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The method described here separates signal (trend) from noise in a set of measured 
bivariate data when there is no mathematical model for that signal. A computer program 
called spline2 implements the algorithm, which the authors apply to laboratory and real-
world example problems.

A previous series of articles1–4 discussed 
several methods for fitting mathemati-
cal functions to data containing random 
errors, showing how to extract useful 

information from the results. Popular choices for 
the mathematical functions are polynomials and 
goniometric functions, as well as exponentials, 
Gaussians, Lorentzians, and various combinations 
of these. The data’s overall shape often clues us in 
to what type of function seems to be appropriate, 
but what if we can’t guess the mathematical func-
tion? Or, what if we don’t want to rely on a possibly 
biased preconception about the type of function 
that’s supposed to fit the data?

Problems of this kind happen frequently: sci-
entists and engineers often confront data for 
which there is no theoretical model, for which it 
isn’t clear, for example, whether the data contain 
a periodic component, or for which the shape’s 
complexity appears to rule out any members of 

well-known function families. Yet researchers 
still want to separate random errors from the 
trend and find the analytic function that repre-
sents this trend as truthfully as possible. This ar-
ticle explains what to do in such circumstances. 
We present the algorithm for a computer program 
called spline2, which was specifically designed 
for this type of freestyle data fitting. An earlier 
version of the program appears elsewhere.5 You 
can download spline2 from the “Free Software” 
page at http://structureandchange.3me.tudelft.nl 
and an executable for Microsoft Windows from 
the “Data Analysis” page at www.geocities.com/ 
karolewski, but it’s also part of Macintosh’s free-
ware program, Plot (http://plot.micw.eu).

A Model Problem
We can state the overall problem as follows: given 
N data points xi,yi (i = 1, 2, … N ), of which the 
values yi contain random errors i,

yi = f(xi) + i,� (1)

we want to find the best estimate of the function 
y = f(x) without a priori knowledge about it. We 
assume the random error in yi has the statistical 
properties

E(i) = 0,� (2)
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E i i( )ε σ2 2= ,� (3)	

where E denotes expectation. The variance σ i
2  

of the random error in yi can, in principle, dif-
fer for each data point, but in many cases, the 
variances are poorly known, so researchers of-
ten assume a common value for all σ i

2 . In this 
article, we work with normalized errors instead 
of with the errors themselves. The normalized 
error di is

δ
ε
σi

i

i
= .� (4)

We can consider the noise present in many data to 
be “white,” which expresses the fact that the random 
errors in the data are independent of each other,

E(didj) = 0, (i ≠ j).� (5)

However, we can’t assume that this is always true. 

Further Information

Spline fitting was originally developed1,2 for interpolat-
ing a set of data points {(x1, y1), (x2, y2), ..., (xN, yN)} 

with highly accurate yi values. Each data point provided a 
knot for the spline function S(x), which was constrained to 
reproduce the yi values exactly—that is, S(xi) = yi. It wasn’t 
long before people realized that an even more valuable 
tool would be splines that could smooth data sets in which 
the yi values were corrupted by random measuring errors. 
These splines would be designed to approximate the yi in 
such a way that measuring errors were relegated to the 
residuals yi – S(xi). The two main approaches to this goal 
were smoothing splines3,4 and regression splines, or least-
squares splines.5,6

Smoothing splines—like interpolating splines—place a 
knot at every xi, but they’re designed not to satisfy S(xi) = 
yi, but to minimize
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where σ i
2

 is some measure of the variance of the error in 
yi, and q is chosen from the interval 0 < q < 1 to adjust the 
amount of smoothing. The equation is a convex combina-
tion of a term that measures fidelity to the data and a term 
that measures the smoothness of S(x). In the limiting case 
q = 0, S(x) becomes the interpolating spline, and as q → 
1, S(x) reduces to a simple straight line fit to the data. The 
interesting question is how to choose q to give an optimal 
separation of signal from noise. The best answer given so 
far is to choose q to minimize Grace Wahba’s generalized 
cross-validation function.7 More details appear in her clas-
sic book.8

