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Abstract

Machine tool chatter has been characterized as isolated periodic solutions or limit cycles of delay differential equations.
Determining the amplitude and frequency of the limit cycle is sometimes crucial to understanding and controlling the sta-
bility of machining operations. In Gilsinn [Gilsinn DE. Computable error bounds for approximate periodic solutions of
autonomous delay differential equations, Nonlinear Dyn 2007;50:73-92] a result was proven that says that, given an
approximate periodic solution and frequency of an autonomous delay differential equation that satisfies a certain non-crit-
icality condition, there is an exact periodic solution and frequency in a computable neighborhood of the approximate solu-
tion and frequency. The proof required the estimation of a number of parameters and the verification of three inequalities.
In this paper the details of the algorithms will be given for estimating the parameters required to verify the inequalities and
to compute the final approximation errors. An application will be given to a Van der Pol oscillator with delay in the non-
linear terms.
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1. Introduction

Machine tool dynamics has been modeled using delay differential equations for a number of years as is clear
from the vast literature associated with it. For a detailed review of machining dynamics see Tlusty [1]. For a
discussion of dynamics in milling operations see Balchandran [2] and Zhao and Balachandran [3]. For drilling
operations see Stone and Askari [4] and Stone and Campbell [5]. For an analysis of chatter occurring in
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turning operations see Hanna and Tobias [7], Marsh et al. [8], and Nayfeh et al. [9]. Machine tool chatter is
undesirable self-exited periodic oscillations during machining operations. It has been identified as a Hopf
bifurcation of limit cycles from steady state solutions. For a way of estimating the critical Hopf bifurcation
parameters that lead to machine tool chatter see Gilsinn [6].

In studying the effects of chatter it is sometimes desirable to compute the amplitude and frequency of the
limit cycle generating the chatter. This entails solving the delay differential equations that model the machine
tool dynamics. There is a large literature on numerically solving delay differential equations. Some represen-
tative methods are described in Banks and Kappel [10], Engelborghs and Luzyanina [11], Kemper [12], Paul
[13], Shampine and Thompson [14], and Willé and Baker [15]. Although these methods generate solution vec-
tors that can be studied by harmonic and power spectral methods to estimate the frequency of periodic cycles,
they do not directly generate a representative model of a limit cycle, such as a Fourier series representation.

It is also desirable to know whether a representation of an approximate limit cycle is close to a true limit
cycle. In other words we wish to answer the question as to whether the approximate solution represents suf-
ficiently well a true solution. This is answered with a test criteria by Gilsinn [16], who showed that, given a
representative approximate solution and frequency for a periodic solution to the autonomous delay differen-
tial equation

X = X(x(1),x(t — h)), (1)

where x, X € C", the space of n-dimensional complex numbers, 2 > 0, X sufficiently differentiable, there are
conditions, depending on a non-criticality condition (to be defined below) and a number of parameters, for
which (1) has a unique exact periodic solution and frequency in a numerically computable neighborhood of
the approximate solution and frequency. This result was first established in a very general manner for func-
tional differential equations by Stokes [17] who extended an earlier result for ordinary differential equations in
Stokes [18]. However, no computable algorithms were given in the case of functional differential equations to
estimate the various parameters. Only recently have algorithms been developed to computationally verify
these conditions in the fixed delay case. A preliminary announcement of algorithms for computing these
parameters was given by Gilsinn [19]. In this paper we include a more detailed discussion of the algorithms
and apply them to a Van der Pol equation with delay in its non-linear terms.

The notation used in the paper is described in Section 2. The non-criticality condition is defined in Section
3. In Section 4 we construct an exact frequency and 2n-periodic solution of (1) as a perturbation problem. The
main contraction theorem is proven in Section 5. In Sections 610 the necessary algorithms needed to compute
the critical parameters for verifying the existence of a 2z-periodic solution of (1) will be given. In particular, a
Galerkin based algorithm for approximating a periodic solution to (1) is given in Section 6. The general Flo-
quet theory for DDEs is described in Section 7. An algorithm for computing the characteristic multipliers of
the variational equation of (1) with respect to the approximate 2zn-periodic solution, is given in Section 8. An
algorithm to determine the solution to the formal adjoint equation with respect to the variational equation of
(1) with respect to the approximate 2zn-periodic solution, is given in Section 9. An algorithm for estimating a
critical parameter, M, is given in Section 10. An application of these algorithms to the Van der Pol equation
with delay is given in Section 11. The derivation of the coefficients for the pseudospectral differentiation matrix
(73) is given in the Appendix.

2. Notation

Let C, denote the space of continuous functions from [—m,0] to C" with norm in C, given by
|¢| = max |¢(s)| for —w < s < 0, where

) 1/2
[p(s)| = (Z |¢>,-(S)I2> : (2)

C,, is a Banach space with respect to this norm. We will sometimes use the notation C,,(a) to denote the space
of continuous functions on [a — w, a]. Let 2 be the space of continuous 2z-periodic functions with sup norm,
| - | on (—o0, ). Let 2 C 2 be the subspace of continuously differentiable 2n-periodic functions with the sup
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norm. Let X(x,y) be continuously differentiable in some domain €, C C" x C" with bounded derivatives
where

Xi(x,0)| < 4 (3)

fori=1,2, (x,y) € Q,. The subscripts of X indicate derivatives with respect to the first and second variables of
X respectively. We further assume that the first partial derivatives satisfy Lipschitz conditions given by

(X, 1) = Xi(x, )| < A (| = 31| + 2 = 1) (4)

for (xlayl)v (x27y2) € Q,.
In order to simplify the notation for (1) we will first normalize the delay / to unity by setting s = ¢/h. Then,
(1) becomes

D9 = R OL). 30— 1), (5

where y(s) = x(sh). Therefore we will assume 4 = 1 in (1). We will also make one further transformation. Since
the period 7' = 27/ of a periodic solution for (1) is unknown we can normalize the period to [0, 27] by intro-
ducing the substitution of ¢/w for ¢ and rewriting (1), with # = 1, in the form

ox = X (x(t),x(t — w)). (6)
For ,,y, € 2 we denote the total derivative of X(x,y) by
dX(xJ;le‘Pz) :Xl(xay)lpl +X2(X,y)lp2. (7)

Let A(t), B(t) be continuous 2zn-periodic matrices. Then a characteristic multiplier is defined as follows.

Definition 2.1. p is a characteristic multiplier of
y=A)y(t) + B(t)y(t — w) (8)

if there is a non-trivial solution y(¢z) of (8) such that y(¢ + 2n) = py(¢). Note that if p =1 then y(¢) is 2zn-
periodic.

