined as follows.

Definition 2.1. q is a characteristic multiplier of

_y ¼ AðtÞyðtÞ þ BðtÞyðt � xÞ ð8Þ
if there is a non-trivial solution yðtÞ of (8) such that yðt þ 2pÞ ¼ qyðtÞ. Note that if q ¼ 1 then yðtÞ is 2p-
periodic.

To simplify some of the notation we will suppress the t and write, for example, x ¼ xðtÞ; xx ¼ xðt � xÞ, but
in other cases we will maintain the t, especially when describing computational steps. We will also at times use
the notation

jxj2 ¼
Z 2p

0

jxðtÞj2 dt
� �1=2

: ð9Þ

3. Non-criticality condition

Galerkin and harmonic balance methods can be used to develop 2p-periodic approximate solutions for (1).
A fast discrete Fourier series algorithm for computing an approximate series solution and frequency, ðx̂; x̂Þ,
has been given by Gilsinn [20]. See Section 6 below for a brief discussion of a Galerkin method for approx-
imating a solution.

At this point, then, we assume that we have developed a 2p-periodic approximate solution and frequency,
ðx̂; x̂Þ for (6), where x̂ is 2p-periodic and

x̂ _̂x ¼ X ðx̂; x̂x̂Þ þ k; ð10Þ
where kðtÞ is a 2p-periodic residual bounded by

jkj 6 r: ð11Þ
The required size of the residual error, r, will become clear based upon estimates later in this paper. These
estimates will indicate in particular situations how good an approximate solution and frequency would need
to be computed to produce the final error estimates.
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The variational equation with respect to the approximate solution and frequency is given by

x̂_z ¼ dX ðx̂; x̂x̂; z; zx̂Þ: ð12Þ
Let bA ¼ X 1ðx̂; x̂x̂Þ, bB ¼ X 2ðx̂; x̂x̂Þ. The formal adjoint of (12) is given in row form by

x̂ _v ¼ �vbA � v�x̂
bB: ð13Þ

We will not give the proof of the next lemma, since it is stated in Hale [21] and in Halanay [22]. The result,
however, motivates the definition of a non-critical approximate solution.

Lemma 3.1. Let q0 ¼ 1 be a simple characteristic multiplier of (12) Let p be a non-trivial solution of (12)

associated with q0. Define

Jðp; x̂Þ ¼ p þ bBpx̂; ð14Þ
then Z 2p

0

vT
0 Jðp; x̂Þdt–0 ð15Þ

for all independent v0 of the adjoint (13).

We can now give the definition of a non-critical approximate solution of (6).

Definition 3.2. The pair ðx̂; x̂Þ, where x̂ is at least twice continuously differentiable, is said to be non-critical
with respect to (6) if (a) the variational equation about the approximate solution x̂, given by (12), has a simple
characteristic multiplier q0, not necessarily equal to one, with all of the other characteristic multipliers not
equal to one. (b) If v0, jv0j2 ¼ 1, is the solution of (13) corresponding to qo, i.e. with multiplier 1=q0, thenZ 2p

0

vT
0 Jð _̂x; x̂Þdt–0; ð16Þ

where

Jð _̂x; x̂Þ ¼ _̂xþ bB _̂xx̂: ð17Þ
The next lemma, proven in Halanay [22], will imply, in the case of a non-critical 2p-periodic approximate

solution of (6), that there is only one v0 in (16).

Lemma 3.3. Systems (12) and (13) have the same finite number of independent 2p-periodic solutions.

We will not give the proof of the next lemma, since it is also proven in Halanay [22]. The result is a Fred-
holm lemma and will be critical to the main approximation theorem. It will become clear later that the con-
stant M in this lemma will be crucial parameter to estimate.

Lemma 3.4. The non-homogeneous system

x̂ _x ¼ bAxþ bBxx̂ þ f ð18Þ
has a unique 2p-periodic solution if and only ifZ 2p

0

vT
0 f dt ¼ 0 ð19Þ

for all independent solutions v0 of period 2p of (13). Furthermore, there exists an M > 0, independent of f, such

that

jxj 6 M jf j: ð20Þ

4. A perturbation problem

In this paper we will look for an exact 2p-periodic solution, x, and an exact frequency, x, for (6) as a per-
turbation of the 2p-periodic approximate solution, x̂, and approximate frequency, x̂, of (6). In particular, let
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x ¼ x̂þ b;

x ¼ x̂þ x̂
x

z
ð21Þ

Then, substituting (21) into (6) and using (10), we can write the equation for z and b as

x̂_z ¼ dX ðx̂; x̂x̂; z; zx̂Þ þ Rðz; bÞ � bJð _̂x; x̂Þ � k; ð22Þ
where

Rðz; bÞ ¼ X x̂þ x̂
x

z; x̂x þ
x̂
x

zx

� �
� X ðx̂; x̂x̂Þ

� �
� dX ðx̂; x̂x̂; z; zx̂Þ þ bbB _̂xx̂ ð23Þ

and Jð _̂x; x̂Þ is given by (17).
In the next lemma we establish bounds and Lipschitz conditions for Rðz; bÞ. The proof is given in Gilsinn

[16].

Lemma 4.1. There exist functions R0ðz; bÞ > 0;Riðz;b;~z; ~bÞ > 0; i ¼ 1; 2, such that R0 ! 0 as ðz; bÞ ! 0 and

Ri ! 0 as ðz; b;~z; ~bÞ ! 0 and

jRðz; bÞj 6 R0ðz; bÞ;
jRðz; bÞ � Rð~z; ~bÞj 6 R1ðz; b;~z; ~bÞjz� ~zj þR2ðz; b;~z; ~bÞjb� ~bj

ð24Þ

Since we will be considering jbj small, we will begin by restricting b, which could be negative, so that

x̂þ b P
x̂
2
: ð25Þ

We can select jbj 6 x̂=2.
As a first step to establishing the existence of a 2p-periodic solution of (22) we first study the existence of a

2p-periodic solution of

x̂_z ¼ dX ðx̂; x̂x̂; z; zx̂Þ þ g � bJð _̂x; x̂Þ � k; ð26Þ
where g 2 P. For this we have the following lemma:

Lemma 4.2. If ðx̂; x̂Þ are non-critical with respect to (6), then (a) there exists a unique b such that

g � bJð _̂x; x̂Þ � k ? v0; ð27Þ
where v0 is the solution of (13) corresponding to the characteristic multiplier q0 of (12), and (b) there exists a

unique 2p-periodic solution of (26) that satisfies

jzj 6 M jg � bJð _̂x; x̂Þ � kj ð28Þ
for some M > 0.

Proof. Take

b ¼ a
Z 2p

0

vT
0 ðg � kÞdt

� �
; ð29Þ

where

a ¼
Z 2p

0

vT
0 Jð _̂x; x̂Þdt

� ��1

ð30Þ

and apply Lemma 3.4. h

We can now establish bounds on b; z and _z. For notation, designate the unique b and z in Lemma 4.2 by
bðgÞ and zðgÞ respectively, and _z by _zðgÞ. The proof is given in Gilsinn [16].
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Lemma 4.3. There exist three constants, designated by ki; i ¼ 0; 1; 2, such that

jbðgÞj 6 k0ðjgj þ rÞ;
jzðgÞj 6 k1ðjgj þ rÞ;
j_zðgÞj 6 k2ðjgj þ rÞ;

ð31Þ

where

k0 ¼
ffiffiffiffiffiffi
2p
p
jaj;

k1 ¼ M 1þ
ffiffiffiffiffiffi
2p
p
jajjJð _̂x; x̂Þj

h i
;

k2 ¼
k1

jx̂jM ð1þ 2MBÞ

ð32Þ

5. Main approximation theorem

In the main approximation theorem we will show that the solution of the perturbation problem (22) is the
fixed point of a contraction map. In this section we will define the map, state some properties, and preseent the
main approximation theorem.