Regression splines achieve smoothing by reducing the 
number of knots so that several data points are included in 
each interval between pairs of adjacent knots; the result-
ing splines are fit to the data set in the usual least-squares 
sense. In general, fewer knots give smoother splines, so the 
interesting questions become the number of knots to use 

and their placement in the interval x1 < x < xN to produce 
the optimal separation of signal from noise. Research-
ers have developed several strategies for making these 
choices,9–11 and one work in particular12 gives the precur-
sor to the strategy developed in the main text. Two other 
good sources of information about regression splines and 
smoothing splines appear elsewhere.13,14
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In many cases, often without the user knowing 
it, some kind of filtering or averaging process has 
acted on the data after the noise originated. The 
effect is that the random errors in neighboring 
data points become correlated—that is, Equa-
tion 5 is no longer true for |i – j| equal to some 
small number. If we weren’t aware of this—and 
it’s easily overlooked in a visual inspection of the 
data—freestyle curve fitting could lead to very in-
correct results. Keeping the quantity E(didi+n) at 
the correct value is a crucial part of the spline2 
algorithm, as we will see.

In this article, we assume that the autocorrela-
tion function is of the following type:

E

E
x xi i n

i
i n i

( )

( )
exp( ( ) / )

δ δ
δ

ξ+
+= − −2 , (n ≥ 0).� (6)

This exponentially decaying form is a good ap-
proximation for many practical cases. The quanti-
ty  is the autocorrelation length (for white noise, 
 = 0); in addition to providing the best estimate 
of f(x), spline2’s algorithm also determines the 
value of  that agrees best with the data. To cap-
ture f(x) in an analytic form, spline2 uses flexible 
spline functions because they can represent virtu-
ally any type of trend. We briefly describe splines 
here, but they’re fully discussed elsewhere.6

A spline, denoted here as S(x), is a piecewise 
polynomial function. To visualize this, imagine 
that the data range [x1 ... xN] is divided up into 
a certain number of intervals. The breakpoints 
between the intervals are called interior knots; the 
outer data points are also knots. Each polynomial 
piece of the spline covers an interval (here, we 
limit ourselves to the case in which all pieces are 
third-degree polynomials). The polynomial pieces 
are constructed in such a way that at each interior 
knot, the polynomial pieces to the left and to the 
right of the knot have the same value, the same 
first derivative, and the same second derivative. 
Only the highest derivative, a constant, is allowed 
to differ on the two sides of a knot. Taken togeth-
er, these polynomial pieces form a smooth curve, 
the flexibility of which depends highly on the 
number of knots and their distribution along the 
x-axis. spline2’s principal task is to determine 
the optimal number and distribution of knots for 
approximating the trend in the data under con-
sideration. The “Further Information” sidebar 
gives a brief review of existing literature about the 
smooth representation of data via splines.

Numerical Methods
We can summarize the method for obtaining the 

best approximation of f(x) as follows. spline2 sys-
tematically generates a collection of different trial 
splines S(x)—that is, splines with different knots—
and fits them to the data in the least-squares sense. 
For each spline, spline2 then calculates the set of 
normalized residuals di(i = 1, 2, ... N):

d
y S x

si
i i

i
=

− ( )
,� (7)

where the positive number si is a user-supplied es-
timate of the uncertainty in the ith point, so

si is the user estimate of si.� (8)

After a careful analysis of the sets of residuals, 
spline2 ultimately decides for which of the trial 
cases the residuals’ statistical properties are most 
consistent with those of di in Equation 6. This in-
dicates that the spline in question is the one that 
resembles f(x) as closely as possible in a manner 
consistent with the postulated error structure. 
An important additional criterion is that given 
the choice between statistically equivalent candi-
date splines, the program will select the simplest 
spline—that is, the one with the fewest knots. 
This implies that Nature isn’t expected to act in 
a more complicated way than necessary, but we 
won’t discuss this principle of parsimony here.

Statistical Tests
Before we describe the fitting algorithm in more 
detail, let’s first look at the kind of statistical test 
to apply in order to decide if a particular function 
S(x) fits the data well. In doing so, we should also 
include the cases in which the data points’ error 
variances are imprecisely known. Normal prac-
tice after performing a least-squares fit—that is, 
after varying the mathematical function’s adjust-
able parameters until the residual variance is at a 
minimum—is to apply a 2-test to it. We calculate 
the statistic

r
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where m is the number of adjustable parameters. 
If S(x) is the correct fitting function, and if the 
values si are the correct estimates of si, this sta-
tistic is 2-distributed, with an expected value 1 
and standard deviation 2 / ( )N m− . Thus, the 
value of r2 actually found is easy to test against the 
interval 1 2± −/ ( )N m .