To simplify some of the notation we will suppress the ¢ and write, for example, x = x(¢),x,, = x(t — w), but
in other cases we will maintain the 7, especially when describing computational steps. We will also at times use
the notation

1/2

= | ) U o)

3. Non-criticality condition

Galerkin and harmonic balance methods can be used to develop 2n-periodic approximate solutions for (1).
A fast discrete Fourier series algorithm for computing an approximate series solution and frequency, (&, %),
has been given by Gilsinn [20]. See Section 6 below for a brief discussion of a Galerkin method for approx-
imating a solution.

At this point, then, we assume that we have developed a 2zn-periodic approximate solution and frequency,
(&, x) for (6), where x is 2n-periodic and

Ox = X (%,%) + k, (10)
where k(¢) is a 2n-periodic residual bounded by
k| < 7. (11)

The required size of the residual error, r, will become clear based upon estimates later in this paper. These
estimates will indicate in particular situations how good an approximate solution and frequency would need
to be computed to produce the final error estimates.
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The variational equation with respect to the approximate solution and frequency is given by

0z = dX (X, %0;2,2a)- (12)
Let 4 =Xi(x,%5), B = X,(X,X;). The formal adjoint of (12) is given in row form by
b = —vA — v_sB. (13)

We will not give the proof of the next lemma, since it is stated in Hale [21] and in Halanay [22]. The result,
however, motivates the definition of a non-critical approximate solution.

Lemma 3.1. Let py =1 be a simple characteristic multiplier of (12) Let p be a non-trivial solution of (12)
associated with p. Define

J(p7 d)) =p + Ep(?)v (14)
then

2n
/ vod (p, @) dt#0 (15)
0
for all independent vy of the adjoint (13).
We can now give the definition of a non-critical approximate solution of (6).

Definition 3.2. The pair (®,x), where x is at least twice continuously differentiable, is said to be non-critical
with respect to (6) if (a) the variational equation about the approximate solution X, given by (12), has a simple
characteristic multiplier p,, not necessarily equal to one, with all of the other characteristic multipliers not
equal to one. (b) If vy, |vo|, = 1, is the solution of (13) corresponding to p,, i.e. with multiplier 1/p,, then

2n
/ viJ (x, &) dr#0, (16)
0
where
J(&, @) = % + Bx,. (17)

The next lemma, proven in Halanay [22], will imply, in the case of a non-critical 2n-periodic approximate
solution of (6), that there is only one v, in (16).
Lemma 3.3. Systems (12) and (13) have the same finite number of independent 2n-periodic solutions.

We will not give the proof of the next lemma, since it is also proven in Halanay [22]. The result is a Fred-
holm lemma and will be critical to the main approximation theorem. It will become clear later that the con-
stant M in this lemma will be crucial parameter to estimate.

Lemma 3.4. The non-homogeneous system

@k = Ax + Bxy + f (18)
has a unique 2n-periodic solution if and only if
2n
/ vofdt =0 (19)
0

for all independent solutions vy of period 2w of (13). Furthermore, there exists an M > 0, independent of f, such
that

x| < MIf]. (20)
4. A perturbation problem

In this paper we will look for an exact 2n-periodic solution, x, and an exact frequency, w, for (6) as a per-
turbation of the 2z-periodic approximate solution, X, and approximate frequency, @, of (6). In particular, let
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w=db+p,

G (21)
X=Xx+—z
w

Then, substituting (21) into (6) and using (10), we can write the equation for z and f as

oz = dX (%,%0:2,25) + R(z, B) — BI (¥, ®) — k, (22)
where
RO 0) . n . ~:
R(27 ﬁ) = |:X<x+527xw +azw> _X(xvxrb):| - dX(x%x(b;ZﬂZd)) + ﬂBx(b (23)

and J(x,®) is given by (17).
In the next lemma we establish bounds and Lipschitz conditions for R(z, ). The proof is given in Gilsinn
[16].

Lemma 4.1. There exist functions Ro(z, ) > 0, Ri(z,f,z,p) > 0,i = 1,2, such that Ry — 0 as (z, p) — 0 and
Ri — 0as (z,p,z,p) — 0 and

|R(Za ﬂ)| < <%)0(27 ﬁ)v

|R(Za .8) _R(Ea .B)| < e%l(za ﬁ)éa ﬁ)|Z _2| + %2(4 ﬁaéa ﬁ)‘ﬁ - ﬁ‘

Since we will be considering |f| small, we will begin by restricting f, which could be negative, so that

(24)

o
5
We can select |f| < @/2.

As a first step to establishing the existence of a 2zn-periodic solution of (22) we first study the existence of a
2n-periodic solution of

0z = dX (%, %0:2,26) + & — pJ (X, @) — k, (26)

where g € 2. For this we have the following lemma:

o+ > (25)

Lemma 4.2. If (&,X) are non-critical with respect to (6), then (a) there exists a unique [ such that

g — PJ(x,@) —k L v, (27)

where vy is the solution of (13) corresponding to the characteristic multiplier p, of (12), and (b) there exists a
unique 2z-periodic solution of (26) that satisfies

|2l < Mg — pJ (3, 0) — k] (28)
for some M > 0.

Proof. Take

ﬁ:%lhﬁ@—@ﬂ, (29)
where
a::LAbng(;@)dﬁ_l (30)

and apply Lemma 3.4. [J

We can now establish bounds on f,z and z. For notation, designate the unique f and z in Lemma 4.2 by
p(g) and z(g) respectively, and z by z(g). The proof is given in Gilsinn [16].
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Lemma 4.3. There exist three constants, designated by A;,i = 0,1, 2, such that

=M1+ V2nlallJ(%,0)||, (32)

5. Main approximation theorem

In the main approximation theorem we will show that the solution of the perturbation problem (22) is the
fixed point of a contraction map. In this section we will define the map, state some properties, and preseent the
main approximation theorem.

We begin by defining a subset of £, designated by .15, as

Ns={ge?: gl <}, (33)
where 0 > 0. Following Stokes [17] we will define a map S : 475 — £ in terms of two mappings

L: Ns— RXP,

(34)
T: RXZP — P

To define L, let g € .45, then Lemma 4.2 assures us of the existence of a unique f(g) satisfying (27) and a
unique solution z(g) satisfying (26). Thus, define L : 4" — R x #; by

L(g) = (B(g).z(g))- (35)
Now define 7 : R x #; — # by

T(B,z) = R(z, B). (36)
Finally, define S : A5 — £ by

S(g) = T(L(g)) = R(z(g), B(g))- (37)

The proof of the next lemma is given in Gilsinn [16] and depends on Lemmas 4.1, 4.2 and 4.3.