We begin by defining a subset of P, designated by Nd, as

Nd ¼ fg 2 P : jgj 6 dg; ð33Þ

where d > 0. Following Stokes [17] we will define a map S : Nd ! P in terms of two mappings

L : Nd ! R�P1;

T : R�P1 ! P:
ð34Þ

To define L, let g 2Nd, then Lemma 4.2 assures us of the existence of a unique bðgÞ satisfying (27) and a
unique solution zðgÞ satisfying (26). Thus, define L : Nd ! R�P1 by

LðgÞ ¼ ðbðgÞ; zðgÞÞ: ð35Þ

Now define T : R�P1 ! P by

T ðb; zÞ ¼ Rðz; bÞ: ð36Þ
Finally, define S : Nd ! P by

SðgÞ ¼ T ðLðgÞÞ ¼ RðzðgÞ; bðgÞÞ: ð37Þ
The proof of the next lemma is given in Gilsinn [16] and depends on Lemmas 4.1, 4.2 and 4.3.

Lemma 5.1. For g 2Nd; ~g 2Nd there exist two functions E1ðdÞ;E2ðdÞ and two positive constants F 1; F 2 so that

jSðgÞj 6 E1ðdÞ;
jSðgÞ � Sð~gÞj 6 E2ðdÞjg � ~gj

ð38Þ

where

E1ðdÞ 6 F 1d
2;

E2ðdÞ 6 F 2d:
ð39Þ

It was also shown in Gilsinn [16] that the constants F 1; F 2 are given by

F 1 ¼ 32Kk2
1 þ

16k0k1

jx̂j ðjx̂j þ 2k0dÞ þ 2k2
0ðKj _̂xj

2 þBj€̂xjÞ þ 8Bk0k2 ð40Þ
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and

F 2 ¼ k1 32Kk1 þ 4k0 2Kj _̂xj þ B

jx̂j

� �� �
þ k0

16k2
0

3

16

jx̂j þ 4

� �
dþ 4k1 2Kj _̂xj þB 1þ 2

jx̂j

� �� �
þ 8Bk2

jx̂j þ
256Kk1k2

3jx̂j dþ 2Bj€̂xjk0

� �
: ð41Þ

In the main theorem the constants F 1; F 2 are those from Lemma 5.1.

Theorem 5.2. If (a) ðx̂; x̂Þ is non-critical with respect to (6) in the sense of Definition 3.2, (b) d is selected so that

d 6 minf1=F 1; 1=2F 2; x̂=4k0g ð42Þ
and (c) r 6 d, then there exists and exact frequency, x�, and solution, x�, of (6) such that

jx� � x̂j 6 4k1d;

jx� � x̂j 6 2k0d;
ð43Þ

where k0; k1 are defined in (32) and d is defined in (33).

6. Approximating a solution and frequency

An approximate solution and frequency for (6) can be developed by assuming a finite trigonometric poly-
nomial of the form

x̂m ¼ a2 cos t þ
Xm

n¼2

½a2n cos nt þ a2n�1 sin nt�; ð44Þ

where the sin t term has been dropped so that we can estimate a1 ¼ x̂, the frequency. Note that we have cen-
tered the approximate solution about the origin, since we assumed X ð0; 0Þ ¼ 0. If we set �a ¼ ða1; a2; . . . ; a2mÞ,
and

Emðt; �aÞ ¼ a1
_̂xmðtÞ � X ðx̂mðtÞ; x̂mðt � a1ÞÞ ð45Þ

then for a sufficiently fine mesh, specified by fti : i ¼ 1; 2; . . . ; 2Ng, in ½0; 2p�, where

ti ¼
2i� 1

2N
p; ð46Þ

the determining equations for �a can be written as [23]

F 1ð�aÞ ¼
1

N

X2N

i¼1

Emðti; �aÞ sin ti ¼ 0;

F 2ð�aÞ ¼
1

N

X2N

i¼1

Emðti; �aÞ cos ti ¼ 0;

F 2n�1ð�aÞ ¼
1

N

X2N

i¼1

Emðti; �aÞ sin nti ¼ 0;

F 2nð�aÞ ¼
1

N

X2N

i¼1

Emðti; �aÞ cos nti ¼ 0

ð47Þ

for n ¼ 2; . . . ;m.
These equations give 2m equations in 2m unknowns. Standard numerical solvers, using, for example,

Newton’s method, for non-linear equations can be used to solve for �a. The number of harmonics, m, and
the quadrature index, N, can be selected independently.
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7. Floquet theory for DDEs

The analysis of the stability of an approximate periodic solution for (1) usually involves the following con-
siderations. If bxðtÞ; bx 2 Cn is an approximate periodic solution of (1) of period 2p, and bx an approximate fre-
quency, then the linear variational equation about bxðtÞ can be written

_zðtÞ ¼ bAðtÞzðtÞ þ bBðtÞzðt � x̂Þ; ð48Þ

where bAðtÞ and bBðtÞ were defined previously in Section 3 and are periodic, with period 2p. We have included
the factor 1=x̂ in bA and bB for simplicity.

We now define the period map U : Cx̂ ! Cx̂ with respect to (48) by

ðU/ÞðsÞ ¼ zðsþ 2pÞ; ð49Þ

where zðsÞ is a solution of (48) satisfying zðsÞ ¼ /ðsÞ for s 2 ½�x̂; 0�. In this paper we assume x̂ < 2p. U is then
a compact operator on Cx̂, whose spectrum is at most countable with 0 as the only possible limit point [22].

A Floquet theory for (48) has been developed by Stokes [24]. In particular, if rðUÞ represents the spectrum
of U, then for each k 2 rðUÞ, U/ ¼ k/. That is, the spectrum consists of eigenvalues. Furthermore, the space
Cx̂ can be decomposed as the direct sum of two invariant subspaces

Cx̂ ¼ EðkÞ � KðkÞ; ð50Þ

EðkÞ is finite dimensional and composed of the eigenvectors with respect to k. Furthermore, rðU jKÞ ¼ rðUÞ�
fkg. If fwig; i ¼ 1; . . . ; d is a basis for EðkÞ and we let W be the matrix with columns wj for j ¼ 1; . . . ; d, then
there is a matrix GðkÞ such that

UW ¼ WGðkÞ: ð51Þ

Thus we can think of Cx̂ as being a countable direct sum of the invariant subspaces EðkiÞ plus a possible
remainder subspace, R. That is

Cx̂ ¼ Eðk1Þ � Eðk2Þ � � � � � R; ð52Þ

where R is a ‘‘remainder” set in which any solution of (48) with initial condition in R decays faster than any
exponential.

For each of the EðkiÞ there is a basis set Wi, and a matrix GðkiÞ. If we define an at most countable basis set
fWig, i ¼ 1; 2; . . ., then we can think about U operating on �1i¼1EðkiÞ as being represented by an infinite matrix
G1. This matrix is referred to as the monodromy matrix. Its eigenvalues are called the Floquet or character-
istic multipliers. The periodic solution bxðtÞ of (1) is stable if all of the eigenvalues of U are within the unit circle
and unstable if there is at least one with positive real part. We note that if bxðtÞ is an exact periodic solution of
(1) then one of the characteristic multipliers is exactly one.