If, however, our estimates of the error variances 
are incorrect, the 2-test quickly loses its power, 
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and the outcome ceases to accurately impute the 
correctness of the function fitted to the data at 
hand. Suppose, for example, that we underesti-
mate all uncertainties si by 10 percent and there-
fore all variances by roughly 20 percent. This 
misjudgment would be small, but the effect will 
be that the correct S(x) gives rise to an r2 that’s 
too large by a factor 1.20. Therefore, a potentially 
correct r2 (= 1) goes outside the interval of one 
standard deviation for N – m as low as 50, which 
is a common situation for data fitting. Therefore, 
the 2-test can be useless because it’s too critically 
dependent on our precise knowledge of data er-
rors. (A common, but dangerous, practice in such 
cases is to invert the reasoning by picking a fitting 
function and assuming that the fit is correct; we 
then use the value found for r2 to estimate the un-
certainties through si = rsi.)

Clearly, we need a better test. We can’t hope to 
achieve complete immunity to all types of mis-
judgment, but much can be gained if we could use 
a statistic that makes us at least less sensitive to 
such errors. This is especially important for the 
present case of spline fitting because we can give 
enormous (even too much) flexibility to the spline 
by increasing the number of knots and varying 
their distribution. It’s therefore vital to prevent 
splines from using this flexibility to overfit the 
noise. The Durbin-Watson test7–9 gives us the 
desired insensitivity, and it’s with this test that 
we can begin to explain the algorithm by which 
spline2 finds the best-fitting spline. To incor-
porate the effects of autocorrelation, we modified 
the Durbin-Watson statistic somewhat.

The Durbin-Watson Test
In its original form, the Durbin-Watson test is 
applied to a statistic that we call Q(1, 0) in this 
article. We define it as

Q
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where we used the following notation for averages:
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To calculate Q(1, 0) after we’ve determined the 
least-squares fit of S(x) to the data, we need the 
values di, which depend on the estimates si of the 

data uncertainties (Equation 7). If we know noth-
ing about the size of these uncertainties, we can’t 
do much better than set all si equal to 1; if we have 
at least some notion of which data are more reli-
able and which are less, we should try to give each 
si a value proportional to the true uncertainty. The 
crucial point here is that agreement between si and 
si in an absolute sense isn’t necessary—agreement 
on a relative scale suffices. The reason for this is 
that Q(1, 0) is a ratio of two estimates of the re-
sidual variance: one based on the magnitudes of 
the point residuals, and the other based on the 
serial correlation between them. Because it’s a ra-
tio, Q(1, 0) is unaffected by any common factor by 
which the weighted residuals might be incorrect. 
Problems like the 20 percent underestimation in 
the example of the 2-test therefore don’t occur if 
we use Q(1, 0). This is the Durbin-Watson test’s 
great advantage: the outcome is much less sensi-
tive to user misjudgments of noise magnitude. As 
we’ll see, this is also true for misjudgments other 
than a simple common factor.

The statistical properties of Q(1, 0) are well 
known.7–9 For correct approximants, the expected 
value of Q(1, 0) is approximately 2(N – 1)/N, and 
the standard deviation is roughly 2 / N m− , 
where, in the present context of spline fitting, m 
= L + D, with L representing the number of in-
tervals and D the spline’s polynomial degree. The 
exact values of the expected value and the standard 
deviation depend on the xi and on the approximat-
ing function, but we can base statistical tests on 
two limiting distributions of Q(1, 0). We normally 
apply these tolerant and strict Durbin-Watson tests 
with a confidence level of 0.95. Incidentally, the 
application of these tests as used in spline2 is less 
straightforward than it seems because the program 
uses a more generalized version of the statistic than 
Q(1, 0)—namely, one that takes into account au-
tocorrelation effects. To see how autocorrelation 
comes in, we first rewrite Equation 10 as

Q

N
N

d d

d
C

i i

i

( , )

( , )( ) ( )

1 0

1
2 1 0

1
2

1
2

1
2

≡

− +
−





 +












,� (13)

with
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For uncorrelated data, the expected value of C(1, 0) 
is zero, which is a statement similar to Equation 
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5. In fact, for any n, the expected value of C(n, 0), 
defined as