Lemma 5.1. For g € N'5,8 € N5 there exist two functions E1(0), E>(d) and two positive constants Fy,F, so that

1S(g)] < Eq(9),

- . (38)
1S(g) —S(&)| < E2(9)|g — 2
where
E(0) < F18%,
10) S i (39)
E»(0) < F,0.
It was also shown in Gilsinn [16] that the constants F;, F, are given by
2 16/10/11 ~ 2 X2 x
Fy =327+ (|®] +2400) + 225(A %" + B|x|) + 8B A4 (40)

@]
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and
. B
Fy =1, {329{% + 47, <2%f|fc| + |w|> }
162 /16 . 2 8RBy 2564 ). .
HO{A(A+4>5+4zl<w|x|+%<1+7))+ i A125+2«93|ff|)»0}- (1)
3 \|o | o] 3|

In the main theorem the constants F';, F, are those from Lemma 5.1.
Theorem 5.2. If (a) (®,X) is non-critical with respect to (6) in the sense of Definition 3.2, (b) 0 is selected so that
o <min{l/Fy,1/2F,,&/4} (42)
and (c) r < 0, then there exists and exact frequency, w*, and solution, x*, of (6) such that
" — %] < 429,
0" — 0| < 2709,

where Ay, Ay are defined in (32) and ¢ is defined in (33).

(43)

6. Approximating a solution and frequency

An approximate solution and frequency for (6) can be developed by assuming a finite trigonometric poly-
nomial of the form

m

Xy = a» COSt + Z[azn cos nt + ay,_ sinnt], (44)
n=2

where the sin ¢ term has been dropped so that we can estimate a@; = @, the frequency. Note that we have cen-
tered the approximate solution about the origin, since we assumed X (0,0) = 0. If we set a = (a;,aa, - .., don),
and

E,(t,a) = a1x,(t) — X (G (0),%n(t — a1)) (45)
then for a sufficiently fine mesh, specified by {#;, : i =1,2,...,2N}, in [0, 27], where

t_2i—1
2N

T, (46)
the determining equations for a can be written as [23]

1

2N
F] (ﬁ) = N ZEm(tl‘, ﬁ) Sin ti = 07
i=1

1 2N
F2(ﬁ) = ﬁ ZEm(tmﬁ) CoSt; = O,
i=1

(47)
) |2 o
Fy, 1(a) = N ;Em(ti,a) sinnt; = 0,
|2
Fy(a) = N ;Em(ti,a) cosnt; =0
forn=2,...,m.

These equations give 2m equations in 2m unknowns. Standard numerical solvers, using, for example,
Newton’s method, for non-linear equations can be used to solve for a. The number of harmonics, m, and
the quadrature index, NV, can be selected independently.
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7. Floquet theory for DDEs

The analysis of the stability of an approximate periodic solution for (1) usually involves the following con-
siderations. If x(¢z),x € C" is an approximate periodic solution of (1) of period 27, and @ an approximate fre-
quency, then the linear variational equation about x(z) can be written

2(t) = A()z(t) + B(t)z(t — &), (48)

where 4(7) and E(L) were defined previously in Section 3 and are periodic, with period 27. We have included

the factor 1/ in 4 and B for simplicity.
We now define the period map U : C; — Cg; with respect to (48) by

(Up)(s) = z(s + 2n), (49)

where z(s) is a solution of (48) satisfying z(s) = ¢(s) for s € [—®, 0]. In this paper we assume & < 2n. U is then
a compact operator on C,;, whose spectrum is at most countable with 0 as the only possible limit point [22].

A Floquet theory for (48) has been developed by Stokes [24]. In particular, if ¢(U) represents the spectrum
of U, then for each 4 € ¢(U), U¢ = A¢. That is, the spectrum consists of eigenvalues. Furthermore, the space
C;, can be decomposed as the direct sum of two invariant subspaces

Co=EQ()®K(1), (50)

E(Z) is finite dimensional and composed of the eigenvectors with respect to A. Furthermore, ¢(U|;) = o(U)—
{4} It {;},i=1,...,d is a basis for E(1) and we let ¥ be the matrix with columns y; for j = 1,...,d, then
there is a matrix G(4) such that

UY = ¥G()). (51)

Thus we can think of C,; as being a countable direct sum of the invariant subspaces E(4;) plus a possible
remainder subspace, R. That is

Co=E(L)DE(L)®--- DR, (52)

where R is a “remainder” set in which any solution of (48) with initial condition in R decays faster than any
exponential.

For each of the E(4;) there is a basis set ¥;, and a matrix G(4;). If we define an at most countable basis set
{¥,;},i=1,2,..., then we can think about U operating on &, E(/;) as being represented by an infinite matrix
G+. This matrix is referred to as the monodromy matrix. Its eigenvalues are called the Floquet or character-
istic multipliers. The periodic solution x(¢) of (1) is stable if all of the eigenvalues of U are within the unit circle
and unstable if there is at least one with positive real part. We note that if X(z) is an exact periodic solution of
(1) then one of the characteristic multipliers is exactly one.

8. Estimating characteristic multipliers

In this section we assume that the variational equation with respect to the approximate solution, x(z), can
be written in the form

2(1) = A(0)z(1) + B()z(t — &), (53)

where A4(r) = A(t + 2n), B(t) = B(¢ + 2n) and we have reintroduced 7 to make the operator definitions more
transparent. Let Z(z, s) be the solution of (53) such that Z(s,s) = I,,, Z(t,s) = 0 for ¢ < s where I, is the n? iden-
tity matrix on C". The solution Z(¢,s) is sometimes referred to as the “Fundamental Solution”. Using the var-
iation of constants formula for (53), Halanay [22] shows that the solution of (53) for the initial function
¢ € C; is given by

0

2(1) = Z(1,0)$(0) + / Z(t, 0+ @) B (o + @) (o)da. (54)

-0
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Define the operator
(Ug)(s) = z(s + 2m), (55)

where ¢ € C;, s € [—b, 0]. If there is a non-trivial solution z(z) of (53) such that z(¢ 4+ 2n) = pz(¢) then p is a
characteristic multiplier of (53). If we combine (54) with (55) and note that z(a) = ¢(a) for o € [—®, 0], then
characteristic multipliers are the eigenvalues of

0

(UP)(s) = Z(s + 27,0)¢(0) + / Z(s+ 27,0+ @) B(o+ @) (o) da, (56)
where ¢ € Cy. Halanay [22] shows that we can restrict s € [—®, 0]. This operator is sometimes referred to as
the Monodromy Operator.