8. Estimating characteristic multipliers

In this section we assume that the variational equation with respect to the approximate solution, x̂ðtÞ, can
be written in the form

_zðtÞ ¼ bAðtÞzðtÞ þ bBðtÞzðt � x̂Þ; ð53Þ

where bAðtÞ ¼ bAðt þ 2pÞ; bBðtÞ ¼ bBðt þ 2pÞ and we have reintroduced t to make the operator definitions more
transparent. Let Zðt; sÞ be the solution of (53) such that Zðs; sÞ ¼ In; Zðt; sÞ ¼ 0 for t < s where In is the n2 iden-
tity matrix on Cn. The solution Zðt; sÞ is sometimes referred to as the ‘‘Fundamental Solution”. Using the var-
iation of constants formula for (53), Halanay [22] shows that the solution of (53) for the initial function
/ 2 Cx̂ is given by

zðtÞ ¼ Zðt; 0Þ/ð0Þ þ
Z 0

�x̂
Zðt; aþ x̂ÞbBðaþ x̂Þ/ðaÞda: ð54Þ
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Define the operator

ðU/ÞðsÞ ¼ zðsþ 2pÞ; ð55Þ

where / 2 Cx̂, s 2 ½�x̂; 0�. If there is a non-trivial solution zðtÞ of (53) such that zðt þ 2pÞ ¼ qzðtÞ then q is a
characteristic multiplier of (53). If we combine (54) with (55) and note that zðaÞ ¼ /ðaÞ for a 2 ½�x̂; 0�, then
characteristic multipliers are the eigenvalues of

ðU/ÞðsÞ ¼ Zðsþ 2p; 0Þ/ð0Þ þ
Z 0

�x̂
Zðsþ 2p; aþ x̂ÞbBðaþ x̂Þ/ðaÞda; ð56Þ

where / 2 C0. Halanay [22] shows that we can restrict s 2 ½�x̂; 0�. This operator is sometimes referred to as
the Monodromy Operator.

8.1. Approximating the fundamental solution by spectral collocation

In this section we will use spectral methods to compute the fundamental solution of the linear homogeneous
delay differential equation (48). These methods are well known for collocating solutions to partial differential
equations and boundary value problems. See, for example, Gottlieb [25], Gottlieb et al. [26], and Gottlieb and
Turkel [27]. They are not as well known in delay differential equations. In this section we use a spectral method
suggested by Bueler [28] and Trefethen [30]. The method has been reported earlier in Gilsinn and Potra [29].

The computation of the fundamental matrix used in the monodromy operator (56) requires the computa-
tion of a solution zðtÞ of (48) on some interval ½a; b�. This will be done in a stepwise manner. We first find a
positive integer q such that aþ qx̂ P b. Then we solve, at the first step, t 2 ½a; aþ x̂�,

_z1ðtÞ ¼ bAðtÞz1ðtÞ þ bBðtÞz1ðt � x̂Þ; ð57Þ

where z1ðt � x̂Þ ¼ /ðsÞ for some function / 2 Cx̂ðaÞ and s ¼ t � x̂. Thus the initial problem becomes an or-
dinary differential equation. Then, on ½aþ x̂; aþ 2x̂� we solve

_z2ðtÞ ¼ bAðtÞz2ðtÞ þ bBðtÞz2ðt � x̂Þ; ð58Þ

where z2ðaþ x̂Þ ¼ z1ðaþ x̂Þ, z2ðt � x̂Þ ¼ z1ðsÞ for s 2 ½a; aþ x̂�; s ¼ t � x̂. Again we solve (5) as an ordinary
differential equation. The process is continued so that on ½aþ ði� 1Þx̂; aþ ix̂�, for i ¼ 1; 2; . . . ; q,

_ziðtÞ ¼ bAðtÞziðtÞ þ bBðtÞziðt � x̂Þ ð59Þ

with ziðaþ ði� 1Þx̂Þ ¼ zi�1ðaþ ði� 1Þx̂Þ. We then define zðtÞ on ½a; b� as the concatenation of ziðtÞ for
t 2 ½aþ ði� 1Þx̂; aþ ix̂� and i ¼ 1; 2; . . . ; q.

Since we wish to use a Chebyshev collocation method, we will shift each interval ½aþ ði� 1Þx̂; aþ ix̂� to
the interval ½�1; 1�. For t 2 ½aþ ði� 1Þx̂; aþ ix̂�, for i ¼ 1; 2; . . . ; q, we have z 2 ½�1; 1� provided

z ¼ 2

x̂
t � ð2aþ ð2i� 1Þx̂Þ

x̂
: ð60Þ

For z 2 ½�1; 1� we have t 2 ½aþ ði� 1Þx̂; aþ ix̂� provided

t ¼ x̂
2

zþ ð2aþ ð2i� 1Þx̂Þ
2

: ð61Þ

We note that the point t 2 ½aþ ði� 1Þx̂; aþ ix̂� and t � x̂ 2 ½aþ ði� 2Þx̂; aþ ði� 1Þx̂� are translated to the
same z 2 ½�1; 1�. This is clear from

2

x̂
ðt � x̂Þ � 2aþ ð2i� 3Þx̂

x̂
¼ 2

x̂
t � 2aþ ð2i� 1Þx̂

x̂
: ð62Þ

Therefore we can shift the iterated delay problems

_ziðtÞ ¼ bAðtÞziðtÞ þ bBðtÞziðt � x̂Þ ð63Þ
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for t 2 ½aþ ði� 1Þx̂; aþ ix̂� and i ¼ 1; 2; . . . ; q, into iterated ordinary differential equations

u0iðzÞ ¼
x̂
2
eAiðzÞuiðzÞ þ

x̂
2
eBiðzÞui�1ðzÞ; ð64Þ

where for t 2 ½aþ ði� 1Þx̂; aþ ix̂� and associated z 2 ½�1; 1�,

uið�1Þ ¼ ui�1ð1Þ;
uiðzÞ ¼ ziðtÞ;eAiðzÞ ¼ bAðtÞ;eBiðzÞ ¼ bBðtÞ;
ui�1ðzÞ ¼ ziðt � x̂Þ:

ð65Þ

The initial function is

u0ðzÞ ¼ z1ðt � x̂Þ ¼ /ðt � x̂Þ ð66Þ

for t � x̂ 2 ½a� x̂; a�.
We can now approximate the fundamental solution for (48) on ½a; b� by first solving the iterated differential

equations (64) subject to

uið�1Þ ¼ ui�1ð1Þ;
u0ðzÞ ¼ 0; z 2 ½�1; 1�;
u1ð�1Þ ¼ In;

ð67Þ

where In is the n� n identity matrix. We follow the spectral method given in Bueler [28] in that the fundamen-
tal solution is solved for in n passes of the iteration process with u1ð�1Þ ¼ ej, where ej ¼ ð0; . . . ; 1; . . . ; 0ÞT with
1 in the jth element, j ¼ 1; 2; . . . ; n.