 C n
d d

d

i n i n

i

( , ) ( )0
2

≡
+

,� (15)

should be zero for truly white noise. If this quan-
tity is adjusted by the form of the expected cor-
relation given by Equation 6,
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this statistic, again, is expected to be zero for a 
good fit (of course, any other assumed autocor-
relation function could replace the exponential 

function in Equation 16). Inserting this expres-
sion into Equation 13 we find a modified Durbin-
Watson statistic

Q n
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We still must take one final step. The quan-
tity Q(n, ) refers to one n value only—that is, we 
compare the actual autocorrelation function with 
the assumed autocorrelation function on the basis 
of only one value for the data index spacing n. To 
obtain a comparison over a range of spacings, we 
take the average over several n values and arrive at 
our final generalized Durbin-Watson statistic q,

I. For a range of  values, from  = 0 to  = 3〈∆x〉—in incre-
ments of 〈∆x〉/10 until  = 〈∆x〉, and in increments of 〈∆x〉/5 
thereafter—spline2 executes the following steps:5

A series of trial “equal information” splines SL(x) 
with gradually increasing numbers of intervals L is 
least-squares fitted to the data. The term “equal 
information” refers to splines in which the knots are 
positioned in such a way that each interval contains 
the same number of data points (or as close to this as 
possible). The series starts with L = 1, and at every step 
L is increased by 1 or by 5 percent, whichever is larger. 
For each fit, q is calculated.
As soon as the tolerant Durbin-Watson test applied to 
q indicates that the fit is acceptable, this fit’s spline is 
considered a good first approximation. We denote this 
spline as S xL1

( ) .
A second series of trial splines is fitted, starting from 
S xL1

( ), but this time L is decreased at each step (by 1 
or by 5 percent, whichever is larger); simultaneously, 
an algorithm is applied that optimizes the distribution 
of knots on the basis of the preceding spline fit.6

The strict Durbin-Watson test is applied to all spline 
fits of this series. Of the acceptable ones, the spline 
with the smallest number of knots is considered 
optimal for the particular value of  under investiga-
tion. Special case: if none of the splines in this series 
is found acceptable, the spline series of step 1 is 
extended by one more spline (L1 is increased) and the 
process is re-entered at step 3.
A parameter a is calculated for the optimal spline 
found in step 4. This parameter measures how closely 

1.

2.

3.

4.

5.

the spline fit’s residuals conform to the assumed auto-
correlation function. Experimentation has shown that 
the following expression performs well:

        
α ξ ξ= +min ( , ) max ( , )

n n
C n C n ,

where all n values in the range [1 ... nmax] are considered 
(see Equation 19 in the main text). Note that the value of a 
depends on .

II. After the loop over  is completed, all values a are 
examined. The smallest of these represents the best cor-
respondence with the assumed autocorrelation function. 
The  value that gave rise to this smallest a is then selected 
as the most probable value, and the corresponding optimal 
spline is finally presented to the user as the overall best. As 
output, spline2 also produces the estimate r of the true 
data uncertainties (relative to the user-supplied values). By 
rewriting Equation 9 in the main text, we see that 
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The individual values wi are unknown, but we do know 
that E wi

N
i( )Σ = =1 1. We can therefore come to the conclusion 

that σ = rs , where the bars indicate averaging. This equa-
tion says that the best spline fit indicates that the uncertain-
ties in the data are r times as large as the user estimates.

Figure 1. The spline fit algorithm. In the main text, the optimal spline fits are characterized by the parameters L, r, a, and .
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which is a function of . In the spline2 algo-
rithm, the value of nmax is large enough to let n 
cover the most significant support of the nonzero 
part of the autocorrelation function,

n
xmax int=

∆
+







3 3
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where the average data spacing 〈∆x〉 is given by

∆ ≡
−
−

x
x x

N
N 1

1
.� (20)

This completes the definition of q, the pivotal 
quantity that’s Durbin-Watson tested in the con-
struction of the best spline approximation to noisy 
data. Figure 1 gives the algorithm’s full details.

Application to Pulse-Counting Data
As a first illustration of the fitting method pro-
posed here, Figure 2 shows spectrometer data (N 
= 536, 〈∆x〉 = 3.16) obtained in a gas-desorption 
experiment.5 Because the data yi are pulse counts 
and should obey Poisson statistics, we know the 
noise component’s standard deviation. There-
fore, we have set the values si equal to √yi. Figure 
1 shows the best cubic spline approximation the 
algorithm found, S(x), together with the data. To 
highlight the curve’s detailed structure, S(x) is 
also shown shifted upward. The numerical results 
are L = 34,  = 0.95, a = 0.045, and r = 0.975, with 
a Durbin-Watson statistic q = 2.05.