8.1. Approximating the fundamental solution by spectral collocation

In this section we will use spectral methods to compute the fundamental solution of the linear homogeneous
delay differential equation (48). These methods are well known for collocating solutions to partial differential
equations and boundary value problems. See, for example, Gottlieb [25], Gottlieb et al. [26], and Gottlieb and
Turkel [27]. They are not as well known in delay differential equations. In this section we use a spectral method
suggested by Bueler [28] and Trefethen [30]. The method has been reported earlier in Gilsinn and Potra [29].

The computation of the fundamental matrix used in the monodromy operator (56) requires the computa-
tion of a solution z(#) of (48) on some interval [a, b]. This will be done in a stepwise manner. We first find a
positive integer ¢ such that a + g& > b. Then we solve, at the first step, ¢ € [a,a + @],

2(0) = Az (1) + B()z (1 — &), (57)

where z,(t — @) = ¢(s) for some function ¢ € C;(a) and s =t — @. Thus the initial problem becomes an or-
dinary differential equation. Then, on [a + &, a + 2&®] we solve

b(1) = A()22(0) + Bz (t - @), (58)
where z;(a + @) = zi(a + @), zp(t — &) = z,(s) for s € [a,a + @], s =t — ®. Again we solve (5) as an ordinary
differential equation. The process is continued so that on [a + (i — 1)®,a + i®], fori = 1,2,...,q,

z(t) = A(t)zi(t) + B(0)z(t — &) (59)

with z;(a+ (i —1)®) =z_y(a+ (i — 1)®). We then define z(¢) on [a,b] as the concatenation of z(¢) for
te€la+ (i—)w,a+id]andi=1,2,...,q.

Since we wish to use a Chebyshev collocation method, we will shift each interval [a + (i — 1)®,a + i®] to
the interval [—1,1]. Fort € [a+ (i — 1)®,a + i®], for i = 1,2,...,q, we have z € [—1, 1] provided

z:gt—(2a+(2i_1)(b). (60)

A~ ~

» »
For z € [-1,1] we have ¢t € [a + (i — 1), a + i®] provided
o (2a+(2i-1)d)

t= 2z+ 5 . (61)
We note that the point ¢ € [a + (i — 1)®,a + i®] and t — & € [a + (i — 2)d,a + (i — 1)&®)] are translated to the
same z € [—1,1]. This is clear from

2 2 2i —3)o 2

=(1— ) - w _ =z

Therefore we can shift the iterated delay problems

z(t) = A()z:(t) + B(0)zi(t — @) (63)

2a+ (2 — 1)d
o 1) 1) '

(62)



D.E. Gilsinn! Communications in Nonlinear Science and Numerical Simulation 14 (2009) 1526—1550 1535

fortefa+ (i—1)d,a+id] and i =1,2,..., ¢, into iterated ordinary differential equations
(@) = 5 Ai2)u(z) + 3 B2 (), (64)
where for z € [a+ (i — 1)®,a + i®] and associated z € [—1, 1],
M,(—l) = Ml;l(l),
ui(z) = zi(¢),
Aifz) = 4(1), (65)
By(z) = B(),

The initial function is
up(z) = zi(t — ) = P(t — @) (66)

fort—o € [a— o,a].
We can now approximate the fundamental solution for (48) on [a, b] by first solving the iterated differential
equations (64) subject to

u(—1) = w4 (1),
uy(z) =0, zel-1,1], (67)
ul(—l) :I,z,

where 7, is the n x n identity matrix. We follow the spectral method given in Bueler [28] in that the fundamen-
tal solution is solved for in n passes of the iteration process with u;(—1) = e;, wheree; = (0,...,1,... ,O)T with
1 in the jth element, j =1,2,...,n.

To begin the solution process we take, for some positive integer N, the Chebyshev points

e = cos (’%) (68)

on [—1,1], for k =0,1,...,N. The benefit of using these points has been discussed by Salzer [31]. The La-
grange interpolation polynomials at these points are given by

1,(z) = 1_] (;%’;kk) (69)

We have /;(1;) = 04. Then on [—1, 1] we set
N
wi(z) =Y ui(n);(2). (70)
Jj=0

We also need to form

N
u(z) = u; (11_/) l;(z) (71)
Jj=0
At the Chebyshev points we will designate
Dy = I(n). (72)

The values for these derivatives are given in Gottlieb and Turkel [27] or Trefethen [30] but we state the values
for D here for completeness. The derivations are given in the Appendix.
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2N? 41
Dy =—"—
00 6 )
DNN:_D007
N, . (73)
Dyj=— " j=12,...,N—1,
Yo2(l =)
B Ci(_l)i+j
v Cj(’?i_”j)

for i##j,i,j=0,...,N where

2, i=0orN;
Ci = . (74)
1, otherwise.
For notation, let
wi(2) = (i, )"
Ai(z) = [A;<72 (Z)]p,qzl,...,w (75)
Bi(2) = [B)(2)] et
We then write the collocation polynomial of u;.,» =1,...,n, as
N .
uy(z) = ZWS{) Ii(2) (76)
k=0
at the Chebyshev points (68) to get
ui"(”j) = Wﬁ})a
N B
() = Y _ Wi/ Dy, (77)
=0
Ui—1r = Wil/il)
The initial conditions for the iterated differential equations are
uir(nN) = ui—l,r(no)a (78)
or
i i—1
Wiy =Wy (79)
forr=1,...,n.
The discretized differential equations are then given by
N ~ ~
i D~ i W > i—1
(; wi,JD.,k> = S A @10t + 5 B @,y (80)
= r=1,n
forj=0,1,...,N — 1. These provide nN equations but n(N — 1) unknowns. The other n equations come from
the initial conditions. We define the following vectors:
i i i i i i)\T
= Oyl o) a0
i1 i-1)_ (i1 i-1 i1 i—1)\T
Wit = (wig iy Dl el
Then we can write the iterated differential equation as
_ & ~ & ~
DWI' = _Aiwi + —BiWi,I, (82)

2 2
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where D = D ® I, the Kronecker product, and each D is given by

Doy --- Doy
D— : : : (83)
Dy_10 -+ Dyoin
0 . 1
The unit in the lower right introduces the initial condition, w'y,» = 1,. .., n, equation. Thus D is formed by n

blocks of D down the diagonal.
The matrix 4; is given by

[4fln) 0 0 0 0 A%m) 0 0 0]
0 0 0 0 0 0 0 0
0 0 Ay O 0 0 0 Ay, 0 0
4; = ~,-)O 0 0 0 0 . 0 0 0 , (84)
A, (o) 0 0 0 0 A(n,) 0 0 0
0 . 0 0 --- 0 0 0 . 0 -~ 0
0 0 4%y 0 0 0 0 A9y, 0 -+ 0