To begin the solution process we take, for some positive integer N, the Chebyshev points

gk ¼ cos
kp
N

� �
ð68Þ

on ½�1; 1�, for k ¼ 0; 1; . . . ;N . The benefit of using these points has been discussed by Salzer [31]. The La-
grange interpolation polynomials at these points are given by

ljðzÞ ¼
YN
k¼0
k–j

z� gk

gj � gk

 !
: ð69Þ

We have ljðgkÞ ¼ djk. Then on ½�1; 1� we set

uiðzÞ ¼
XN

j¼0

uiðgjÞljðzÞ: ð70Þ

We also need to form

u0iðzÞ ¼
XN

j¼0

ui gj

	 

l0jðzÞ: ð71Þ

At the Chebyshev points we will designate

Dkj ¼ l0jðgkÞ: ð72Þ

The values for these derivatives are given in Gottlieb and Turkel [27] or Trefethen [30] but we state the values
for D here for completeness. The derivations are given in the Appendix.
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D00 ¼
2N 2 þ 1

6
;

DNN ¼ �D00;

Djj ¼
�gj

2ð1� g2
j Þ
; j ¼ 1; 2; . . . ;N � 1;

Dij ¼
cið�1Þiþj

cjðgi � gjÞ

ð73Þ

for i–j; i; j ¼ 0; . . . ;N where

ci ¼
2; i ¼ 0 or N ;

1; otherwise:

�
ð74Þ

For notation, let

uiðzÞ ¼ ðui1; . . . ; uinÞT ;eAiðzÞ ¼ ½eAðiÞpqðzÞ�p;q¼1;...;n;eBiðzÞ ¼ ½eBðiÞpqðzÞ�p;q¼1;...;n:

ð75Þ

We then write the collocation polynomial of uir; r ¼ 1; . . . ; n, as

uirðzÞ ¼
XN

k¼0

wðiÞrk lkðzÞ ð76Þ

at the Chebyshev points (68) to get

uirðgjÞ ¼ wðiÞrj ;

u0irðgjÞ ¼
XN

k¼0

wðiÞrk Djk;

ui�1;r ¼ wði�1Þ
rj :

ð77Þ

The initial conditions for the iterated differential equations are

uirðgNÞ ¼ ui�1;rðg0Þ; ð78Þ

or

wðiÞrN ¼ wði�1Þ
r0 ð79Þ

for r ¼ 1; . . . ; n.
The discretized differential equations are then given byXN

k¼0

wðiÞrk Djk

 !
r¼1;n

¼ x̂
2
½eAðiÞrp ðzÞ�r;p¼1;nðw

ðiÞ
rj Þr¼1;n þ

x̂
2
½eBðiÞrp ðzÞ�r;p¼1;nðw

ði�1Þ
rj Þr¼1;n ð80Þ

for j ¼ 0; 1; . . . ;N � 1. These provide nN equations but nðN � 1Þ unknowns. The other n equations come from
the initial conditions. We define the following vectors:

wi ¼ ðwðiÞ10 � � �w
ðiÞ
1N wðiÞ20 � � �w

ðiÞ
2N � � �w

ðiÞ
n0 � � �w

ðiÞ
nN Þ

T

wi�1 ¼ ðwði�1Þ
10 � � �wði�1Þ

1N wði�1Þ
20 � � �wði�1Þ

2N � � �wði�1Þ
n0 � � �wði�1Þ

nN Þ
T
:

ð81Þ

Then we can write the iterated differential equation as

eDwi ¼
x̂
2
eAiwi þ

x̂
2
eBiwi�1; ð82Þ
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where eD ¼ D	 In, the Kronecker product, and each D is given by

D ¼

D00 � � � D0N

..

. ..
. ..

.

DN�1;0 � � � DN�1;N

0 � � � 1

266664
377775 ð83Þ

The unit in the lower right introduces the initial condition, wðiÞrN ; r ¼ 1; . . . ; n, equation. Thus eD is formed by n

blocks of D down the diagonal.
The matrix eAi is given by

eAi ¼

eAðiÞ11ðg0Þ 0 � � � 0 � � � 0 � � � 0 eAðiÞ1nðg0Þ 0 0 � � � 0

0 . .
.

0 0 � � � 0 � � � 0 0 . .
.

0 � � � 0

0 0 eAðiÞ11ðgN�1Þ 0 � � � 0 � � � 0 0 eAðiÞ1nðgN�1Þ 0 � � � 0

0 0 � � � 0 � � � 0 � � � 0 � � � 0 0 � � � 0eAðiÞn1ðg0Þ 0 � � � 0 � � � 0 � � � 0 eAðiÞnnðg0Þ 0 0 � � � 0

0 . .
.

0 0 � � � 0 � � � 0 0 . .
.

0 � � � 0

0 0 eAðiÞn1ðgN�1Þ 0 � � � 0 � � � 0 0 eAðiÞnnðgN�1Þ 0 � � � 0

0 0 � � � 0 � � � 0 � � � 0 � � � 0 0 � � � 0

266666666666666664

377777777777777775
; ð84Þ

eBi is structured in a similar manner except every ðN þ 1Þth row includes an element 2=x̂ to take care of the
initial condition. Thus

eBi ¼

eBðiÞ11ðg0Þ 0 � � � 0 � � � 0 � � � 0 eBðiÞ1nðg0Þ 0 0 � � � 0

0 . .
.

0 0 � � � 0 � � � 0 0 . .
.

0 � � � 0

0 0 eBðiÞ11ðgN�1Þ 0 � � � 0 � � � 0 0 eBðiÞ1nðgN�1Þ 0 � � � 0
2
x̂ 0 � � � 0 � � � 0 � � � 0 � � � 0 0 � � � 0eBðiÞn1ðg0Þ 0 � � � 0 � � � 0 � � � 0 eBðiÞnnðg0Þ 0 0 � � � 0

0 . .
.

0 0 � � � 0 � � � 0 0 . .
.

0 � � � 0

0 0 eBðiÞn1ðgN�1Þ 0 � � � 0 � � � 0 0 eBðiÞnnðgN�1Þ 0 � � � 0

0 0 � � � 0 � � � 0 � � � 0 2
x̂ 0 0 � � � 0

2666666666666666664

3777777777777777775

: ð85Þ

The linear equation (82) can be solved for wi by setting

Mi ¼ eD � x̂
2
eAi

� ��1 x̂
2
eBi ð86Þ

and

wi ¼ Miwi�1 ð87Þ

for i ¼ 2; 3; . . . ; q.
To solve for w1 for the fundamental solution we need to solve

u01ðzÞ ¼
x̂
2
eA1ðzÞu1ðzÞ ð88Þ

for z 2 ð�1; 1� and

u1ð�1Þ ¼ In: ð89Þ
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That is, we solve n problems at each iteration, one for each of the initial conditions ei, where ei is the standard
basis vector with a unit in the ith element and zero elsewhere. For the moment we set the initial vector as

w0 ¼ ð0 � � � u010 � � � u020 � � � u0nÞT; ð90Þ

where u0r; r ¼ 1; . . . ; n, is placed in each of the ðN þ 1Þth elements and zero elsewhere. Then from the previous
construction of eD and eA1 we have

w1 ¼ eD � x̂
2
eA1

� ��1

w0: ð91Þ

Given that we have computed

uirðzÞ ¼
XN

k¼0

wðiÞrk lkðzÞ ð92Þ

on ½�1; 1� for r ¼ 1; . . . ; n we can compute the result for t 2 ½aþ ði� 1Þh; aþ ih� by setting

zirðtÞ ¼ uirðzÞ ð93Þ

for r ¼ 1; . . . ; n, where

z ¼ 2

x̂
t � ð2aþ ð2i� 1Þx̂Þ

x̂
ð94Þ

or

zirðtÞ ¼
XN

k¼0

wðiÞrk lk
2

x̂
t � ð2aþ ð2i� 1Þx̂Þ

x̂

� �
: ð95Þ

The initial condition is

uirðgNÞ ¼ ui�1;rðg0Þ: ð96Þ
But on ½aþ ði� 1Þx̂; aþ ix̂�, zN ¼ �1 corresponding to t ¼ aþ ði� 1Þx̂ and on ½aþ ði� 2Þx̂; aþ ði� 1Þx̂�,
z0 ¼ 1 corresponding to t ¼ aþ ði� 1Þx̂, so that

zirðaþ ði� 1Þx̂Þ ¼ zi�1;rðaþ ði� 1Þx̂Þ: ð97Þ

8.2. Estimating monodromy operator eigenvalues

To approximate the monodromy operator (56) we will require a quadrature rule that satisfiesXPþ1

k¼1

vkf ðskÞ !
Z 0

�x̂
f ðsÞds ð98Þ

as P !1 for each continuous function f 2 Cx̂. The rule is satisfied ifXPþ1

k¼1

jvkj 6 Q ð99Þ

for some Q > 0 and P ¼ 1; 2; . . .. This is satisfied by, for example, Trapezoidal or Simpson rules.
Let �x̂ ¼ s1 < s2 < � � � < sPþ1 ¼ 0, and define