We can see that the spline successfully captures 
all the essential trends in the data, and that it re-
quires 34 intervals (33 internal knots) to do so. 
Also, the spline’s first and second derivatives (not 
shown) have very acceptable forms, exhibiting 
none of the wild oscillations that would indicate 
overfitting. The value of r, nearly equal to 1, con-
firms that we have estimated the data uncertainties 
correctly. The correlation length  is found to be 
much smaller than the average data spacing (only 
30 percent), which means that the autocorrelation 
function’s value between neighboring points is 
only exp(–1/0.3) = 0.036. This is so close to zero 
that we could consider the data to be effectively 
uncorrelated. In fact, this is in accordance with 
the experimental situation—the very small value 
of a confirms this. If, on the other hand, we pre-
tend to know nothing about the data uncertainties 
and set all si equal to 1, the result is a spline S0(x) 
with the following statistics: L = 30,  = 1.58, a = 

0.116, and r = 816. This spline is virtually identical 
to the previous one, as exemplified by the fact that 
the largest difference in peak height is only 353 
vertical units, and the largest difference in peak 
position is only 3.0 horizontal units. Figure 2 
shows the difference between S(x) and S0(x). This 
test illustrates that the fitting algorithm is robust 
against misjudgments of data uncertainties.

Application to Global Temperatures
To maintain continuity with previous articles,1–4 
we next apply the freestyle fitting method to 
global temperature data (see www.cru.uea.ac.uk/
cru/data/temperature/#datdow), which are an up-
dated version of the ones analyzed in the previous 
articles. Figure 3 shows the global monthly and 
yearly temperature anomalies from 1856 to 2004. 
(Temperature anomalies are the mean global tem-
perature differences with respect to the 1961 to 
1990 average.) We plotted January to December 
data from bottom to top, whereas the yearly aver-
ages are shown as the topmost data set. All data 
sets have N = 149, 〈∆x〉 = 1. The depicted curves 
are the spline fits found by spline2. We discuss 
the yearly data first.

Yearly Temperature Averages
For yearly average temperatures, spline2 pro-
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Figure 2. Pulse-counting data and fitted spline S(x). To highlight the 
curve’s detailed structure, S(x) is also shown shifted upward. The 
curve marked “Difference” is S(x) – S0(x), where S0(x) is the fit found 
under the assumption that all data would have equal uncertainties.



28� Computing in Science & Engineering

duces the three-interval spline fit shown as the 
topmost curve in Figure 3. Note that we have set 
all si values equal to 1. The spline statistics are L 
= 3,  = 0.7, a = 0.142, and r = 0.100, which tells us 
that the random fluctuations in the yearly average 
temperature have a standard deviation of 0.100 
degrees Centigrade and that the autocorrelation 
length—or, rather, autocorrelation time—is 0.7 
years. The small value of a shows that the cor-
relations agree well with the assumed exponen-
tial form in Equation 6; Figure 4 shows this in 
more detail. Further inspection shows that a has 
indeed reached a pronounced minimum for  = 

0.7—for example, a = 0.306 for  = 0.3 and a = 
0.224 for  = 1.1. If no correlation at all is assumed 
( = 0), a becomes as high as 0.342. We conclude 
that the autocorrelation time of 0.7 years is a real 
phenomenon. For completeness, we mention that 
the standard deviation r = 0.100 lies between the 
r values produced by ordinary 6th and 7th degree 
polynomial fits over the entire time range.

Individual Months
To study global temperature data in more detail, 
we look next at the data for individual months, 
where again we have set all values si equal to 1. 
Reverting to Figure 3, we see that all months es-
sentially exhibit the same behavior. This is even 
clearer in Figure 5, which shows the splines’ de-
rivatives in the same arrangement as in Figure 3. 
The closed symbols in Figure 5 denote the minima 
and maxima of the derivatives, marking the points 
at which climatic trends begin to change. We can 
see that for all months, these points group closely 
around the same years: 1889, 1931, and 1964 (ver-
tical lines). The similarity of the monthly data 
is striking and seems to emphasize the fact that 
the global climate is a system with time memory, 
something already suggested by the autocorrela-
tion time of 0.7 years found for the yearly averag-
es. Additionally, the results indicate that external 
influences must be active, such as solar or human 
activities (combustion of fossil fuels), which are so 
strong that the global climate as a whole responds 
with the same trend.

