
Nonlinear Dyn

DOI 10.1007/s11071-006-9144-7

O R I G I NA L A RT I C L E

Computable error bounds for approximate periodic
solutions of autonomous delay differential equations
David E. Gilsinn

Received: 28 November 2005 / Accepted: 30 August 2006
C© Springer Science + Business Media B.V. 2006

Abstract In this paper, we prove a result that says:

Given an approximate solution and frequency to a pe-

riodic solution of an autonomous delay differential

equation that satisfies a certain noncriticality condi-

tion, there is an exact periodic solution and frequency

in a neighborhood of the approximate solution and fre-

quency and, furthermore, numerical estimates of the

size of the neighborhood are computed. Methods are

outlined for estimating the parameters required to com-

pute the errors. An application to a Van der Pol oscil-

lator with delay in the nonlinear terms is given.
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1 Introduction

Delay differential equations (DDEs) have occurred in

many fields from biology [1] to population dynamics

[2] to machine tool dynamics [3–6]. The study of ma-

chine tool dynamics has led to many problems involv-

D. E. Gilsinn (�)
Mathematical and Computational Sciences Division,
National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8910, Gaithersburg, MD 20899-8910, USA
e-mail: dgilsinn@nist.gov

ing delay differential equations. The problem of regen-

erative chatter in machining can be traced to a delay

problem in dynamics [7–9]. Mathematically, chatter is

a stable limit cycle of the delay differential equation

that models the particular machining process. The limit

cycles representing chatter typically arise from a Hopf

bifurcation of a critical parameter in the DDE [10]. Be-

ing able to determine the nature of that limit cycle is

crucial to a stable machining operation.

Problems in machine tool chatter often fall into the

class of DDEs given by

ẋ = X (x(t), x(t − h)), (1)

where x, X ∈ Cn , h > 0, X sufficiently differentiable,

X (0, 0) = 0, Cn is the space of n-dimensional vectors

of complex numbers. Several approaches can be taken

to study the limit cycles for this class. One can numer-

ically integrate the DDE [11] by using amplitude es-

timates from bifurcation continuation curves. Another

approach would be to develop a collocation solution to

the DDE [12, 13]. In these cases the usual error esti-

mates are given in terms of “Big O” of the maximum

collocation mesh spacing. In this paper, we take the

approach that if a “noncritical” (to be defined later) pe-

riodic approximate solution of the DDE can be found,

by whatever means, such as Galerkin approximation or

harmonic balance, with a “sufficiently small residual er-

ror,” then an exact periodic solution exists in the neigh-

borhood of the approximate solution and it is possible to

compute a numerical estimate of the error between the
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approximate and the exact solutions. This result was es-

tablished in a general manner for functional differential

equations by Stokes [14]. To obtain this result, he first

extended an earlier result for ordinary differential equa-

tions [15], to autonomous differential equations from

the results of Urabe [16] for nonautonomous systems.

He then extended the results to functional differential

equations in Stokes [14]. Urabe [17] also showed that

similar results could be applied to multipoint boundary

value problems. Earlier results along this line were also

established by Cesari [18]. A similar result has been

established for abstract operator equations in Banach

spaces by Oishi [19].

The result of Stokes [14] for functional differen-

tial equations depends on verifying certain conditions

that require computing various parameters. Only re-

cently have algorithms been developed to computation-

ally verify these conditions in the fixed delay case. An

announcement of algorithms for computing these pa-

rameters was given by Gilsinn [20]. In order to apply

Stokes’ result, a proof in the case of Equation (1) will be

given here since certain inequalities that are developed

within the proof are necessary for proving the fixed

point contraction mapping conditions. The inequalities

rely on the specific form of Equation (1).

The notation used in the paper is described in

Section 2. The noncriticality condition is defined in

Section 3. In Section 4, we construct an exact frequency

and 2π -periodic solution of Equation (1) as a pertur-

bation problem. In Sections 5 and 6, we show that this

perturbation problem has a uniqe solution. In particu-

lar, in Section 5, we define a map that is used to prove,

by a contraction argument, the existence of an exact

frequency and 2π -periodic solution of Equation (1).

The main contraction theorem is proven in Section 6. In

Sections 7 through 10, the necessary algorithms needed

to compute the critical parameters for verifying the ex-

istence of a 2π -periodic solution of Equation (1) will

be given. An algorithm for computing the characteristic

multipliers of the variational equation of Equation (1)

with respect to the approximate 2π -periodic solution,

is outlined in Section 8. An algorithm to determine the

solution to the formal adjoint equation with respect to

the variational equation of Equation (1) with respect

to the approximate 2π -periodic solution, is outlined in

Section 9. An algorithm for estimating a critical pa-

rameter, M, is given in Section 10. An application of

these algorithms to the Van der Pol equation with de-

lay is given in Section 11. Some conclusions are given

in Section 12 and acknowledgments in Section 13. Fi-

nally, certain bounds and Lipschitz conditions used in

the fixed point theorem are proven in Appendices A.1

and A.2.

2 Notation

Let Cω denote the space of continuous functions

from [−ω, 0] to Cn with norm in Cω given by |φ| =
max |φ(s)| for −ω ≤ s ≤ 0, where

|φ(s)| =
(

n∑
i=1

|φi (s)|2
)1/2

. (2)

Cω is a Banach space with respect to this norm. LetP be

the space of continuous 2π -periodic functions with sup

norm, | · |, on (−∞, ∞). LetP1 ⊂ P be the subspace of

continuously differentiable 2π -periodic functions with

the sup norm. Let X (x, y), the right-hand side of Equa-

tion (1), be continuously differentiable in some domain

�n ⊂ Cn × Cn with bounded partial derivatives, where

|Xi (x, y)| ≤ B, (3)

for i = 1, 2, (x, y) ∈ �n . The subscripts of X indicate

derivatives with respect to the first and second variables

of X , respectively. We further assume that the first par-

tial derivatives satisfy Lipschitz conditions given by

|Xi (x1, y1)−Xi (x2, y2)| ≤ K(|x1 − x2| + |y1 − y2|),
(4)

for (x1, y1), (x2, y2) ∈ �n .

Since the period T = 2π/ω of a periodic solution for

Equation (1) is unknown we can normalize the period

to [0, 2π ] by introducing the substitution of th/ω for t
and rewriting Equation (1) in the form

ω ẋ = h X (x(t), x(t − ω)). (5)

Since h is simply a rescaling of the system, we will

drop it for the rest of the paper.

The problem addressed in this paper is to find an ex-

act 2π -periodic solution, x(t), and an exact frequency

ω for Equation (5), given only an approximate 2π -

periodic solution, x̂(t), and an approximate frequency
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ω̂ for Equation (5) and to compute an error estimate

between the two.

For ψ1, ψ2 ∈ P we denote the total derivative of

X (x, y) by

d X (x, y; ψ1, ψ2) = X1(x, y)ψ1 + X2(x, y)ψ2. (6)

Let A(t), B(t) be continuous 2π -periodic matrices.

Then a characteristic multiplier is defined as follows.

Definition 1. ρ is a characteristic multiplier of

ẏ = A(t)y(t) + B(t)y(t − ω), (7)

if there is a nontrivial solution y(t) of Equation (7) such

that y(t + 2π ) = ρ y(t). Note that if ρ = 1 then y(t) is

2π -periodic.

To simplify some of the notation, we will suppress

the t and write, for example, x = x(t), xω = x(t − ω),

but in other cases we will maintain the t , especially

when describing computational steps. We will also at

times use the notation

|x |2 =
[∫ 2π

0

|x(t)|2 dt

]1/2

. (8)

3 Noncriticality condition

Galerkin and harmonic balance methods can be used to

develop 2π -periodic approximate solutions for Equa-

tion (5). A fast discrete Fourier series algorithm for

computing an approximate series solution and fre-

quency, (ω̂, x̂), has been given by Gilsinn [21]. See Sec-

tion 7 later for a brief discussion of a Galerkin method

for approximating a solution. At this point, then, we

assume that there exists a 2π -periodic approximate so-

lution and frequency, (ω̂, x̂) for Equation (5), where x̂
is 2π -periodic,

ω̂ ˙̂x = X (x̂, x̂ω̂) + k, (9)

and k(t) is a 2π -periodic residual bounded as follows:

|k| ≤ r. (10)

The required size of the residual error, r , will become

clear based upon estimates later in this paper. These

estimates will indicate, in particular situations, how

good an approximate solution and frequency would

need to be computed to satisfy the conditions of the

main existence theorem in Section 6 later.