ðU/ÞðsÞ ¼ Zðsþ 2p; 0Þ/ð0Þ þ
XPþ1

k¼1

vkZðsþ 2p; sk þ x̂ÞBðsk þ x̂Þ/ðskÞ ð100Þ

for / 2 Cx̂.
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Then, for each si 2 ½�x̂; 0�,

ðU/ÞðsiÞ ¼ Zðsi þ 2p; 0Þ/ð0Þ þ
XPþ1

j¼1

wjZðsi þ 2p; sj þ x̂ÞBðsj þ x̂Þ/ðsjÞ: ð101Þ

Since sPþ1 ¼ 0, (101) can be rewritten as

ðU/ÞðsiÞ ¼
XP

j¼1

wjZðsi þ 2p; sj þ x̂ÞBðsj þ x̂Þ/ðsjÞ þ ðZðsi þ 2p; 0Þ þ wPþ1Zðsi þ 2p; x̂ÞBðx̂ÞÞ/ðsPþ1Þ;

ð102Þ

where Zðs; aÞ is the fundamental matrix of (53). Eq. (102) can be put in matrix form

ðU/Þðs1Þ
..
.

ðU/ÞðsiÞ
..
.

ðU/ÞðsPþ1Þ

0BBBBBBBB@

1CCCCCCCCA
¼

U 1;1 � � � U 1;j � � � U 1;Pþ1

..

.
� � � ..

.
� � � ..

.

U i;1 � � � U i;j � � � Ui;Pþ1

..

.
� � � ..

.
� � � ..

.

UPþ1;1 � � � U Pþ1;j � � � U Pþ1;Pþ1

2666666664

3777777775
; ð103Þ

where the block elements for i ¼ 1; . . . ; P þ 1; j ¼ 1; . . . ; P are U i;j ¼ wjZðsi þ 2p; sj þ x̂ÞBðsj þ x̂Þ. The block
elements in the last column of the matrix are given by Ui;Pþ1 ¼ Zðsi þ 2p; 0Þ þ wPþ1Zðsi þ 2p; x̂ÞBðx̂Þ for
i ¼ 1; . . . ; P þ 1. The relevant eigenvalue problem becomes

U 1;1 � � � U 1;j � � � U 1;Pþ1

..

.
� � � ..

.
� � � ..

.

U i;1 � � � Ui;j � � � Ui;Pþ1

..

.
� � � ..

.
� � � ..

.

UPþ1;1 � � � U Pþ1;j � � � U Pþ1;Pþ1

2666666664

3777777775
¼ k

ð/Þðs1Þ
..
.

ð/ÞðsiÞ
..
.

ð/ÞðsPþ1Þ

0BBBBBBBB@

1CCCCCCCCA
: ð104Þ

9. Determining solutions of the adjoint equation associated with multipliers of the variational equation

In order to estimate a in (30), let t 2 ½0; 2p� and w be the initial function defined on ½2p; 2pþ x̂�. The adjoint
equation is given by

_yðtÞ ¼ �yðtÞbAðtÞ � yðt þ x̂ÞbBðt þ x̂Þ; ð105Þ

where yðtÞ is a row vector. Ordinarily solving the adjoint equation would require a”backward” integration.
However, it was shown in Halanay [22], that the solution of the adjoint on ½0; 2p� is given in row vector form
by

yðtÞ ¼ wð2pÞZð2p; tÞ þ
Z 2pþx̂

2p
wðaÞbBðaÞZða� x̂; tÞda: ð106Þ

The significance of this representation is that only a ‘‘forward” integration is required to solve for the funda-
mental solution, Z, of (53). This allows us to directly use the collocation algorithm developed in Section 8.1.

Let ~/ðsÞ be a continuous row vector function defined on ½�x̂; 0�. Then define the operator

ð eU ~/ÞðsÞ ¼ ~/ð�x̂ÞZð2p; sþ x̂Þ þ
Z 0

�x̂

~/ðaÞbBðaþ x̂ÞZð2pþ a; sþ x̂Þda; ð107Þ

s 2 ½�x̂; 0�. An associated operator eV , defined on ½2p; 2pþ x̂�, is given in Halanay [22] as
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ðeV wÞðsÞ ¼ yðs� 2p;wÞ ¼ wð2pÞZð2p; s� 2pÞ þ
Z 2pþx̂

2p
wðaÞbBðaÞZða� x̂; s� 2pÞda: ð108Þ

It was also shown in Halanay [22], that an eigenvalue q of eV is associated with a 1=q multiplier of the adjoint
equation, the eigenvalues of U ; eU ; eV are all the same, and the eigenvectors of eU ; eV are related by
~/ðsÞ ¼ wðsþ 2pþ x̂Þ; s 2 ½�x̂; 0�. It turns out then, to solve the adjoint equation in row form on ½0; 2p�,
we need only compute the significant eigenvalue and eigenvector of eU . Therefore, using quadratures, we dis-
cretize eU by setting �x̂ ¼ s1 < � � � < sPþ1 ¼ 0;D ¼ x̂=P . The jth block column is given by

ð eU ~/ÞðsjÞ ¼ ½~/ðs1Þ; � � � ; ~/ðsiÞ; � � � ; ~/ðsPþ1Þ�

Zð2p; sj þ x̂Þ þ bBðs1 þ x̂ÞZðs1 þ 2p; sj þ x̂Þvj

..

.

bBðsi þ x̂ÞZðsi þ 2p; sj þ x̂Þvj

..

.

bBðsPþ1 þ x̂ÞZðsPþ1 þ 2p; sj þ x̂Þvj

26666666664

37777777775
: ð109Þ

The eigenvector ~/ of the matrix on the right, associated with the multiplier of the variational equation, is com-
puted and substituted into the discretized form of equation (106) to give the value of yðtÞ on the partition
0 ¼ t1 < � � � < tOþ1 ¼ 2p; tiþ1 � ti ¼ 2p=O, i ¼ 1; . . . ;O, as

yðtjÞ ¼ ½~/ðs1Þ; � � � ; ~/ðsiÞ; � � � ; ~/ðsPþ1Þ�

Zð2p; tjÞ þ bBðs1 þ 2pþ x̂ÞZðs1 þ 2p; tjÞvj

..

.

bBðsi þ 2pþ x̂ÞZðsi þ 2p; tjÞvj

..

.

bBðsPþ1 þ 2pþ x̂ÞZðsPþ1 þ 2p; tjÞvj

2666666664

3777777775
ð110Þ

using ~/ðsÞ ¼ wðsþ 2pþ x̂Þ; s 2 ½�x̂; 0�.
We then can estimate a by

a ¼
XOþ1

j¼1

ujyðtjÞJð _̂x; x̂ÞðtjÞ
" #�1

: ð111Þ

Note that a may be complex but in the final error estimates we only use jaj.