~—

B, is structured in a similar manner except every (N 4 1)th row includes an element 2/é to take care of the

initial condition. Thus

Bl 0 o 0 e 0 e 0 Bl 0 0 0
0 0 0 0 0 0 0 0
0 Bill) (My-1) 0 0 0 0 B(lln> (My-1) O 0
~ 2 0 0 0 0 0 0 0
Bi=|_ i)‘“ o (85)
B,i(n) 0 0 0 0 BE’Z(%) 0 0 0
0 0 0 0O --- 0 0 0 - 0
0 Eiil)(nN—]) 0 0 0 0 EE’Z (y-1) O 0
I 0 0 . 0O --- 0 --- 0 % 0 0 ()_
The linear equation (82) can be solved for w; by setting
~ -1 -
~ w ~ w ~
M,‘ = D - _Ai _Bi 86
(p-54) 3 (56)
and
w; = M,‘W,;] (87)
fori=2,3,...,q.
To solve for w; for the fundamental solution we need to solve
/ » ~
uy(2) = 5 41(2)m (2) (88)

for z € (—1,1] and
u(=1)=1,. (89)
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That is, we solve n problems at each iteration, one for each of the initial conditions ¢;, where ¢; is the standard
basis vector with a unit in the ith element and zero elsewhere. For the moment we set the initial vector as

wo=(0-- 'uo10'--u020"'uon)T, (90)
where ug,, 7 = 1,...,n, is placed in each of the (N + 1)th elements and zero elsewhere. Then from the previous
construction of D and 4, we have

~ o~ \"!
wp = (D —§A1> wo. (91)
Given that we have computed
N B
() = Y Wi l(2) (92)
=0
on [—1,1] for r =1,...,n we can compute the result for ¢ € [a + (i — 1)h, a + ih] by setting
zi:(t) = uy(2) (93)
forr=1,...,n, where
2 2 2i—1)a
_2, (at+(@-Da) (94)
)
or
N . ~
v (2 (2a+ (2i—1)b)
(i)
w(t) = Ll =t— - : 95
(0= Y wiln (3 ! 95)

The initial condition is

wir(My) = i-1-(1o)- (96)

But on [a + (i — 1)®,a + i®], zy = —1 corresponding to t =a+ (i — 1)@ and on [a+ (i — 2)®,a + (i — 1)®)],
zp = 1 corresponding to t = a + (i — 1)®, so that

zpla+ (i — 1)) =zi1.(a+ (i —1)D). (97)

8.2. Estimating monodromy operator eigenvalues

To approximate the monodromy operator (56) we will require a quadrature rule that satisfies

P+1

kaf(sk) — /Af(s)ds (98)

k=1
as P — oo for each continuous function f* € C,. The rule is satisfied if

P+1

S ul <0 (99)
k=1
for some Q > 0 and P =1,2,.... This is satisfied by, for example, Trapezoidal or Simpson rules.
Let — =51 <sp <+ <spy; =0, and define
P+1
(Up)(s) =Z(s+2m,0)¢(0) + Z 0 Z(s + 27,51 + @)B(si + @) p(si) (100)
=1

for ¢ € C,,.



D.E. Gilsinn! Communications in Nonlinear Science and Numerical Simulation 14 (2009) 1526—1550 1539

Then, for each s, € [—®, 0],
P+1
(U)(s;) = Z(s; +2m,0)p(0) + Z W Z(s; + 2m,5; + @)B(s; + @) p(s;). (101)
=1
Since spy1 = 0, (101) can be rewritten as

(Ud)(s;) = ijZ(si + 21,5, + @)B(s; + @) p(s;) + (Z(s; +2m,0) + wp i Z(s; + 271, @) B(®)) p(sp11),

J=1

(102)
where Z(s, «) is the fundamental matrix of (53). Eq. (102) can be put in matrix form
(Ug)(s1) [ Ui Uy, - Uipsr ]
(U)(s:) =| Uy - Uy - Upa |, (103)
(U¢)(SP+1) | Uprin o+ Uppry o Upgipgr ]

where the block elements fori =1,...,P+1, j=1,...,Pare U;; = w;,Z(s; + 2m,s; + @®)B(s; + ®). The block
elements in the last column of the matrix are given by U, p. = Z(s; + 21, 0) + wp1 Z(s; + 21, ®)B(d) for

i=1,...,P+ 1. The relevant eigenvalue problem becomes
[ Uiy - Uy oo Uippr ] (P)(s1)
U,‘71 e Ui.j ce U,‘_’qu =1 (¢)(S,) . (104)
LUpi1n =+ Uppry oo+ Upiipin (@) (sp+1)

9. Determining solutions of the adjoint equation associated with multipliers of the variational equation

In order to estimate o in (30), let z € [0, 27] and i be the initial function defined on [27, 2w 4+ ®]. The adjoint
equation is given by
(1) = =y(O)A(t) = y(t + @) B(1 + ), (105)
where y(¢) is a row vector. Ordinarily solving the adjoint equation would require a”backward” integration.
However, it was shown in Halanay [22], that the solution of the adjoint on [0, 27| is given in row vector form
by

2n+m

y(t) =¥ (2n)Z(2n,¢) +/ () B(2)Z (ot — v, £)dor. (106)

2n

The significance of this representation is that only a “forward” integration is required to solve for the funda-
mental solution, Z, of (53). This allows us to directly use the collocation algorithm developed in Section 8.1.
Let ¢(s) be a continuous row vector function defined on [—®, 0]. Then define the operator

(U)(s) = p(—=0)Z(2m, s+ @) + [ $(0)B(x+ @)Z(2m + a,5 + d)da, (107)

—w

s € [—®,0]. An associated operator V, defined on [27,27 4 @], is given in Halanay [22] as
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2n+@
(V)(s) = y(s — 2m,0) = Yy (2m)Z(2m, s — 27) + / lp(oc)E(oc)Z(oc — &,s — 2m)do. (108)
2n

It was also shown in Halanay [22], that an eigenvalue p of ¥ is associated with a 1 /p multiplier of the adjoint
equation, the eigenvalues of U, U,V are all the same, and the eigenvectors of U,V are related by
d(s) = (s +2n+ @),s € [-d,0]. It turns out then, to solve the adjoint equation in row form on [0,2x],
we need only compute the significant eigenvalue and eigenvector of U. Therefore, using quadratures, we dis-
cretize U by setting —® =51 < --- < sp,; = 0,4 = &/P. The jth block column is given by