The variational equation with respect to the approx-

imate solution and frequency is given by

ω̂ż = d X (x̂, x̂ω̂; z, zω̂) . (11)

Let Â = X1 (x̂, x̂ω̂), B̂ = X2 (x̂, x̂ω̂). The formal ad-

joint of Equation (11) is given in row form by

ω̂v̇ = −v Â − v−ω̂ B̂. (12)

For a more thorough discussion of the adjoint and its

properties the reader is referred to Hale [22], Hale and

Verduyn Lunel [23], or Diekmann et al. [24].

The next lemma, proven in Halanay [25], establishes

the relationship between the number of independent

2π -periodic solutions of Equations (11) and (12).

Lemma 1. The system, represented by Equations (11)
and (12), have the same finite number of independent
2π -periodic solutions.

We will not give the proof of the next lemma, since

it is stated in Hale [22] and in Halanay [25]. The re-

sult, however, motivates the definition of a noncritical

approximate solution.

Lemma 2. Let ρ0 = 1 be a simple characteristic mul-
tiplier of Equation (11). Let p be a nontrivial solution
of Equation (11) associated with ρ0. Define

J (p, ω̂) = p + B̂ pω̂, (13)

then∫ 2π

0

vT
0 J (p, ω̂)dt �= 0 (14)

for the simple solution, v0, of the adjoint Equation (12)
associated with the adjoint multiplier 1/ρ0.

Note that a simple characteristic multiplier ρ0 = 1 im-

plies a single 2π -periodic solution associated with this

multiplier and hence a single associated solution to the

formal adjoint.
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We can now give the definition of a noncritical ap-

proximate solution of Equation (5).

Definition 2. The pair (ω̂, x̂), where x̂ is at least twice

continuously differentiable, is said to be noncritical

with respect to Equation (5) if (a) the variational equa-

tion about the approximate solution x̂ , given by Equa-

tion (11), has a simple characteristic multiplier ρ0, that

need not be unity, with all of the other characteristic

multipliers not equal to one. (b) Furthermore, if v0,

|v0|2 = 1, is the solution of Equation (12) correspond-

ing to ρ0, i.e., with multiplier 1/ρ0, then we must have

that∫ 2π

0

vT
0 J ( ˙̂x, ω̂)dt �= 0, (15)

where

J ( ˙̂x, ω̂) = ˙̂x + B̂ ˙̂x ω̂. (16)

The fact that ρ0 need not be unity for an approximate

2π -periodic solution will be demonstrated in the ex-

ample in Section 11.

We will not give the proof of the next lemma, since

it is also proven in Halanay [25]. The result, however,

will be critical to the main approximation theorem.

Lemma 3. The nonhomogeneous system

ω̂ẋ = Âx + B̂xω̂ + f (17)

has a unique 2π -periodic solution if and only if∫ 2π

0

vT
0 f dt = 0 (18)

for all independent solutions v0 of period 2π of Equa-
tion (12). Furthermore there exists an M > 0, indepen-
dent of f , such that

|x | ≤ M | f |. (19)

If (ω̂, x̂) is noncritical according to Definition 2, then

there will only be one 2π -periodic solution v0 of Equa-

tion (12) that concerns us.

Lemmas 1 and 3 combine to form a part of a re-

sult called the Fredholm alternative. There are vari-

ous forms of Fredholm type of results, but they all ad-

dress conditions for the solvability of nonhomogeneous

systems. In general, determining the number of inde-

pendent 2π -periodic solutions of the formal adjoint in

Lemma 1 is not a trivial problem, but for the case of

simple characteristic multipliers this is not a problem.

For a more extensive discussion of the Fredholm alter-

native see Kreyszig [26].

4 A perturbation problem

In this paper, we will look for an exact 2π -periodic so-

lution, x , and an exact frequency, ω, for Equation (5)

as a perturbation of the 2π -periodic approximate solu-

tion, x̂ , and approximate frequency, ω̂, of Equation (5).

In particular, let

ω = ω̂ + β

x = x̂ + ω̂

ω
z.

(20)

Note that we do not assume that β > 0.

Then, substituting Equation (20) into Equation (5),

and using Equation (9), we can write the equation for

z and β as

ω̂ż = d X (x̂, x̂ω̂; z, zω̂) + R(z, β) − β J ( ˙̂x, ω̂) − k,

(21)

where

R(z, β) =
[

X

(
x̂ + ω̂

ω
z, x̂ω + ω̂

ω
zω

)
− X (x̂, x̂ω̂)

]
− d X (x̂, x̂ω̂; z, zω̂) + β B̂ ˙̂x ω̂ (22)

and J ( ˙̂x, ω̂) is given by Equation (16).

In the next lemma, we establish bounds and

Lipschitz conditions for R(z, β).

Lemma 4. There exist functions R0(z, β) > 0,
Ri (z, β, z̃, β̃) > 0, i = 1, 2, such that R0 → 0 as
(z, β) → 0 and Ri → 0 as (z, β, z̃, β̃) → 0 and

|R(z, β)| ≤ R0(z, β),

|R(z, β) − R(z̃, β̃)| ≤ R1(z, β, z̃, β̃)|z − z̃|
+R2(z, β, z̃, β̃)|β − β̃|. (23)
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Proof: Appendix A.1. �

Since we will be considering |β| small, we will begin

by restricting β, which could be negative, so that

ω̂ + β ≥ ω̂

2
. (24)

We can select |β| ≤ ω̂/2.

As a first step to establishing the existence of a 2π -

periodic solution of Equation (21), we first study the

existence of a 2π -periodic solution of

ω̂ż = d X (x̂, x̂ω̂; z, zω̂) + g − β J ( ˙̂x, ω̂) − k, (25)

where g ∈ P . For this we have the following lemma

Lemma 5. If (ω̂, x̂) are noncritical with respect to
Equation (5), then (a) there exists a unique β such that

g − β J ( ˙̂x, ω̂) − k ⊥ v0, (26)

where v0 is the solution of Equation (12) corresponding
to the characteristic multiplier ρ0 of Equation (11),
and (b) there exists a unique 2π -periodic solution of
Equation (25) that satisfies

|z| ≤ M |g − β J ( ˙̂x, ω̂) − k|, (27)

for some M > 0.

Proof: Take

β = α

[∫ 2π

0

vT
0 (g − k) dt

]
, (28)

where

α =
[∫ 2π

0

vT
0 J ( ˙̂x, ω̂) dt

]−1

(29)

and apply Lemma 3. �

We can now establish bounds on β, z, and ż. For

notation, designate the unique β and z in Lemma 5 by

β(g) and z(g), respectively, and ż by ż(g).

Lemma 6. There exist three constants, designated by
λi , i = 0, 1, 2, such that

|β(g)| ≤ λ0(|g| + r ),

|z(g)| ≤ λ1(|g| + r ), (30)

|ż(g)| ≤ λ2(|g| + r ).

Proof: From

|g|2 ≤ √
2π |g|,

|k|2 ≤ √
2π |k|,

(31)

and the Cauchy–Schwarz inequality, applied to Equa-

tion (28),

|β(g)| ≤ |α||vT
0 |2|g − k|2 ≤

√
2π |α|(|g| + r ) (32)

from the bound |k| ≤ r .