10. Estimating the M parameter

From Halanay [22] the variation of constants formula for

_zðtÞ ¼ bAðtÞzðtÞ þ bBðtÞzðt � x̂Þ þ f ðtÞ; ð112Þ

where t 2 ½0; 2p�, is given by

zðtÞ ¼ Zðt; 0Þ/ð0Þ þ
Z 0

�x̂
Zðt; aþ x̂ÞbBðaþ x̂ÞzðaÞdaþ

Z t

0

Zðt; aÞf ðaÞda: ð113Þ

The 2p periodic initial function condition with s 2 ½�x̂; 0� is

/ðsÞ ¼ Zðsþ 2p; 0Þ/ð0Þ þ
Z 0

�x̂
Zðsþ 2p; aþ x̂ÞbBðaþ x̂Þ/ðaÞdaþ

Z sþ2p

0

Zðsþ 2p; aÞf ðaÞda: ð114Þ

The first step in computing M involves relating / to f. Let j/j ¼ sup�x̂6s60j/ðsÞj and similarly for jf j on ½0; 2p�.
To eliminate /ð0Þ from (114), set s ¼ 0 in (114) and solve for /ð0Þ as
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/ð0Þ ¼
Z 0

�x̂
ðI � Zð2p; 0ÞÞ�1Zð2p; aþ x̂ÞbBðaþ x̂Þ/ðaÞdaþ

Z 2p

0

ðI � Zð2p; 0ÞÞ�1Zð2p; aÞf ðaÞda: ð115Þ

Substitute (115) into (114) and combine terms as

/ðsÞ ¼
Z 0

�x̂
½Zðsþ 2p; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; aþ x̂Þ þ Zðsþ 2p; aþ x̂Þ�bBðaþ x̂Þ/ðaÞda

þ
Z 2p

0

½Zðsþ 2p; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; aÞ þ Zðsþ 2p; aÞ�f ðaÞda: ð116Þ

where s 2 ½�x̂; 0�.
Let �x̂ ¼ s1 < s2 < � � � < sPþ1 ¼ 0; ds ¼ x̂

P , and 0 ¼ t1 < t2 < � � � < tOþ1 ¼ 2p; dt ¼ 2p
O . We can discretize

(116) by setting

/ðsiÞ ¼
XPþ1

j¼1

H 1ði; jÞ/ðsjÞ þ
XOþ1

k¼1

H 2ði; jÞf ðtkÞ; ð117Þ

where

H 1ði; jÞ ¼ vj½Zðsi þ 2p; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; sj þ x̂Þ þ Zðsi þ 2p; sj þ x̂Þ�bBðsj þ x̂Þ;
H 2ði; jÞ ¼ uk½Zðsi þ 2p; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; tkÞ þ Zðsi þ 2p; tkÞ�

ð118Þ

In vector matrix form (117) can be written

/ðs1Þ

..

.

/ðsPþ1Þ

0BB@
1CCA ¼ H 1

/ðs1Þ

..

.

/ðsPþ1Þ

0BB@
1CCAþ H 2

f ðt1Þ

..

.

f ðtOþ1Þ

0BB@
1CCA: ð119Þ

Using a generalized inverse we can solve for the / vector with minimum norm by

/ðs1Þ

..

.

/ðsPþ1Þ

0BB@
1CCA ¼ ðI � H 1ÞþH 2

f ðt1Þ

..

.

f ðtOþ1Þ

0BB@
1CCA: ð120Þ

In the second step the value of /ð0Þ, given by equation (115), is substituted into Eq. (113) and terms combined
to give

zðtÞ ¼
Z 0

�x̂
½Zðt; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; aþ x̂Þ þ Zðt; aþ x̂Þ�bBðaþ x̂Þ/ðaÞda

þ
Z 2p

0

½Zðt; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; aÞ þ Zðt; aÞ�f ðaÞda: ð121Þ

This can be discretized by setting

zðtkÞ ¼
XPþ1

i¼1

H 3ðk; iÞ/ðsiÞ þ
XOþ1

j¼1

H 4ðk; jÞf ðtkÞ; ð122Þ

where

H 3ðk; iÞ ¼ vi½Zðtk; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; si þ x̂Þ þ Zðtk; si þ x̂Þ�bBðsi þ x̂Þ;
H 4ðk; jÞ ¼ uj½Zðtk; 0ÞðI � Zð2p; 0ÞÞ�1Zð2p; tjÞ þ Zðtk; tjÞ�:

ð123Þ
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In vector matrix form (122) can be written

zðt1Þ
..
.

zðtOþ1Þ

0BB@
1CCA ¼ H 3

/ðs1Þ
..
.

/ðsPþ1Þ

0BB@
1CCAþ H 4

f ðt1Þ
..
.

f ðtOþ1Þ

0BB@
1CCA: ð124Þ

By substituting (120) into (124) we have

zðt1Þ
..
.

zðtOþ1Þ

0BB@
1CCA ¼ ½H 3ðI � H 1ÞþH 2 þ H 4�

f ðt1Þ
..
.

f ðtOþ1Þ

0BB@
1CCA: ð125Þ

Therefore

jzj 6 M jf j; ð126Þ

where M ¼ kH 3ðI � H 1ÞþH 2 þ H 4k1.

11. Application to a Van der Pol equation with delay

In this section we will apply the main theorem to approximate the limit cycle of the Van der Pol equation
with unit delay, given by

€xþ kðxðt � 1Þ2 � 1Þ _xðt � 1Þ þ x ¼ 0: ð127Þ

Since the period of the limit cycle is unknown we introduce an unknown frequency by substituting t=x for t to
obtain

x2€xþ xkðxðt � xÞ2 � 1Þ _xðt � xÞ þ x ¼ 0 ð128Þ

for t 2 ½0; 2p�. To compare with an approximation result obtained for ordinary differential equations in Stokes
[18], we take k ¼ 0:1.

The first step was to estimate an approximate 2p-periodic solution, frequency and residual to (128). By
using Galerkin’s method described in Section 6 the following approximate solution was obtained

x̂ðtÞ ¼ 2:0185 cosðtÞ

þ 2:5771� 10�3 sinð2tÞ þ 2:5655� 10�2 cosð2tÞ

þ 1:0667� 10�4 sinð3tÞ � 5:2531� 10�4 cosð3tÞ

� 7:1780� 10�6 sinð4tÞ � 2:2043� 10�6 cosð4tÞ;
x̂ ¼ 1:0012;

ð129Þ

where we have displayed only the first few harmonics. This solution was estimated based on 11 harmonics,
40,000 sampled points over ½0; 2p�, and 100 Chebyshev extreme points (68). The residual was estimated by
substituting ðx̂; x̂Þ from Eq. (129) into Eq. (128) and finding the maximum of the absolute values of the resid-
uals obtained in the interval ½0; 2p�. The result was r ¼ 3:1086� 10�15. This residual is significantly better than
the one given in Stokes [18]. The distribution of the residuals for the current case is shown in Fig. 1. The phase
plot of the approximate solution is shown in Fig. 2. For t 2 ½0; 2p� we can then immediately estimate
jx̂j 6 2:0436, j _̂xj 6 2:0279, j€̂xj 6 2:1165.