[ Z(27,5; + @) + B(s) + @)Z(s1 + 2,5 + @)v; |

(si + @)Z(s; + 21,5, + @)v; : (109)

c
=
&

Il
Y
=
<
=
<
=
v
=
)

~

B(spi1 + @)Z(sp1 + 21,5, + @)v;

The eigenvector ¢ of the matrix on the right, associated with the multiplier of the variational equation, is com-
puted and substituted into the discretized form of equation (106) to give the value of y(¢) on the partition
0=t <---<ton =2mti —t;,=21/0,i=1,...,0, as

[Z(27,4;) + B(s1 + 271 + @) Z(s) + 27, 1,)v; ]

y(ty) = [d(s1), -+ blsi), -, Plspar)] B(s; + 21+ &) Z(s; + 2, 1)v; (110)

~

B(spy1 + 27+ @)Z(sps1 + 27, 1))v;

using ¢(s) = (s + 21+ @),s € [-®,0].
We then can estimate o by

o= [Zujy(tj)J(fc,@)(tj)] . (111)

J=1

Note that « may be complex but in the final error estimates we only use |o|.
10. Estimating the M parameter

From Halanay [22] the variation of constants formula for
2(1) = A()z() + B()z(t — &) + £(2), (112)

where ¢ € [0, 27], is given by

0

z(t) = Z(t,0)¢(0) + / Z(t, 0+ @)B (o + @)z(ot)der + /OtZ(t, o) f (o)do. (113)

-
The 27 periodic initial function condition with s € [—®, 0] is

¢(s) = Z(s +2m,0)¢(0) + / Z(s 4 2m, o+ @)B(o 4 @) (o) dot + /OS+ nZ(s + 27, o) f (o) dor. (114)

—w

The first step in computing M involves relating ¢ to f. Let |¢p| = sup_,,o|¢(s)| and similarly for |f| on [0, 27].
To eliminate ¢(0) from (114), set s = 0 in (114) and solve for ¢(0) as
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1541
0 . 2n
$(0) / (I —Z(2m,0)) ' Z(2n, 00 4 @) B(o + @) (or)do + / (I —2Z(2m,0)) "' ZQ2n,0)f (2)da.  (115)
- 0
Substitute (115) into (114) and combine terms as
0
o(s) = / [Z(s 4 27,0)(I — Z(27,0)) "' Z(2m, o + &) + Z(s + 27, o + @)]B(2 + @) (o) dax
2n
+ / [Z(s 4 27,0)I — Z(27,0)) ' Z(27, &) 4+ Z(s + 27, o) f (er)dot. (116)
0
where s € [—®, 0].
Let — =81 <s$:<---<spy;=0,ds=% and 0=1, <1, <--- <toy =2mn,dr =2 We can discretize
(116) by setting
P+1 0+1
bsi) = > H(i,/)b(s;) + D Hali, j)f (t), (117)
=1 =1
where
H,(i,)) = 0,[Z(s; + 27,0)(I — Z(2m,0)) "' Z(2m,s5; + @) + Z(s; + 27,5, + ®)|B(s; + &), (118)
Hy(i, ) = we[Z(s: + 2m,0)(I — Z(27,0)) ' Z(2m, t;) + Z(s: + 27, t;)]
In vector matrix form (117) can be written
P(s1) d(s1) VAGY
: =H, : + H, : (119)
¢(sp+1) ¢ (sp+1) f(tos)
Using a generalized inverse we can solve for the ¢ vector with minimum norm by
d(s1) VAGY
: =(—H)'H| (120)
P (spi1) f(tor)

In the second step the value of ¢(0), given by equation (115), is substituted into Eq. (113) and terms combined
to give

z()

/_ 0 1Z(£,0)(I — Z(27,0)) "' Z(2m, o0 + &) + Z(t, 00 + )| B(o + @) p(o)dot

+ /O n[Z(t, 0)(I — Z(2m,0)) ' Z(2m, o) 4 Z(t, 0)]f () dor.

(121)
This can be discretized by setting
P+l 0+1
2t =Y Ha(k,i)p(si) + > Halk, j)f (1), (122)
i=1 Jj=1
where
H3 (kv l) =

vl Z(t,0)(I — Z(2m,0)) ' Z(2m, s: + &) + Z(t, 5: + @) B(s; + @), (123)
H4(k7j) - u_/[Z(l/ﬂO)(l - Z(27T7 O))ilz(znvt_/) + Z(t/ﬂt_/)]'
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In vector matrix form (122) can be written

z(11) d(s1) VAGY
: =H,| +Hy| . (124)
z(tos1) P (spi1) f(tor)
By substituting (120) into (124) we have
z(1y) VAGY
: = [H3(I — Hy)"Hy + Hy) : . (125)
z(to+1) S (tos1)
Therefore
|zl < M|f1, (126)

where M = |H3(I — H,) ' Hy + Hy|| .
11. Application to a Van der Pol equation with delay

In this section we will apply the main theorem to approximate the limit cycle of the Van der Pol equation
with unit delay, given by

X+ Ax(—17 = Di(t—1)+x=0. (127)

Since the period of the limit cycle is unknown we introduce an unknown frequency by substituting 7/w for ¢ to
obtain

0’ + 0A(x(t — o) = Di(t— o) +x=0 (128)

for ¢ € [0,2n]. To compare with an approximation result obtained for ordinary differential equations in Stokes
[18], we take 4 = 0.1.
The first step was to estimate an approximate 2n-periodic solution, frequency and residual to (128). By
using Galerkin’s method described in Section 6 the following approximate solution was obtained
x(t) = 2.0185 cos(t)

+2.5771 x 1077 sin(2¢) + 2.5655 x 1072 cos(2¢)

+1.0667 x 10~*sin(3¢) — 5.2531 x 10~* cos(3¢) (129)
— 7.1780 x 10 °sin(4¢) — 2.2043 x 10~ cos(41),
& = 1.0012,

where we have displayed only the first few harmonics. This solution was estimated based on 11 harmonics,
40,000 sampled points over [0,27], and 100 Chebyshev extreme points (68). The residual was estimated by
substituting (@, x) from Eq. (129) into Eq. (128) and finding the maximum of the absolute values of the resid-
uals obtained in the interval [0, 27]. The result was » = 3.1086 x 10~ ", This residual is significantly better than
the one given in Stokes [18]. The distribution of the residuals for the current case is shown in Fig. 1. The phase
plot of the approximate solution is shown in Fig. 2. For ¢z € [0,2n] we can then immediately estimate
%] < 2.0436, |x| < 2.0279, x| < 2.1165.