From Equations (27) and (32),

|z(g)| ≤ M[|g| + |k| + |β(g)||J ( ˙̂x, ω̂)|],
≤ M[1 +

√
2π |α||J ( ˙̂x, ω̂)|](|g| + r ). (33)

From Equations (25), (32), and (33)

|ω̂||ż(g)| ≤ |d X (x̂, x̂ω̂; z(g), z(g)ω̂)|
+ |g − β J ( ˙̂x, ω̂) − k| (34)

≤ [B(|z(g)| + |z(g)ω̂|)]
+ [1 +

√
2π |α||J ( ˙̂x, ω̂)|](|g| + r )

≤ (2MB)[1 +
√

2π |α||J ( ˙̂x, ω̂)|](|g| + r ).

Therefore, from Equations (29), (32), (33), (34),

λ0 =
√

2π |α|,
λ1 = M[1 +

√
2π |α||J ( ˙̂x, ω̂)|], (35)

λ2 = λ1

|ω̂|M (1 + 2MB).

�

λ1 and λ2 can be significantly large due to the mag-

nitude of M , as will be shown in the example in Sec-

tion 11. M is a critical parameter that ultimately affects
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the size of the residual, r , needed to assure the bounds

required in the main theorem in Section 6.

5 A map and its properties

In the main approximation theorem, we will show that

the solution of the perturbation problem, represented

by Equation (21), is the fixed point of a particular con-

traction map. In this section, we will define the map

and establish some properties.

We begin by defining a subset of P , designated by

Nδ , as

Nδ = {g ∈ P : |g| ≤ δ}, (36)

where δ > 0. Following Stokes [14] we will define a

map S : Nδ → P in terms of two mappings

L : Nδ → R × P1,

T : R × P1 → P.
(37)

To define L , let g ∈ Nδ , then Lemma 5 assures us of

the existence of a unique β(g) satisfying Equation (26)

and a unique solution z(g) satisfying Equation (25).

Thus, define L : Nδ → R × P1 by

L(g) = (β(g), z(g)). (38)

Now define T : R × P1 → P by

T (β, z) = R(z, β). (39)

Finally, define S : Nδ → P by

S(g) = T (L(g)) = R(z(g), β(g)). (40)

Lemma 7. For g ∈ Nδ, g̃ ∈ Nδ there exist two func-
tions E1(δ), E2(δ) and two positive constants F1, F2

so that

|S(g)| ≤ E1(δ), (41)

|S(g) − S(g̃)| ≤ E2(δ) |g − g̃| ,

where

E1(δ) ≤ F1δ
2,

E2(δ) ≤ F2δ.
(42)

Proof: From Equations (40) and (23), we have

|S(g)| ≤ R0(z(g), β(g)), (43)

|S(g) − S(g̃)|
≤ R1(z(g), β(g), z(g̃), β(g̃))|z(g) − z(g̃)|
+R2(z(g), β(g), z(g̃), β(g̃))|β(g) − β(g̃)|.

By Cauchy–Schwarz, the fact that |vT
0 |2 = 1, and Equa-

tion (35)

|β(g) − β(g̃)| ≤ |α|
∫ 2π

0

|vT
0 (g − g̃)| dt,

≤ |α|[
∫ 2π

0

|g − g̃|2 dt]1/2, (44)

≤ λ0|g − g̃|.

From Lemma 5 and the definition of β(g), β (g̃) we

have∫ 2π

0

vT
0 (g − β(g)J ( ˙̂x, ω̂) − k) dt = 0,∫ 2π

0

vT
0 (g̃ − β(g̃)J ( ˙̂x, ω̂) − k) dt = 0.

(45)

Then, by subtracting,

∫ 2π

0

vT
0 [(g − g̃) − (β(g)−β(g̃))J ( ˙̂x, ω̂)] dt = 0.

(46)

Lemma 5 also shows that there exists a unique z̄ such

that

ω̂ ˙̄z = d X (x̂, x̂ω̂; z̄, z̄ω̂) + [(g − g̃) − (β(g)

− β(g̃))J ( ˙̂x, ω̂)]. (47)

But from Equation (25), z(g) − z (g̃) also satisfies

Equation (47), so that z̄ = z(g) − z (g̃) and from
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Equation (27)

|z(g)−z (g̃)| ≤ M | (g − g̃) − (β(g) − β (g̃)) J ( ˙̂x, ω̂)|,
≤ λ1|g − g̃|. (48)

Then Equation (41) follows from Equation (43) through

Equation (48). �

The specific forms for E1(δ) and E2(δ) are given in

Appendix A.2 as Equations (127) and (131), respec-

tively, as well as the selection of F1 and F2 as Equa-

tions (129) and (133), respectively. As functions of the

other parameters, E1(δ) and E2(δ) depend linearly on

K and B, but nonlinearly on λ0, λ1, and λ2 and thus

nonlinearly on M .

6 Main approximation theorem

In the main theorem, the constants F1, F2 are those

from Lemma 7

Theorem 1. If (a) (ω̂, x̂) is noncritical with respect to
Equation (5) in the sense of Definition 2, (b) δ is selected
so that

δ ≤ min{1/F1, 1/2F2, ω̂/4λ0}, (49)

and (c) r ≤ δ, see (9), (10), then there exists an exact
frequency, ω∗, and solution, x∗, of (5) such that

|x∗ − x̂ | ≤ 4λ1δ,

|ω∗ − ω̂| ≤ 2λ0δ, (50)

where λ0, λ1 are defined in Equation (35) and δ is de-
fined in Equation (36).

Proof: Let β and z be defined as in Equation (20).

By substituting Equation (20) into Equation (5) we

have Equation (21). Associated with Equation (21) we

consider Equation (25). We then define the set Nδ in

Equation (36) and consider the map S : Nδ → P de-

fined in Equation (40). From Equations (126), (127),

and (129) we have |S(g)| ≤ F1δ
2 for g ∈ Nδ . Further-

more, from Equations (130), (131), and (133) we have,

for g, g̃ ∈ Nδ , that |S(g) − S(g̃)| ≤ F2δ |g − g̃|. Now,

if we select δ as in Equation (49) then F1δ
2 ≤ δ and

F2δ ≤ 1/2, S maps Nδ to itself and is a contraction.

The last inequality that δ satisfies in Equation (49)

assures that β(g) satisfies Equation (24) by way of

Lemma 6, provided r satisfies r ≤ δ. Therefore, S has

a fixed point g∗ ∈ Nδ . This implies that there exists

a unique (β∗, z∗), z∗ is 2π -periodic, satisfying Equa-

tion (21). Then, from Equation (20), there exists a

unique (ω∗, x∗), x∗ is 2π -periodic, satisfying Equa-

tion (5). From Equation (20), with r ≤ δ,

|ω∗ − ω̂| ≤ |β∗| ≤ λ0(|g∗| + r ) ≤ 2λ0δ,

|x∗ − x̂ | ≤
∣∣∣∣ ω̂

ω̂ + β∗

∣∣∣∣|z∗| ≤ 2λ1(|g∗| + r ) ≤ 4λ1δ.

(51)

�

We need to introduce a note here on the relationship

between r and δ. In practice, the process of determining

them is iterative. We start by determining an approxi-

mate solution and the residual r . We then compute all

of the parameters that involve the approximate solution

and compute δ from Equation (49). We then compare r
against δ. If r ≤ δ we are finished, otherwise we have

to return and recompute another approximate solution

with possibly smaller residual r and iterate the process.

The author is not familiar with any result that guaran-

tees that at some point r ≤ δ, although he suspects that

this will eventually happen in most practical problems.

7 Approximating a solution and frequency

An approximate solution and frequency for Equa-

tion (5) can be developed by assuming a finite trigono-

metric polynomial of the form

x̂m = a2 cos t +
m∑

n=2

[a2n cos nt + a2n−1 sin nt] , (52)

where the sin t term has been dropped so that we can

estimate a1 = ω̂, the frequency. Computational expe-

rience has suggested that dropping a low-order har-

monic term provides a smaller residual estimate for

Equation (5).