In the next section, we study the relation be-
tween global temperature and atmospheric con-
centration of CO2. The year 1964 emerges as 
significant: from this point onward, the tempera-
ture derivatives for all months increase continu-
ously. What’s more, over the past 10 years or so, 
the rates of temperature increase have been larger 
than ever (since 1856) and continue to increase, 
even up to the last year considered.

Figure 6 shows the estimates r of the standard 
deviation of the fluctuations for the January to 
December temperatures (open squares) together 
with the r value of the yearly averages (closed 
square). In the monthly data, we see distinct sea-
sonal effects: r varies from 0.11 degrees (August 
and September) to 0.21 degrees (February). This 
is interesting in itself because global temperature 
data cover both the northern and the southern 
hemispheres, and we wouldn’t immediately expect 
to see a difference between summer and winter. 
Evidence also exists that the correlation effects in 
the full, continuous sequence of monthly temper-
ature data are more complicated than can be ex-
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Figure 3. Global temperature anomalies from 1856 to 2004. We 
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plained by a simple exponential function. Figure 
6 shows this as well, from the correlation times  
between the same months in different years and 
the corresponding values of a. For comparison, 
we also included values for the yearly averages in 
the plot (closed symbols). What spline2 finds 
is that the January, February, June, and Novem-
ber data appear to be uncorrelated from year to 
year, and that the correlation times for the other 
months fall between 0.3 and 0.8 years; the small 
values for a (≈ 0.1) suggest that these are real cor-
relation times.

We must make one additional remark. We 
didn’t generate the spline fits to the 12 monthly 
data sets in Figure 3 with the exact algorithm de-
scribed earlier. We set the value of L1, the number 
of intervals needed for the least-squares spline to 
qualify as “good enough as a first approximation,” 
to 3 instead of letting the tolerant Durbin-Wat-
son test decide it. If the value assignment were 
left to the Durbin-Watson test, it would come up 
with the value L1 = 1 for the winter months (No-
vember to April). In other words, for the months 
with the largest r values (see Figure 6), the ran-
dom temperature fluctuations are apparently just 
large enough to let the algorithm decide that a 
single cubic polynomial, rather than a three-in-
terval cubic spline, fits the data sufficiently well. 
This in itself isn’t a serious matter, but we chose 
to force the algorithm to wait a little longer be-
fore invoking the knot-optimization, because 
experience has shown that in cases in which the 
ratio between the noise amplitude and the “trend 
features magnitude” is high, it’s usually better 
to let the knot-optimization routine start from 
a spline that already has a certain flexibility. Af-
ter all, if the correct trend is a single polynomial, 
the algorithm will find it anyway. Setting L1 to 
3 therefore constitutes no illegitimate act of user 
interference.

As a second small deviation from the usual mode 
of operation, we applied the Durbin-Watson tests 
with a 97 percent confidence level instead of 95 
percent. With 95 percent, the September spline 
turned out to be a two-interval spline, but us-
ing 97 percent had the effect that the September 
spline became a three-interval one, whereas the 
other splines remained unchanged. Given the 
arbitrariness of the confidence interval’s value, 
this adaptation can’t be seen as an essential in-
terference. Overall, our conviction is that for all 
months, the three-interval splines should be con-
sidered best, and the synchronous behavior in Fig-
ure 5 certainly emphasizes this outcome. Another 
sign that “fully automatic” splines are likely to be 

inferior to three-interval ones is that the differ-
ence between the average of the monthly splines 
and the topmost spline in Figure 5 increases from 
0.00013 to 0.08123 degrees if we choose the auto-
matic splines.

CO2 Concentrations vs. Temperature
As we just showed, a spline fit designed to sepa-
rate signal from noise in a measured record 
provides a model-independent mathematical 
representation of the quantity or process being 
measured. This, in turn, can help us model some 
other related observed quantity or process. To 
illustrate this procedure, let’s consider the rela-
tion between the global temperature variations 
just discussed and the atmospheric concentra-
tion of CO2.