In the second step, the values of the constants % and %" were obtained in a straightforward manner from
the variational equation about the approximate frequency and solution given by

2(1) = A(0)z(t) + B(O)Z(t — &), (130)
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x 107" Residual Error as a Function of Time over [0, 2n]

4 T T T T T T

Residual Error

_4 1 1 1
0 1 2 3 4 5 6 7

Time

Fig. 1. Residual error of approximate solution for the Van der Pol equation.

Phase Plot of Approximate Solution
2 T T T T

dX/dt
o

Fig. 2. Phase plot of approximate solution for the Van der Pol equation.

() 0=l 8

0 0
O R
—2(A/@)x\(t — D)ia(t — @) (A)d)(1 — %1 (t — @))
We use the fact that the natural norm of a matrix, H, associated with a vector norm |x| = max;;<,|x;| is
|H| = max<i<,y . [hy;]. With this definition it is not hard to show that

=)
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0 1
dX(x; 9)| < . s s . . . .
X ) —1/@? =200/ 0)%1(t — )i (t — &) (A)@)(1 =&, (t — D))
Therefore, for A1=0.1, #=2.3776. Working conservatively within the domain D = {x € C[0,27]:
|x — x| < 1} it is not hard to show that

X (X6 + W15 o) — dX (3o + Y23 d)| < (64/@)(1 + X))y — ¥l (132)

Then from (129) and (132) we can estimate # = 1.8157 and, from (17), we can estimate |J (%, ®)| < 2.7546.

Next, we can estimate the characteristic multipliers of the variational equation relative to the function x(z).
For the quadrature steps in Sections 8 and 9 P and O were taken as 200 and 1200 respectively. These gave
mesh widths of about 1/200 on both [—®, 0] and [0, 27]. Using the method of Section 8 we computed two sim-
ple conjugate eigenvalues with magnitude 1.0430. All of the other eigenvalues have magnitudes near zero.
These are, of course, the eigenvalues of the monodromy operator U. The fundamental matrix Z in (56) is com-
puted using the collocation method of Section 8.1 (See Fig. 3). The monodromy operator is formulated as in
Section 8. The eigenvalues of the monodromy operator U are plotted in Fig. 4. Note that the significant com-
plex conjugate eigenvalues are near the unit circle but are not exactly on it. This is due to the fact that (129) is
only an approximate solution. The eigenvalues are complex conjugates because the left hand matrix in (104) is
real and non-symmetric since the fundamental solution Z is non-symmetric (See Fig. 3). We can confirm that
the eigenvalues of the operator U are the same as those of U. Graphically this is shown in Fig. 5.

In the next step we estimate the parameter o using the methods of Section 9. The solution of the adjoint to
the variational equation was computed using Eq. (110) and the parameter « in (30) was estimated by simple
quadrature, with 4 = 27/O for a sufficiently large mesh, 0 =1, < t, < --- < tpy; = 27, as

a:[A

The absolute value of « is estimated as 3.3547. R

If we now apply the methods of Section 10, using 4 (¢) and B(¢) defined in equation (130), we can estimate
M =2.7618 x 10*>. These results allow us to estimate Ay, 4; and A, in Lemma 4.3 as J, = 8.4091,
J1 = 6.6736 x 10°, and 1, = 3.1720 x 10*. Note the magnitude of the parameters.

|p| < 2.3776|6)|. (131)

S () G @) (1)

i=1

]_ : (133)

Z(1,1) Z(2,1)
1 1
0.5 0.5
kv 0 q 0
-0.5 -0.5
-1 -1
0 2 4 6 8 0 2 4 6 8
tt tt
Z(1,2) Z(2,2)
2 2
1 1
[qV] ()
N 0 N O
-1 -1
-2 -2
0 2 6 8 0 2 4 6 8

4
tt tt

Fig. 3. Fundamental matrix for the variational equational relative to the approximate solution for the Van der Pol equation.
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Eigenvalues for U
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0.2r

Imaginary Part of Eigenvalue
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-0.2F
—04F}
061
-0.8F
-1
Real Part of Eigenvalue
Fig. 4. Eigenvalues for the monodromy operator.

1 Eigenvalues of U—tilde
0.8
0.6

0.4r

0.2

Imaginary Part of Eigenvalue
o

|
©
(o]
T

Real Part of Eigenvalue

Fig. 5. Eigenvalues for U.

With the estimates above we can compute F; = 2.5941 x 10°, F, = 1.0798 x 10'° from (40) and (41) respec-
tively. Then we compute d = 4.6305 x 107" from (42). Then F;6* = 5.5623 x 10°"? is less than o and
F,0 = 0.5. Furthermore » < 8. Therefore, the conditions of the main theorem are satisfied and we can con-
clude from Theorem 5.2 that there exists an exact solution x* and an exact frequency w* of Eq. (128) such that
x* — x| < 1.2361 x 107 and |o* — &| < 7.7877 x 107"°.



1546 D.E. Gilsinn! Communications in Nonlinear Science and Numerical Simulation 14 (2009) 1526-1550
12. Conclusions

Although there seem to be a large number of parameters to be computed and inequalities to be tested in
order to produce the final error estimates the process is feasible. All of the steps can be completed within a
single code. A code has been published as a report of the National Institute of Standards and Technology
(NIST) in Gilsinn [32]. The author cannot claim that the existing code is the most efficient. It has also been
built around the example in Section 11 and would have to be generalized for other applications, but the code
provides a template on which to proceed. From the computational point of view the longest compute times
involve the construction of the block matrices (18) and (109). Computing the approximate solution and the
fundamental solution of the variational equation are relatively fast compared to these matrix constructions.
It behooves anyone wishing to apply the methods of this paper to spend some effort vectorizing the matrix
construction algorithms in Sections 8.1 and 9 as much as possible.

The parameter M in the Fredholm Lemma 3.4 is a significant parameter. From the example above, it is
clear that it would be desirable to obtain as small a value for that M as possible, since its magnitude affects
the 4;, i = 1,2 parameters and A; appears in the final error estimates. In particular, in the example above, the
affect of M causes a very fine residual r for the approximate solution (129) to produce a pessimistic error esti-
mate between the approximate solution and the exact solution in the end. From (32) the critical parameter 4,
is linearly dependent on M.

Appendix
In this appendix we present the derivation of the differentiation matrix (73). The derivation is based on a

discussion of pseudospectral Chebyshev methods given in Gottlieb et al. [26], although a full derivation of the
differentiation matrix is not given there.