Note that we have centered the approximate solution

about the origin, since we assumed X (0, 0) = 0. If we

set ā = (a1, a2, . . . , a2m) and

Em(t, ā) = a1
˙̂xm(t) − X (x̂m(t), x̂m(t − a1)), (53)
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then for a sufficiently fine mesh, specified by {ti : i =
1, 2, . . . , 2N }, in [0, 2π ], where

ti = 2i − 1

2N
π, (54)

the determining equations for ā can be written as (see

Urabe and Reiter [27])

F1(ā) = 1

N

2N∑
i=1

Em (ti , ā) sin ti = 0,

F2(ā) = 1

N

2N∑
i=1

Em (ti , ā) cos ti = 0,

F2n−1(ā) = 1

N

2N∑
i=1

Em (ti , ā) sin nti = 0,

F2n(ā) = 1

N

2N∑
i=1

Em (ti , ā) cos nti = 0,

(55)

for n = 2, . . . , m.

These equations give 2m equations in 2m un-

knowns. Standard numerical solvers, using, for exam-

ple, Newton’s method, for nonlinear equations can be

used to solve for ā. The number of harmonics, m, and

the quadrature index, N , can be selected independently.

Gilsinn [21] presents a vectorized algorithm for solving

for ā.

8 Estimating characteristic multipliers

In this section, we assume that the variational equation,

Equation (11), with respect to the approximate solution,

x̂(t), can be written in the form

ż(t) = Â(t)z(t) + B̂(t)z(t − ω̂), (56)

where Â(t) = Â(t + 2π ), B̂(t) = B̂(t + 2π ) and we

have reintroduced t to make the operator definitions

more transparent. Â, B̂ now include the scale factor

1/ω̂. Let Z (t, s) be the solution of Equation (56) such

that Z (s, s) = In, Z (t, s) = 0 for t < s where In is the

n2 identity matrix on Cn . The solution Z (t, s) is some-

times referred to as the “Fundamental Solution.” Using

the variation of constants formula for Equation (56),

Halanay [25] shows that the solution of Equation (56)

for the initial function φ ∈ Cω̂ is given by

z(t) = Z (t, 0)φ(0)+
∫ 0

−ω̂

Z (t, α+ω̂)B̂(α+ω̂)φ(α) dα.

(57)

Define the operator

(Uφ)(s) = z(s + 2π ), (58)

where φ ∈ Cω̂, s ∈ [−ω̂, 0]. The range of U is again

Cω̂. If there is a nontrivial solution z(t) of Equation (56)

such that z(t + 2π ) = ρz(t), then ρ is a characteris-

tic multiplier of Equation (56). If we combine Equa-

tion (57) with Equation (58) and note that z(α) = φ(α)

for α ∈ [−ω̂, 0], then the characteristic multipliers are

the eigenvalues of

(Uφ)(s) = Z (s + 2π, 0)φ(0)

+
∫ 0

−ω̂

Z (s + 2π, α+ ω̂)B̂(α + ω̂)φ(α) dα,

(59)

where φ ∈ Cω̂. Halanay [25] shows that we can restrict

s ∈ [−ω̂, 0]. This operator is sometimes referred to as

the Monodromy Operator.

8.1 Estimating the fundamental solution

Since a detailed discussion of the algorithm for esti-

mating the fundamental solution is given in Gilsinn

and Potra [28], we will only outline the major steps

here. A collocation method based on spectral meth-

ods will be used here. Although collocation methods

for delay differential equations are well known (see En-

gelborghs et al. [12]), one of the difficulties in applying

them arises in estimating the differentiation matrix on

the left-hand side in a sufficiently rapid manner and in

such a way that it maintains stability in the presence

of roundoff. For a discussion of differentiation matri-

ces see, for example, Baltensperger and Berut [29],

Bayliss et al. [30], Solomonoff [31], Trefethen [32]

and Welfert [33]. In this paper, we use a collocation

method motivated by the pseudospectral methods of

Gottlieb and Turkel [34], and Gottlieb et al. [35], and

Trefethen [32]. Trefethen [32] points out that the reason

spectral methods are so accurate for smooth functions
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is that their Fourier transforms decay rapidly. He also

notes that this implies that aliasing errors introduced by

discretization are small. In this method, the differentia-

tion matrix is known exactly for Lagrange polynomials

evaluated at Chebyshev extreme points. To compute the

differentiation matrix in the example in Section 11 we

used a function, called “cheb”, given in Trefethen [32],

which produced a matrix with stability in the presence

of roundoff.

The method of steps is used here to solve the varia-

tional equation on [0, 2π ]. To begin, we find a positive

integer q so that qω̂ ≥ 2π . Then, we consider the set of

intervals [0, ω̂], [ω̂, 2ω̂], . . . , [(q − 1)ω̂, qω̂]. On the

first interval, we solve

ż1(t) = Â(t)z1(t) + B̂z1(t − ω̂), (60)

where z1(t − ω̂) = φ(s) for some initial function φ ∈
Cω̂, s = t − ω̂. To compute the fundamental solution

on the first interval, we solve n problems with φ(s) = 0

and n initial conditions z1(0) = ei , i = 1, 2, . . . , n
where ei = (0, 0, . . . , 1, . . . , 0) and 1 is in the i-th po-

sition. We then continue for j = 2, . . . , q and solve n
problems at the j-th step

ż j (t) = Â(t)z j (t) + B̂z j (t − ω̂), (61)

where z j (( j − 1)ω̂) = z j−1(( j − 1)ω̂). The final fun-

damental solution is the concatenation of all of the

z j (t), j = 1, 2, . . . , q .

The solution at each step can be computed by a col-

location procedure using Chebyshev points on [−1, 1].

To do this, each equation in the step sequence, j =
1, 2, . . . , q is transformed by

t = ω̂

2
η + (2 j − 1)

2
ω̂ (62)

to a sequence of ordinary differential equations

u′
j (η) = ω̂

2
Â j (η)u j (η) + ω̂

2
B̂ j (η)u j−1(η), (63)

where, for t ∈ [( j − 1)ω̂, jω̂],

u j (−1) = u j−1(1), u j (η) = z j (t),

Â j (η) = Â(t), B̂ j (η) = B̂(t), (64)

u j−1(η) = z j (t − ω̂).

Then, an N -degree Lagrange polynomial is interpo-

lated through the N + 1 Chebyshev extreme points

ηk = cos

(
kπ

N

)
, k = 0, 1, . . . , N . (65)

A sum of Lagrange polynomials with N unknown

coefficients is substituted into the ordinary differential

equation, represented by Equation (63), and the coeffi-

cients are solved for by matrix algebra. There are sets

of coefficients for each of the time step intervals. The

final solution on [0, 2π ] is the concatenation in the time

domain of the q sets of Lagrange polynomials. In par-

ticular, Z (t, α) is estimated by the concatenation of q
matrices Zi (t, α), i = 1, 2, . . . , q, where each can be

written in the form

Zi (t, α) =
N∑

k=0

W (i)
k lk

(
2

ω̂
t − 2α + (2i − 1)ω̂

ω̂

)
. (66)

For full details and proof of convergence, see Gilsinn

and Potra [28].

8.2 Estimating the monodromy operator eigenvalues

To approximate the monodromy operator, represented

by Equation (59), we will require a quadrature rule that

satisfies

P+1∑
k=1

wk f (sk) →
∫ 0

−ω̂

f (s) ds (67)

as P → ∞, for each continuous function f ∈ Cω̂. The

rule is satisfied if

P+1∑
k=1

|wk | ≤ Q, (68)

for some Q > 0 and P = 1, 2, . . . . This is satisfied

by, for example, Trapezoidal or Simpson rules.

Let −ω̂ = s1 < s2 < · · · < sP+1 = 0, and define

(Uφ)(s) = Z (s + 2π, 0)φ(0)

+
P+1∑
k=1

wk Z (s+ 2π, sk + ω̂)B(sk + ω̂)φ(sk)

(69)
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for φ ∈ Cω̂.

Then, for each si ∈ [−ω̂, 0],

(Uφ)(si ) = Z (si + 2π, 0)φ(0)

+
P+1∑
j=1

w j Z (si +2π, s j +ω̂)B(s j + ω̂)φ(s j ).