In the second step, the values of the constants B and K were obtained in a straightforward manner from
the variational equation about the approximate frequency and solution given by

_zðtÞ ¼ bAðtÞzðtÞ þ bBðtÞZðt � x̂Þ; ð130Þ
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where

z ¼
z1

z2

� �
; bAðtÞ ¼ 0 1

�1=x̂2 0

� �
;

bBðtÞ ¼ 0 0

�2ðk=x̂Þx̂1ðt � x̂Þx̂2ðt � x̂Þ ðk=x̂Þð1� x̂1ðt � x̂Þ2Þ

� �
:

We use the fact that the natural norm of a matrix, H, associated with a vector norm jxj ¼ max16i6njxij is
jH j ¼ max16i6n

Pn
j¼1jhijj. With this definition it is not hard to show that

–2 –1 0 1 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2
Phase Plot of Approximate Solution

X

dX
/d

t

Fig. 2. Phase plot of approximate solution for the Van der Pol equation.
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Fig. 1. Residual error of approximate solution for the Van der Pol equation.
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jdX ðx̂; /Þj 6
0 1

�1=x̂2 � 2ðk=x̂Þx̂1ðt � x̂Þx̂2ðt � x̂Þ ðk=x̂Þð1� x̂1ðt � x̂Þ2Þ

���� ����j/j 6 2:3776j/j: ð131Þ

Therefore, for k ¼ 0:1, B ¼ 2:3776. Working conservatively within the domain D ¼ fx 2 C½0; 2p� :
jx� x̂j 6 1g it is not hard to show that

jdX ðx̂x̂ þ w1; /x̂Þ � dX ðx̂x̂ þ w2; /x̂Þj 6 ð6k=x̂Þð1þ jx̂jÞjw1 � w2jj/j: ð132Þ
Then from (129) and (132) we can estimate K ¼ 1:8157 and, from (17), we can estimate jJð _̂x; x̂Þj 6 2:7546.

Next, we can estimate the characteristic multipliers of the variational equation relative to the function x̂ðtÞ.
For the quadrature steps in Sections 8 and 9 P and O were taken as 200 and 1200 respectively. These gave
mesh widths of about 1/200 on both ½�x̂; 0� and ½0; 2p�. Using the method of Section 8 we computed two sim-
ple conjugate eigenvalues with magnitude 1:0430. All of the other eigenvalues have magnitudes near zero.
These are, of course, the eigenvalues of the monodromy operator U. The fundamental matrix Z in (56) is com-
puted using the collocation method of Section 8.1 (See Fig. 3). The monodromy operator is formulated as in
Section 8. The eigenvalues of the monodromy operator U are plotted in Fig. 4. Note that the significant com-
plex conjugate eigenvalues are near the unit circle but are not exactly on it. This is due to the fact that (129) is
only an approximate solution. The eigenvalues are complex conjugates because the left hand matrix in (104) is
real and non-symmetric since the fundamental solution Z is non-symmetric (See Fig. 3). We can confirm that
the eigenvalues of the operator eU are the same as those of U. Graphically this is shown in Fig. 5.

In the next step we estimate the parameter a using the methods of Section 9. The solution of the adjoint to
the variational equation was computed using Eq. (110) and the parameter a in (30) was estimated by simple
quadrature, with D ¼ 2p=O for a sufficiently large mesh, 0 ¼ t1 < t2 < � � � < tOþ1 ¼ 2p, as

a ¼ D
XOþ1

i¼1

yðtiÞJð _̂x; x̂ÞðtiÞ
�����

�����
" #�1

: ð133Þ

The absolute value of a is estimated as 3.3547.
If we now apply the methods of Section 10, using bAðtÞ and bBðtÞ defined in equation (130), we can estimate

M ¼ 2:7618� 102. These results allow us to estimate k0, k1 and k2 in Lemma 4.3 as k0 ¼ 8:4091,
k1 ¼ 6:6736� 103, and k2 ¼ 3:1720� 104. Note the magnitude of the parameters.
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Fig. 3. Fundamental matrix for the variational equational relative to the approximate solution for the Van der Pol equation.
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With the estimates above we can compute F 1 ¼ 2:5941� 109, F 2 ¼ 1:0798� 1010 from (40) and (41) respec-
tively. Then we compute d ¼ 4:6305� 10�11 from (42). Then F 1d

2 ¼ 5:5623� 10�12 is less than d and
F 2d ¼ 0:5. Furthermore r < d. Therefore, the conditions of the main theorem are satisfied and we can con-
clude from Theorem 5.2 that there exists an exact solution x� and an exact frequency x� of Eq. (128) such that
jx� � x̂j 6 1:2361� 10�6 and jx� � x̂j 6 7:7877� 10�10.
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Fig. 4. Eigenvalues for the monodromy operator.
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12. Conclusions

Although there seem to be a large number of parameters to be computed and inequalities to be tested in
order to produce the final error estimates the process is feasible. All of the steps can be completed within a
single code. A code has been published as a report of the National Institute of Standards and Technology
(NIST) in Gilsinn [32]. The author cannot claim that the existing code is the most efficient. It has also been
built around the example in Section 11 and would have to be generalized for other applications, but the code
provides a template on which to proceed. From the computational point of view the longest compute times
involve the construction of the block matrices (18) and (109). Computing the approximate solution and the
fundamental solution of the variational equation are relatively fast compared to these matrix constructions.
It behooves anyone wishing to apply the methods of this paper to spend some effort vectorizing the matrix
construction algorithms in Sections 8.1 and 9 as much as possible.

The parameter M in the Fredholm Lemma 3.4 is a significant parameter. From the example above, it is
clear that it would be desirable to obtain as small a value for that M as possible, since its magnitude affects
the ki; i ¼ 1; 2 parameters and k1 appears in the final error estimates. In particular, in the example above, the
affect of M causes a very fine residual r for the approximate solution (129) to produce a pessimistic error esti-
mate between the approximate solution and the exact solution in the end. From (32) the critical parameter k1

is linearly dependent on M.

Appendix

In this appendix we present the derivation of the differentiation matrix (73). The derivation is based on a
discussion of pseudospectral Chebyshev methods given in Gottlieb et al. [26], although a full derivation of the
differentiation matrix is not given there.

Lemma 13.1. For some positive integer N let the Chebyshev points be given by

gk ¼ cos
kp
N

� �
ð134Þ

on ½�1; 1�, for k ¼ 0; 1; . . . ;N . The Lagrange interpolation polynomials at these points are given by

ljðzÞ ¼
YN
k¼0
k–j

z� gk

gj � gk

 !
: ð135Þ

We have ljðgkÞ ¼ djk. At the Chebyshev points designate

Dkj ¼ l0jðgkÞ: ð136Þ

The values for these derivatives are then given as

D00 ¼
2N 2 þ 1

6
;

DNN ¼ �D00;

Djj ¼
�gj

2ð1� g2
j Þ
; j ¼ 1; 2; . . . ;N � 1;

Dij ¼
cið�1Þiþj

cjðgi � gjÞ

ð137Þ

for i–j; i; j ¼ 0; . . . ;N where

ci ¼
2; i ¼ 0 or N ;

1; otherwise:

�
ð138Þ
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Proof. The Chebyshev polynomial of degree N is given by

T N ðzÞ ¼ cosðN cos�1Þ ð139Þ
for z 2 ½�1; 1�.

Define the polynomial

gjðzÞ ¼
ð1� z2ÞT 0NðzÞð�1Þjþ1

cjN 2ðz� zjÞ
ð140Þ

for j ¼ 0; . . . ;N and c0 ¼ cN ¼ 2; cj ¼ 1 for 1 6 j 6 N � 1. Since T 0NðzjÞ will be shown below to equal zero,
T 0N ðzÞ=ðz� zjÞ is a polynomial of degree N � 2 so gjðzÞ is a polynomial of degree N. Thus, if we can show that
gjðzkÞ ¼ djk for k ¼ 0; . . . ;N , then by uniqueness gjðzÞ ¼ ljðzÞ.