Figure 7 gives a plot of the atmospheric con-
centrations of CO2 measured in Antarctica for 
the years 1647 to 2004.10–12 Taking t = 0 at epoch 
1856.0, we let c(t) be the atmospheric concentra-
tion at time t. We use the average value for the 
years 1647 to 1764 as an estimate of the prein-
dustrial concentration, and the optimal spline2 
fit to the years 1765 to 2004 as a mathematical 
representation for c(t) in a model for the tem-
perature anomalies. The spline2 fit used five 
intervals and gave residuals with a root-mean-
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square error r = 1.035 parts per million by vol-
ume (ppmv).

To model the temperature variations, we let T0 
be the temperature anomaly corresponding to c(t) 
= c0 and assumed a linear relation

dT
dc

T t T c t c= ⇒ = + −η η( ) [ ( ) ]0 0 ,� (21)

where the parameters T0 and  are to be estimat-
ed by least-squares fitting. But this expression 
defines only a baseline for the temperature vari-
ations: to complete the model, we must add a si-
nusoid to account for the approximately 70-year 
oscillation that Michael Schlesinger and Navin 
Ramankutty first reported.13 This cycle, which 
was very apparent in all of Figure 3’s spline2 

plots, is thought to come from ocean–atmo-
spheric interaction and hence is independent 
of CO2 concentration. Adding it to our model 
gives

T t T c t c A t( ) [ ( ) ] sin ( )= + − + +



0 0

2η π
τ

φ � (22)

with free parameters T0, , A, , and . A nonlin-
ear least-squares fit to the temperature data gives 
the parameter estimates

ˆ . . [ ]T C0 0 507 016= − ± °

ˆ . . [ / ]η = ± °0 01039 00042 C ppmv

ˆ . . [ ]A C= ± °0 099 012

ˆ . . [ ]τ = ±71 5 2 2 yr

ˆ . . [ ]φ = − ±1 0 1 4 yr .

The sum of squared residuals and corrected to-
tal sum of squares are SSR = 1.2674 and CTSS = 
8.5563, so the coefficient of determination is

R
SSR

CTSS
2 1 0 8519= − = . .

This means that the fit and the residuals explain 
85.19 percent and 14.81 percent, respectively, of 
the data variance. We can also decompose the 
data into variance components:

Tobs ≡ Baseline + Sinusoid + Noise ,

with

Baseline ≡ ˆ ˆ[ ( ) ]T c t c0 0+ −η ,

Sinusoid ≡ ˆ sin[ ˆ ( ˆ )]A tω φ+ , and

Noise ≡ residuals for the fit.

An approximate analysis of variance shows that 
the baseline and sinusoid account for approxi-
mately 77 percent and 8 percent of the variance, 
respectively.

Figure 8 gives a plot of the fit, a plot of the 
spline2 fit, and a plot of their difference. The 
good agreement between the two fits argues fa-
vorably for both approaches. The baseline, which 
is also plotted, suggests that the troposphere has 
warmed by approximately 0.9 °C since 1856, that 
the warming is directly attributable to the increase 
in atmospheric CO2 during that period, and that 
the warming is accelerating.
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W e found over the years that the 
spline approximation method 
described in this article works 
surprisingly well in many cas-

es—specifically, it provides researchers with a 
routine tool for analyzing noisy data, and com-
mon tasks such as interpolation and determining 
peak maxima, derivatives, and baselines no longer 
require fitting preselected mathematical func-
tions. However, the method becomes less reli-
able if the noise’s autocorrelation function varies 
significantly over the data range and if the signal 
contains sharp steps or cusps. We also found that 
weak periodic components in the signal are some-
times incompletely recognized; work is ongoing 
to improve this.

We’ve included the examples of global tem-
peratures and CO2 concentration as a contribu-
tion to the climate debate. Extrapolation of the 
observed trends is, of course, not possible using 
the methods presented here, but it is rather sug-
gestive that a mathematical method fully ignorant 
of the global climate comes to the same conclu-
sions as a CO2-based model that includes ocean–
atmospheric interactions. Work is under way to 
take the CO2 analysis one step further: by using 
a spline2 approximation to records of fossil-fuel 
emissions and land-use changes, we’re developing 
a mathematical model that relates these human 
CO2 production data to measured atmospheric 
CO2 concentrations. This would be helpful in 
predicting future temperature scenarios.�
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