(70)

Since sP+1 = 0, Equation (70) can be rewritten as

(Uφ) (si ) =
P∑

j=1

w j Z (si + 2π, s j + ω̂)B(s j + ω̂)φ(s j )

+ (Z (si + 2π, 0) + wP+1 Z (si

+ 2π, ω̂)B(ω̂))φ(sP+1) , (71)

where Z (s, α) is the fundamental matrix of Equa-

tion (60). Equation (71) can be put in matrix form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Uφ)(s1)

...

(Uφ)(si )

...

(Uφ)(sP+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1 · · · U1, j · · · U1,P+1

... · · ·
... · · ·

...

Ui,1 · · · Ui, j · · · Ui,P+1

... · · ·
... · · ·

...

UP+1,1 · · · UP+1, j · · · UP+1,P+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(72)

where the block elements for i = 1, . . . , P + 1, j =
1, . . . , P are Ui, j = w j Z (si + 2π, s j + ω̂)B(s j + ω̂).

The block elements in the last column of the matrix

are given by Ui,P+1 = Z (si + 2π, 0) + wP+1 Z (si +
2π, ω̂)B(ω̂) for i = 1, . . . , P + 1. The relevant

eigenvalue problem becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1 · · · U1, j · · · U1,P+1

... · · · ... · · · ...

Ui,1 · · · Ui, j · · · Ui,P+1

... · · · ... · · · ...

UP+1,1 · · · UP+1, j · · · UP+1,P+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(s1)

...

φ(si )

...

φ(sP+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(73)

A convergence proof of the eigenvalues is also given

in Gilsinn and Potra [28].

9 Determining solutions of the adjoint equation
associated with multipliers of the variational
equation

In order to estimate α in Equation (29), let t ∈ [0, 2π ]

and ψ be the initial function defined on [2π, 2π + ω̂].

The adjoint equation is given by

ẏ(t) = −y(t) Â(t) − y(t + ω̂)B̂(t + ω̂), (74)

where y(t) is a row vector. Ordinarily, solving the ad-

joint equation would require a “backward” integration.

However, Halanay [25] showed that the solution of the

adjoint on [0, 2π ] is given in row vector form by

y(t) = ψ(2π )Z (2π, t)

+
∫ 2π+ω̂

2π

ψ(α)B̂(α)Z (α − ω̂, t) dα. (75)

The significance of this representation is that only a

“forward” integration is required to solve for the fun-

damental solution, Z , of Equation (56). This allows us

to directly use the collocation algorithm developed in

Section 8.1.
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Let φ̃(s) be a continuous row vector function defined

on [−ω̂, 0]. Then define the operator

(
Ũ φ̃

)
(s) = φ̃(−ω̂)Z (2π, s + ω̂)

+
∫ 0

−ω̂

φ̃(α)B̂(α+ω̂)Z (2π + α, s + ω̂) dα

(76)

s ∈ [−ω̂, 0]. An associated operator Ṽ , defined on

[2π, 2π + ω̂], is given in Halanay [25] as

(Ṽ ψ)(s) = y(s − 2π, ψ) = ψ(2π )Z (2π, s − 2π )

+
∫ 2π+ω̂

2π

ψ(α)B̂(α)Z (α − ω̂, s − 2π ) dα.

(77)

Halanay [25] also showed that an eigenvalue ρ of Ṽ is

associated with a 1/ρ multiplier of the adjoint equa-

tion, the eigenvalues of U, Ũ , Ṽ are all the same,

and the eigenvectors of Ũ , Ṽ are related by φ̃(s) =
ψ(s + 2π + ω̂), s ∈ [ω̂, 0]. It turns out then, to solve

the adjoint equation in row form on [0, 2π ], we need

only compute the significant eigenvalue and eigenvec-

tor of Ũ . Therefore, using quadratures, we discretize

Ũ by setting −ω̂ = s1 < · · · < sP+1 = 0, si+1 − si =
ω̂/P, i = 1, . . . , P . The j-th block column is given by

(
Ũ φ̃

)
(s j ) = [

φ̃(s1), · · · , φ̃(si ), · · · , φ̃(sP+1)
]

(78)⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z (2π, s j + ω̂) + B̂(s1 + ω̂)Z (s1 + 2π, s j + ω̂)w j

...

B̂(si + ω̂)Z (si + 2π, s j + ω̂)w j

...

B̂(sP+1 + ω̂)Z (sP+1 + 2π, s j + ω̂)w j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvector φ̃ of the matrix on the right, associ-

ated with the multiplier of the variational equation, is

computed and substituted into the discretized form of

Equation (75) to give the value of y(t) on the par-

tition 0 = t1 < · · · < tO+1 = 2π, ti+1 − ti = 2π/O ,

i = 1, . . . , O , as

y(t j ) = [
φ̃(s1), . . . , φ̃(si ), . . . , φ̃(sP+1)

]
(79)⎡⎢⎢⎢⎢⎢⎢⎣

Z (2π, t j ) + B̂(s1 + 2π + ω̂)Z (s1 + 2π, t j )w j
...

B̂(si + 2π + ω̂)Z (si + 2π, t j )w j
...

B̂(sP+1 + 2π + ω̂)Z (sP+1 + 2π, t j )w j

⎤⎥⎥⎥⎥⎥⎥⎦ ,

using φ̃(s) = ψ (s + 2π + ω̂) , s ∈ [−ω̂, 0].

We then can estimate α by

α =
[

O+1∑
j=1

w j y(t j )J
(

˙̂x, ω̂
) (

t j
)]−1

. (80)

Note that α may be complex but in the final error esti-

mates we only use |α|. See Appendix A.2, Section 12

and Gilsinn [20] for further details.

10 Estimating the M parameter

From Halanay [25], the variation of constants formula

for

ż(t) = Â(t)z(t) + B̂(t)z(t − ω̂) + f (t), (81)

where t ∈ [0, 2π ], is given by

z(t) = Z (t, 0)φ(0)+
∫ 0

−ω̂

Z (t, α+ω̂)B̂(α+ω̂)z(α) dα

+
∫ t

0

Z (t, α) f (α) dα. (82)

The 2π -periodic initial function condition with s ∈
[−ω̂, 0] is

φ(s) = Z (s + 2π, 0)φ(0)

+
∫ 0

−ω̂

Z (s + 2π, α + ω̂)B̂(α+ω̂)φ(α) dα

+
∫ s+2π

0

Z (s + 2π, α) f (α) dα. (83)

The first step in computing M involves relating φ to

f . Let |φ| = sup−ω̂≤s≤0 |φ(s)| and similarly for | f | on
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[0, 2π ]. To eliminate φ(0) from Equation (83), set s =
0 in Equation (83) and solve for φ(0) as

φ(0) =
∫ 0

−ω̂

(I − Z (2π, 0))−1 Z (2π, α + ω̂)

× B̂(α + ω̂)φ(α) dα

+
∫ 2π

0

(I − Z (2π, 0))−1 Z (2π, α) f (α) dα.

(84)

Substitute Equation (84) into Equation (83) and com-

bine terms as

φ(s) =
∫ 0

−ω̂

[
Z (s+2π, 0)(I−Z (2π, 0))−1 Z (2π, α+ω̂)

+ Z (s + 2π, α + ω̂)] B̂(α + ω̂)φ(α) dα

+
∫ 2π

0

[
Z (s + 2π, 0)(I − Z (2π, 0))−1 Z (2π, α)

+ Z (s + 2π, α)
]

f (α) dα, (85)

where s ∈ [−ω̂, 0].