We first need to compute the following derivatives:

T 0N ðzÞ ¼
�N sinðN cos�1 zÞffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p ;

T 00N ðzÞ ¼
�N 2ð1� z2Þ1=2 cosðN cos�1 zÞ � Nz sinðN cos�1 zÞ

ð1� z2Þ3=2
;

T 000N ðzÞ ¼ �N 2½� sinðN cos�1 zÞNð1� z2Þ�1=2ð1� z2Þ�1 þ cosðN cos�1 zÞð�1Þð1� z2Þ�2ð�2zÞ�

� N sinðN cos�1 zÞð1� z2Þ�3=2
h

þ z cosðN cos�1 zÞNð1� z2Þ�1=2ð1� z2Þ�3=2

þz sinðN cos�1 zÞ �3

2

� �
ð1� z2Þ�5=2ð�2zÞ

�
;

g0jðzÞ ¼
ð�1Þjþ1

cjN 2

ð�2zÞT 0N ðzÞ
z� zj

þ ð1� z2ÞT 00N ðzÞ
z� zj

þ ð1� z2ÞT 0N ðzÞ
ðz� zjÞ2

" #

¼ ð�1Þjþ1

cjN 2

Nz sinðN cos�1 zÞ
ðz� zjÞð1� z2Þ1=2

� N 2 cosðN cos�1 zÞ
ðz� zjÞ

þ Nð1� z2Þ1=2 sinðN cos�1 zÞ
ðz� zjÞ2

" #
:

ð141Þ

We will first establish that gjðzÞ ¼ ljðzÞ. Clearly, since cos�1 zk ¼ kp=N , T N ðzkÞ ¼ 0, and therefore, for
k–j; k–0;N ; j–0;N ; gjðzkÞ ¼ 0. For k ¼ j; j–0;N , using T 0N ðzÞ and L’Hospital’s rule for

lim
z!zj

sinðN cos�1 zÞ
z� zj

¼ Nð�1Þj

ð1� z2
j Þ

1=2
; ð142Þ

we have gjðzjÞ ¼ 1. For j ¼ 0; z0 ¼ 1 so that

g0ðzÞ ¼
ð�1Þjþ2ð1� z2Þ1=2 sinðN cos�1 zÞ

2Nðz� 1Þ : ð143Þ

For z ¼ zk; k–0; g0ðxkÞ ¼ 0. Again apply L’Hospital’s rule to show

g0ðz0Þ ¼
ð�1Þ2

2N
lim
z!1

N cosðN cos�1 zÞ � z sinðN cos�1 zÞ
ð1� z2Þ1=2

" #
¼ 1: ð144Þ

For j ¼ N ; zN ¼ �1 and gNðzkÞ ¼ 0 for k ¼ 0; 1; . . . ;N � 1. For k ¼ 0, use L’Hospital’s rule to show

gN ðzN Þ ¼
ð�1ÞNþ2

2N
lim

z!�1
� z sinðN cos�1 zÞ
ð1� z2Þ1=2

þ N cosðN cos�1 zÞ
" #

¼ 1: ð145Þ

Therefore, gjðzÞ ¼ ljðzÞ.
We now construct the entries in the differentiation matrix (137). These are given by Djk ¼ g0kðzjÞ for

j; k ¼ 0; 1; . . . ;N . For k–j; k–0;N , since sinðkpÞ ¼ 0 and cosðkpÞ ¼ ð�1Þk
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g0jðzkÞ ¼
ckð�1Þjþ1

cjðzk � zjÞ
; ð146Þ

where ck ¼ 1. For j–0;N ; k ¼ 0, we have z0 ¼ 1 and, by L’Hospital’s rule

g0jðz0Þ ¼
ð�1Þjþ1

cjN 2

N
1� zj

lim
z!1

sinðN cos�1 zÞ
ð1� z2Þ1=2

 !
� N 2

1� zj

" #
¼ c0ð�1Þj

cjð1� zjÞ
; ð147Þ

where c0 ¼ 2. For j–0;N ; k ¼ N , we have zN ¼ �1 and, by L’Hospital’s rule

g0jðxN Þ ¼
ð�1Þjþ1

cjN 2

N
1þ zj

lim
z!�1

sinðN cos�1 zÞ
ð1� z2Þ1=2

 !
þ N 2ð�1ÞN

1þ zj

" #
¼ cN ð�1ÞjþN

cjðzN � zjÞ
; ð148Þ

where cN ¼ 2. For j ¼ 0; k–0;N ,

g00ðzkÞ ¼
�1

coN 2
½ð1þ zkÞT 00N ðzkÞ� ¼

ckð�1Þk

c0ðzk � 1Þ ; ð149Þ

where ck ¼ 1; c0 ¼ 2. For j ¼ 0; k ¼ 0 we start with

g00ðzÞ ¼
1

2N 2
½ð1þ zÞT 0N ðzÞ�; ð150Þ

so that

g00ðzÞ ¼
1

2N 2
½T 0N ðzÞ þ ð1þ zÞT 00N ðzÞ�: ð151Þ

Since g00ðz0Þ ¼ limz!1g00ðzÞ we need to find T 0N ð1Þ and T 00N ð1Þ. From the construction of T 0N ðzÞ and L’Hospital’s
rule

T 0Nð1Þ ¼ �N lim
z!1

sinðN cos�1 zÞ
ð1� z2Þ1=2

 !
¼ N 2: ð152Þ

Also

T 00Nð1Þ ¼ �N lim
z!1

Nð1� z2Þ1=2 cosðN cos�1 zÞ þ z sinðN cos�1 zÞ
ð1� z2Þ3=2

" #

¼ Nð1� N 2Þ
3

lim
z!1

sinðN cos�1 zÞ
ð1� z2Þ1=2

 !
¼ N 4 � N 2

3
: ð153Þ

Therefore

g00ðz0Þ ¼ g00ð1Þ ¼
2N 2 þ 1

6
: ð154Þ

For j–0;N , we use

T 00N ðzjÞ ¼
ð�1Þjþ1N 2

1� z2
j

;

T 000N ðzjÞ ¼
3ð�1Þjþ1N 2zj

ð1� z2
j Þ

2
;

ð155Þ

cj ¼ 1, and L’Hospital’s rule to show
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g0jðzjÞ ¼
ð�1Þjþ1

N 2
m

z!zj

�2zT 0N ðzÞ
ðz� zjÞ

þ ð1� z2ÞT 00N ðzÞ
ðz� zjÞ

� ð1� z2ÞT 0N ðzÞ
ðz� zjÞ2

" #

¼ ð�1Þjþ1

2N 2
½�4zjT 00N ðzjÞ þ ð1� z2

j ÞT 000N ðzjÞ� ¼ �
zj

2ð1� zjÞ2
: ð156Þ

Finally, for j ¼ N ; k ¼ N ; cN ¼ 2

g0N ðzN Þ ¼
ð�1ÞNþ1

2N 2
lim

z!�1
½�T 0N ðzÞ þ ð1� zÞT 00NðzÞ�: ð157Þ

By L’Hospital’s rule

T 0N ð�1Þ ¼ �N lim
z!�1

sinðN cos�1 zÞ
ð1� z2Þ1=2

¼ �N 2ð�1ÞN : ð158Þ

Also, by L’Hospital’s rule

T 00N ð�1Þ ¼ lim
z!�1

�N 2ð1� z2Þ1=2 cosðN cos�1 zÞ � Nz sinðN cos�1 zÞ
ð1� z2Þ3=2

" #

¼ N 3 � N
3

lim
z!�1

sinðN cos�1 zÞ
ð1� z2Þ1=2

 !
¼ N 4 � N 2

3
ð�1ÞN : ð159Þ

Therefore

g0N ðzN Þ ¼ �
2N 2 þ 1

6
¼ �g00ðz0Þ: � ð160Þ
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