Lemma 13.1. For some positive integer N let the Chebyshev points be given by

N = COS (lxt) (134)

on [—1,1], for k =0,1,...,N. The Lagrange interpolation polynomials at these points are given by

L) =] (;__'Z‘k) (135)

N
k=
k#j

We have 1;(n,) = 0. At the Chebyshev points designate
Dy = I;(ny)- (136)

The values for these derivatives are then given as

2N+ 1
Dyy = 6
Dyy = =D,
D=5 jjnf)’ j=1,2,....N—1, (137)
B ci(—1)"
v c;(n — "j)
for i#j,i,j=0,...,N where
2, i=0o0rN;
= { 1, otherwise. (138)
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Proof. The Chebyshev polynomial of degree N is given by

Ty(z) = cos(Ncos™ ') (139)

for z € [-1,1].
Define the polynomial
(1 =) TyE D™

SO =" s (140)

for j=0,...,N and ¢o =cy =2,¢; =1 for 1 <j <N — 1. Since T)(z;) will be shown below to equal zero,
T'y(z)/(z — z;) is a polynomial of degree N — 2 so g;(z) is a polynomial of degree N. Thus, if we can show that
g;(zx) = 04 for k=0,...,N, then by uniqueness g;(z) = /;(z).

We first need to compute the following derivatives:

_ —Nsin(Ncos™' z)

T(z) = ,

V&) V-2

., —N*(1 = 22)"? cos(N cos~! z) — Nzsin(N cos~! z)
TN(Z) = )

(1 —22)3/2
T"(z) = —N*[—sin(N cos ' 2)N(1 —22) (1 = 2) " + cos(N cos ' 2)(—=1)(1 — 22) *(—22)]
— Nsin(Neos™ 2)(1 = 2) ¥ 4 zcos(N cos ' 2N (1 = 2) (1 = 2) 7" (141)

+zsin(N cos~' z2) (7> (1— 22)5/2(—22)] :
(=" [(—2z>T;v<z> L1=2)ThE) (0 —z2>T;v<z>]

gi(2) =

CjN2 Z—Zj Z—Zj (Z—Zj)2

(=1Y*" | Nzsin(N cos™' z) _ N?cos(Ncos'z) N N(1 = 22)"sin(N cos! z)
N |z —z)(1-2)" (z—2) (z—z) '
We will first establish that g;(z) = [;(z). Clearly, since cos 'z = kn/N, Ty(z;) =0, and therefore, for
k#j,k#0,N, j#0,N,g;(zx) = 0. For k = j, j#0,N, using T,(z) and L’Hospital’s rule for
: -1 -1 J
lim sin(N cos™' z) _ N(-1) (142)

z—z; zZ—2z (1 _Z?)I/Z’

we have g;(z;) = 1. For j = 0,z = 1 so that

(=1)2(1 = 22)"*sin(N cos ' z)

&(2) = e . (143)

For z = z;,k#0, g,(x;) = 0. Again apply L'Hospital’s rule to show

(=7 ., zsin(Ncos™'z)|
gO(ZO) = N lzlz}ll NCOS(N COS Z) — W = (144)
For j=N,zy=—1and gy(z:) =0 for k =0,1,...,N — 1. For k£ = 0, use L’Hospital’s rule to show
—V*? zsin(N cos™' z _
gn(zv) = ( 2])\, Lim [—W—FNCOS(NCOS lz)] = 1. (145)

Therefore, g,(z) = /;(2).
We now construct the entries in the differentiation matrix (137). These are given by Dy = g(z;) for
j,k=0,1,...,N. For k#j,k#0, N, since sin(kw) = 0 and cos(kn) = (—1)*
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/ Ck<_1)j+l
(zk) = ———= 146
&) ¢j(zx —z)’ (146)
where ¢, = 1. For j#0,N,k =0, we have zy = 1 and, by L'Hospital’s rule
, -1y N . [sin(Ncos 'z N? co(—1Y
gj(ZO) — ( )2 lim ( 7 ) _ _ 0( ) 7 (147)
oN° 1=z =1\ (1-2) I—z| ¢(l-z)
where ¢y = 2. For j#0,N,k = N, we have zy = —1 and, by L’Hospital’s rule
-1 N in(N cos ™! N2 (—1)" —1)*
¢ (ey) = T fim (SWVeos_2))  ND | _en(Z (148)
' GN* {14z = (1-2)Y 14z cilzy — z;)
where ¢y = 2. For j = 0,k#0, N,
~1 (=1
/ _ 1 Vad _ Sk ) 14
8o(zx) N [(1 4 z0) Ty ()] ek (149)
where ¢, = 1,¢9 = 2. For j = 0,k = 0 we start with
!/ 1 !
g(2) = 77 (1 +2)Ty ()], (150)
so that
/ 1 !
&(2) = 73 [Th(D) + (1 + T4 ()], (1s1)

Since g (z9) = lim,_,; g} (z) we need to find 7', (1) and T',(1). From the construction of T’ (z) and L’Hospital’s
rule

C o . [sin(Ncos™'z)\
Also
. [N(1 =22 cos(N cos™' z) + zsin(N cos ' 2)
Ty (1) = —Nlim 7
z—1 (1 _ZZ)
N(1 - N? in(N cos™! 4 - N?
_ (1 -N7) lim sin( cos1 2z) _N ' (153)
3 z—1 (1 _22) / 3
Therefore
, . 2N? + 1
Ghle) = gy(1) = = (154

For j##0,N, we use

1 (_1)j+1N2
TN(ZI) = 1 _Zz )
J (155)
T///( ) 3( 1)'/+1NZZJ
z;) = ,
N\=J (1 _ Z?)Z

¢; = 1, and L’Hospital’s rule to show
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o (= | =22Tx() (1-2)Ty(z) (1-2)Ty(2)
gj(zj)_ N (z—zj) + (z—zj) (z—zj)z
_(_l)jH —Az.T" (2, N M\ = — Zj
=y T )+ (=T = s (156)

Finally, for j =N,k =N,cy =2

(—1)N+1
h(ax) =i im [T () + (1 =T (157)
By L’Hospital’s rule

, . sin(Ncos™!z)

Also, by L’Hospital’s rule

7 (=1) = Tim —N*(1 — 22)" cos(N cos~! z) — Nzsin(N cos ™! z)

z——1 (1 _ 22)3/2
N*—N .. [sin(Ncos™'z) N*—N? N
_Tzlilzll (1 _22)1/2 3 (=1)" (159)
Therefore
. 2N? 41 .
gylan) = T 6 = —g(20). U (160)
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