Let −ω̂ = s1 < s2 < · · · < sP+1 = 0, si+1 − si =
ω̂
P , i = 1, . . . , P , and 0 = t1 < t2 < · · · < tO+1 =
2π, t j+1 − t j = 2π

O , j = 1, . . . , O . We can discretize

Equation (85) by setting

φ (si ) =
P+1∑
j=1

H1(i, j)φ(s j ) +
O+1∑
k=1

H2(i, j) f (tk) , (86)

where v j , j = 1, . . . , P + 1, and uk, k = 1, . . . , O +
1 are appropriate quadrature coefficients, and

H1(i, j) = v j [Z (si + 2π, 0)(I − Z (2π, 0))−1 Z (2π, s j

+ ω̂) + Z (si + 2π, s j + ω̂)]B̂(s j + ω̂),

H2(i, j) = uk
[
Z (si + 2π, 0) (I − Z (2π, 0))−1 Z

× (2π, tk) + Z (si + 2π, tk)
]
. (87)

In vector matrix form Equation (86) can be written⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ = H1

⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ + H2

⎛⎜⎝ f (t1)
...

f (tO+1)

⎞⎟⎠ .

(88)

Using a generalized inverse we can solve for the φ

vector with minimum norm by

⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ = (I − H1)+ H2

⎛⎜⎝ f (t1)
...

f (tO+1)

⎞⎟⎠ . (89)

In the second step, the value of φ(0), given by Equa-

tion (84), is substituted into Equation (82) and terms

combined to give

z(t) =
∫ 0

−ω̂

[
Z (t, 0)(I − Z (2π, 0))−1 Z (2π, α + ω̂)

+ Z (t, α + ω̂)] B̂(α + ω̂)φ(α) dα

+
∫ 2π

0

[
Z (t, 0)(I − Z (2π, 0))−1 Z (2π, α)

+ Z (t, α)] f (α) dα. (90)

This can be discretized by setting

z (tk) =
P+1∑
i=1

H3(k, i)φ (si ) +
O+1∑
j=1

H4(k, j) f (tk) , (91)

where

H3(k, i) = vi [Z (tk, 0) (I −Z (2π, 0))−1 Z (2π, si +ω̂)

+Z (tk, si + ω̂)]B̂ (si + ω̂) , (92)

H4(k, j) = u j [Z (tk, 0) (I − Z (2π, 0))−1 Z
(
2π, t j

)
+Z (tk, t j )].

In vector matrix form, Equation (91) can be written

⎛⎜⎝ z(t1)
...

z(tO+1)

⎞⎟⎠ = H3

⎛⎜⎝ φ(s1)
...

φ(sP+1)

⎞⎟⎠ + H4

⎛⎜⎝ f (t1)
...

f (tO+1)

⎞⎟⎠.

(93)
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By substituting Equation (89) into Equation (93) we

have⎛⎜⎝ z(t1)
...

z(tO+1)

⎞⎟⎠=[
H3 (I −H1)+ H2+H4

] ⎛⎜⎝ f (t1)
...

f (tO+1)

⎞⎟⎠ .

(94)

Therefore

|z| ≤ M | f |, (95)

where M = ‖H3(I − H1)+ H2 + H4‖∞.

11 Application to a Van der Pol
equation with delay

In this section, we will apply the main theorem to ap-

proximate the limit cycle of the Van der Pol equation

with unit delay, given by

ẍ + λ(x(t − 1)2 − 1)ẋ(t − 1) + x = 0. (96)

Since the period of the limit cycle is unknown, we in-

troduce an unknown frequency by substituting t/ω for

t to obtain

ω2 ẍ + ωλ(x(t − ω)2 − 1)ẋ(t − ω) + x = 0, (97)

for t ∈ [0, 2π ]. To compare with an approximation re-

sult obtained in Stokes [15], we take λ = 0.1.

The first step was to estimate an approximate 2π -

periodic solution, frequency, and residual to Equa-

tion (97). By using Galerkin’s method described in

Section 7, the following approximate solution was ob-

tained

x̂(t) = 2.0185 cos(t)

+ 2.5771 × 10−3 sin(2t) + 2.5655 × 10−2 cos(2t)

+ 1.0667 × 10−4 sin(3t) − 5.2531 × 10−4 cos(3t)

− 7.1780 × 10−6 sin(4t) − 2.2043 × 10−6 cos(4t),

ω̂ = 1.0012. (98)

where we have displayed only the first few harmonics.

This solution was estimated based on 11 harmonics,

40,000 sampled points over [0, 2π ], and 100 Cheby-

shev extreme points, represented by Equation (65).

The residual was estimated by substituting (ω̂, x̂) from

Equation (98) into Equation (97) and finding the max-

imum of the absolute values of the residuals obtained

in the interval [0, 2π ]. The result was r = 3.1086 ×
10−15. This residual is significantly better than the one

given in Stokes [15]. The distribution of the residu-

als for the current case is shown in Fig. 1. The phase

plot of the approximate solution is shown in Fig. 2.

For t ∈ [0, 2π ], we can then immediately estimate

|x̂ | ≤ 2.0436, | ˙̂x | ≤ 2.0279, | ¨̂x | ≤ 2.1165.

In the second step, the values of the constants B and

K were obtained in a straightforward manner from the

Fig. 1 Residual error of approximate solution for the Van der
Pol equation

0 1 2

0

0.5

1

1.5

2

Phase Plot of Approximate Solution

X

d
X

/d
t

Fig. 2 Phase plot of approximate solution for the Van der Pol
equation
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variational equation about the approximate frequency

and solution given by

ż(t) = Â(t)z(t) + B̂(t)Z (t − ω̂), (99)

where

z =
(

z1

z2

)
, Â(t) =

(
0 1

−1/ω̂2 0

)
,

B̂(t) =(
0 0

−2(λ/ω̂)x̂1(t−ω̂)x̂2(t−ω̂) (λ/ω̂)(1− x̂1(t−ω̂)2)

)
.

We use the fact that the natural norm of a matrix, H ,

associated with a vector norm |x | = max1≤i≤n |xi | is

|H | = max1≤i≤n
∑n

j=1 |hi j |. With this definition it is

not hard to show that

|d X (x̂ ; φ)| ≤

∣∣∣∣∣∣∣∣∣
0

−1/ω̂2 − 2(λ/ω̂)x̂1(t − ω̂)

1

x̂2(t − ω̂)(λ/ω̂)(1 − x̂1(t − ω̂)2)

∣∣∣∣∣∣∣∣∣ |φ|,

≤ 2.3776|φ|. (100)

Therefore, for λ = 0.1, B = 2.3776. Working conser-

vatively within the domain D = {x ∈ C[0, 2π ] : |x −
x̂ | ≤ 1} it is not hard to show that

|d X (x̂ω̂ + ψ1; φω̂) − d X (x̂ω̂ + ψ2; φω̂)|
≤ (6λ/ω̂)(1 + |x̂ |)|ψ1 − ψ2||φ|. (101)

Then from Equations (98) and (101) we can estimate

K = 1.8157 and, from Equation (16), we can estimate

|J ( ˙̂x, ω̂)| ≤ 2.7546.

Next, we can estimate the characteristic multipli-

ers of the variational equation relative to the func-

tion x̂(t). For the quadrature steps in Sections 8 and

9, P and O were taken as 200 and 1200, respectively.

These gave mesh widths of about 1/200 on both [−ω̂, 0]

and [0, 2π ]. Using the method of Section 8, we com-

puted two simple conjugate eigenvalues with magni-

tude 1.0430. All of the other eigenvalues have magni-

tudes near zero. These are, of course, the eigenvalues of

the monodromy operator U . The fundamental matrix

Z in Equation (59) is computed using the collocation

method of Section 8.1 (See Fig. 3). The monodromy
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Fig. 3 Fundamental matrix for the variational equational relative
to the approximate solution for the Van der Pol equation
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Fig. 4 Eigenvalues for the Monodromy operator

operator is formulated as in Section 8.2. The eigenval-

ues of the monodromy operator U are plotted in Fig. 4.

Note that the significant complex conjugate eigenval-

ues are near the unit circle but are not exactly on it.

This is due to the fact that Equation (98) is only an ap-

proximate solution. The eigenvalues are complex con-

jugates because the left-hand matrix in Equation (73) is

real and nonsymmetric since the fundamental solution

Z is nonsymmetric (See Fig. 3). We can confirm that

the eigenvalues of the operator Ũ are the same as those

of U . Graphically, this is shown in Fig. 5.

In the next step, we estimate the parameter α us-

ing the methods of Section 9. The solution of the ad-

joint to the variational equation was computed using

Equation (79) and the parameter α in Equation (29) was
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estimated by simple quadrature, with 
 = 2π/O for

a sufficiently large mesh, 0 = t1 < t2 < · · · < tO+1 =
2π , as

α =
[



∣∣∣∣∣O+1∑
i=1

y(ti )J ( ˙̂x, ω̂)(ti )

∣∣∣∣∣
]−1

. (102)

The absolute value of α is estimated as 3.3547.

If we now apply the methods of Section 10, using

Â(t) and B̂(t) defined in Equation (99), we can es-

timate M = 2.7618 × 102. These results allow us to

estimate λ0, λ1 and λ2 in Lemma 6 as λ0 = 8.4091,

λ1 = 6.6736 × 103, and λ2 = 3.1720 × 104. Note the

magnitude of the parameters.

With the estimates above, we can compute

F1 = 2.5941 × 109, F2 = 1.0798 × 1010 from Equa-

tions (129) and (133), respectively. Then, we compute

δ = 4.6305 × 10−11 from Equation (49). Then, F1δ
2 =

5.5623 × 10−12 is less than δ and F2δ = 0.5. Further-

more, r < δ. Therefore, the conditions of the main the-

orem are satisfied and we can conclude from Theorem

1 that there exists an exact solution x∗ and an exact

frequency ω∗ of Equation (97) such that |x∗ − x̂ | ≤
1.2361 × 10−6 and |ω∗ − ω̂| ≤ 7.7877 × 10−10.

12 Conclusions

Although there seem to be a large number of param-

eters to be computed and inequalities to be tested in

order to produce the final error estimates, the process

is feasible. All of the steps can be completed within a

single code. A preliminary code, centered around the

example in Section 11, will be published as a report

of the National Institute of Standards and Technology

(NIST) in Gilsinn [36].

From the computational point of view, the longest

compute times involve the construction of the block

matrices Equations (72) and (78). Computing the ap-

proximate solution and the fundamental solution of

the variational equation are relatively fast compared to

these matrix constructions. It behooves anyone wish-

ing to apply the methods of this paper to spend some

effort vectorizing the matrix construction algorithms

in Sections 8.2 and 9 as much as possible or linking to

compiled portions of code in C++ or FORTRAN.

The parameter M in the Fredholm Lemma 3 is a

significant parameter. From the example above, it is

clear that it would be desirable to obtain as small a

value for that M as possible, since its magnitude affects

the λi , i = 1, 2 parameters and λ1 appears in the final

error estimates. In particular, in the example above,

the effect of M causes a very fine residual r for the

approximate solution, represented by Equation (98),

to produce a pessimistic error estimate between the

approximate solution and the exact solution in the end.

From Equation (35), the critical parameter λ1 is linearly

dependent on M .

As long as a delay differential equation with a sin-

gle constant delay can be put into the form of Equa-

tion (5), the methods developed in this paper should

be directly applicable. Although Stokes’ result in [14]

assures us that the main approximation result is true

in the case of general functional equations, develop-

ing the specific bounds and Lipschitz conditions for

R(z, β) in Appendix A.1 is a very detailed and nontriv-

ial construction for systems with multiple or functional

delays. Furthermore, the computational algorithms re-

quire some significant modifications. Some of the dif-

ficulties can be seen in a simple case of two constant

delays. Introducing an unknown frequency does not

produce a simple equation similar to Equation (5). Ex-

tra terms arise in the arguments of the x function that

involve the difference between the maximum of the two

delays and each individual delay. One has to follow the

details of the steps in the paper to determine the im-

pact on the various parameters and inequalities. Also,

developing the computational algorithms requires the

proper handling of these details. It is not to say that the

modifications are not feasible, but just to note that they

will take some effort.
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Appendix A.1: Bounds and Lipschitz condition for
R(z, β)

In this section, we give a proof of Lemma 4. To begin,

a lengthy, but direct, calculation shows

R(z, β)

=
∫ 1

0

[
X1

(
x̂ + s

ω̂

ω
z, x̂ω̂ + s(x̂ω − x̂ω̂) + s

ω̂

ω
zω

)
.

−X1(x̂, x̂ω̂)

]
ω̂

ω
zds

+
∫ 1

0

[
X2

(
x̂ + s

ω̂

ω
z, x̂ω̂ + s (x̂ω − x̂ω̂) + s

ω̂

ω
zω

)
−X2(x̂, x̂ω̂)

]
ω̂

ω
zωds

+
∫ 1

0

[
X2

(
x̂ + s

ω̂

ω
z, x̂ω̂ + s(x̂ω − x̂ω̂) + s

ω̂

ω
zω

)
−X2(x̂, x̂ω̂)

](
x̂ω − x̂ω̂

)
ds

+
(

ω̂

ω
− 1

)
X1(x̂, x̂ω̂)z +

(
ω̂

ω
− 1

)
X2(x̂, x̂ω̂)zω̂

+ [
X2 (x̂, x̂ω̂) (x̂ω − x̂ω̂) + β X2 (x̂, x̂ω̂) ˙̂x ω̂

]
+ ω̂

ω
X2 (x̂, x̂ω̂) (zω − zω̂) . (103)

From

x̂ω − x̂ω̂ =
∫ 1

0

˙̂x (t − ω̂ − sβ) (−β) ds (104)

we have

|x̂ω − x̂ω̂| ≤ |β|| ˙̂x |. (105)

Similarly

|zω − zω̂| ≤ |β| |ż| . (106)

Also, from

(x̂ω− x̂ω̂) + β ˙̂x ω̂

= −β

∫ 1

0

[ ˙̂x ω̂(t − ω̂ − sβ) − ˙̂x ω̂(t − ω̂)]ds

= β2

∫ 1

0

∫ 1

0

¨̂x(t − ω̂ − usβ)s du ds

(107)

we have

|(x̂ω − x̂ω̂) + β ˙̂x ω̂| ≤ β2

2
| ¨̂x | (108)

Using Equations (103) through (108), along with

Equations (3) and (4), we have

|R(z, β)| ≤ R(z, β), (109)

where

R(z, β) = 2K
∣∣∣∣ ω̂ω

∣∣∣∣2

|z|2 + 2
|β||z|
|ω| (|ω̂| + |β|)

+ β2

2
(K| ˙̂x |2 + B| ¨̂x |) + B

∣∣∣∣ ω̂ω
∣∣∣∣ |β| |ż|

(110)

To establish the Lipschitz condition, we start with

the inequality

|d X (x̂ + a11, x̂ω̂ + a12; b11, b12)

− d X (x̂ + a21, x̂ω̂ + a22; b21, b22) |
≤ K (|b11| + |b12|) (|a11 − a21| + |a12 − a22|)

+K (|a12| + |a22|) (|b11 − b21| + |b12 − b22|)
+B (|b11 − b21| + |b12 − b22|) . (111)

We need to define some functions that will help sim-

plify the relations somewhat. Let

γ = sβ + (1 − s)β̃,

q = sz + (1 − s)z̃, (112)

q̇ = sż + (1 − s)˙̃z,

for 0 ≤ s ≤ 1, and define

ψ1(q, γ ) = x̂ + ω̂

ω̂ + γ
q,

ψ2(q, γ ) = x̂ω̂+γ + ω̂

ω̂ + γ
qω̂+γ ,

φ1(q, γ ) = − ω̂

(ω̂ + γ )2
q,

(113)

φ2(q, γ ) = −
[

˙̂x ω̂+γ + ω̂

ω̂ + γ
qω̂+γ

]
− ω̂

(ω̂ + γ )2
q̇ω̂+γ .
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Since we have earlier chosen β, β̃ so that

ω̂ + β ≥ ω̂

2
,

ω̂ + β̃ ≥ ω̂

2
,

(114)

it is easy to see that

∣∣∣∣ ω̂

ω̂ + γ

∣∣∣∣ ≤ 2. (115)

From Equation (112) we have the following integrals

∫ 1

0

|q|2ds ≤ 1

3
(|z| + |z̃|)2,∫ 1

0

|γ |ds ≤ 1

2
(|β| + |β̃|),∫ 1

0

|q|ds ≤ 1

2
(|z| + |z̃|),∫ 1

0

|γ ||q|ds ≤ 1

3
(|β| + |β̃|)(|z| + |z̃|), (116)∫ 1

0

|q̇||q|ds ≤ 1

3
(|ż| + | ˙̃z|)(|z| + |z̃|),∫ 1

0

|q̇||γ |ds ≤ 1

3
(|ż| + | ˙̃z|)(|β| + |β̃|),∫ 1

0

|q̇|ds ≤ 1

2
(|ż| + | ˙̃z|).

Define the function

F(z, β) = X

(
x̂ + ω̂

ω̂ + β
z, x̂ω̂+β + ω̂

ω̂ + β
zω̂+β

)
.

(117)

Taking partial derivatives of Equation (117),

d1 F(z, β; y)

= ω̂

ω̂ + β
d X

×
(

x̂ + ω̂

ω̂ + β
z, x̂ω̂+β + ω̂

ω̂ + β
zω̂+β ; y, yω̂+β

)
,

d2 F(z, β; η)

= ηd X

×
(

x̂ + ω̂

ω̂ + β
z, x̂ω̂+β + ω̂

ω̂ + β
zω̂+β ;

(118)

− ω̂

(ω̂ + β)2
z, −

[
˙̂x ω̂+β + ω̂

ω̂ + β
żω̂+β

]
− ω̂

(ω̂ + β)2
zω̂+β

)
,

d1 F(0, 0; y) = d X (x̂, x̂ω̂; y, yω̂) ,

d2 F(0, 0; η) = ηd X (x̂, x̂ω̂; 0, − ˙̂x ω̂).

From the definition of R(z, β) and Equation (117) we

have

R(x, β) − R(z̃, β̃) = F(z, β) − F(z̃, β̃)

− d2 F(0, 0; β − β̃)

−d1 F(0, 0; z − z̃). (119)

From the definition of γ and q in Equation (112) we

define the derivative with respect to s as

ds F(q, γ ; ds)

= [d1 F(q, γ ; z − z̃)

+ d2 F(q, γ ; β − β̃)] ds. (120)

By the Fundamental Theorem of Calculus

∫ 1

0

ds F(q, γ ; ds) = F(z, β) − F(z̃, β̃). (121)

We can then write, using Equations (113) and (118),

R(z, β) − R(z̃, β̃)

=
∫ 1

0

[d1 F(q, γ ; z − z̃) − d1 F(0, 0; z − z̃)]ds

+
∫ 1

0

[d2 F(q, γ ; β − β̃) − d2 F(0, 0; β − β̃)]ds
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=
∫ 1

0

[d X (ψ1(q, γ ), ψ2(q, γ ); ψ1(z, γ )

− ψ1(z̃, γ ), ψ2(z, γ ) − ψ2(z̃, γ ))

− d X (ψ1(0, 0), ψ2(0, 0); ψ1(z, 0)

− ψ1(z̃, 0), ψ2(z, 0) − ψ2(z̃, 0))]ds

+
∫ 1

0

[ d X (ψ1(q, γ ), ψ2(q, γ );

× (β − β̃)φ1(q, γ ), (β − β̃)φ2(q, γ )

− d X (ψ1(0, 0), ψ2(0, 0); (β − β̃)φ1(0, 0),

× (β − β̃)φ2(0, 0))]ds. (122)

From Equation (113) we note that ψ1(0, 0) = x̂ and

ψ2(0, 0) = x̂ω̂.

Then, using Equations (111) through (122) it is pos-

sible to show with some effort that

R1(z, β, z̃, β̃) = 8K(|z| + |z̃|)

+
(

2K| ˙̂x | + B
|ω̂|

)
(|β| + |β̃|),

R2(z, β, z̃, β̃) = K
3

(
16

|ω̃| + 4

)
(|z| + |z̃|)2

+
(

2K| ˙̂x | + B
(

1 + 2

|ω̂|
))

× (|z| + |z̃|) + 2B
|ω̂| (|ż| + | ˙̃z|)

+16K
3|ω̂| (|z| + |z̃|)(|ż| + | ˙̃z|)

+B| ¨̂x |
2

(|β| + |β̃|). (123)

�

Appendix 2: Bounds and Lipschitz conditions for
S(g)

Let g ∈ Nδ , then, from Lemma 7 and the selection of

β so that ω̂ + β(g) ≥ ω̂
2

, we have∣∣∣∣ ω̂

ω̂ + β(g)

∣∣∣∣ ≤ 2, (124)

and

|S(g)| = |R0(z(g), β(g))|

≤ 2K
∣∣∣∣ ω̂

ω̂ + β(g)

∣∣∣∣2

|z(g)|2

+ 2
|β(g)||z(g)|
|ω̂ + β(g)| (|ω̂| + |β(g)|)

+ β(g)2

2
(K| ˙̂x |2 + B| ¨̂x |)

+B
∣∣∣∣ ω̂

ω̂ + β(g)

∣∣∣∣|β(g)||ż(g)|. (125)

If we combine Equations (35), (124), and (125) we

have

|S(g)| ≤
{

32Kλ2
1 + 16λ0λ1

|ω̂| (|ω̂| + 2λ0δ)

+ 2λ2
0(K| ˙̂x |2 + B| ¨̂x |) + 8Bλ0λ2

}
δ2. (126)

Set

E1(δ) =
{

32Kλ2
1 + 16λ0λ1

|ω̂| (|ω̂| + 2λ0δ)

+ 2λ2
0(K| ˙̂x |2 + B| ¨̂x |) + 8Bλ0λ2

}
δ2. (127)

and let F1 be any constant such that

F1 ≥ 32Kλ2
1 + 16λ0λ1

|ω̂| (|ω̂| + 2λ0δ)

(128)+ 2λ2
0(K| ˙̂x |2 + B| ¨̂x |) + 8Bλ0λ2.

Since the right-hand side of Equation (128) is not

independent of δ we can use the fact that we need to

select δ ≤ ω̂/4λ0 in Equation (49) to set, since ω̂ is

taken as positive,

F1 = 32Kλ1
2 + 24λ0λ1

+ 2λ0
2(K| ˙̂x |2 + B| ¨̂x |) + 8Bλ0λ2. (129)

Now let g, g̃ ∈ Nδ and again set r = δ. Then, from

Equations (35), (41), and (123) and, choosing |g| ≤ δ,
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we have, with some algebra,

|S(g) − S (g̃)|

≤
[
λ1

{
8K (|z(g)| + |z (g̃)|)

+
(

2K| ˙̂x | + B
|ω̂|

)
(|β(g)| + |β (g̃)|)

}
+ λ0

{K
3

(
16

|ω̂| + 4

)
(|z(g)| + |z (g̃)|)2

+
(

2K
∣∣ ˙̂x

∣∣ + B
(

1 + 2

|ω̂|
))

(|z(g)| + |z (g̃)|)

+ 2B
|ω̂| (|ż(g)| + |ż (g̃)|)

+ 16K
3 |ω̂| (|z(g)| + |z (g̃)|) (|ż(g)| + |ż (g̃)|)

+ B
∣∣ ¨̂x

∣∣
2

(|β(g)| + |β (g̃)|)
}]

|g − g̃|

≤
[
λ1

{
32Kλ1 + 4λ0

(
2K

∣∣ ˙̂x
∣∣ + B

|ω̂|
) }

(130)

+ λ0

{
16λ0

2

3

(
16

|ω̂| + 4

)
δ

+ 4λ1

(
2K| ˙̂x | + B

(
1 + 2

|ω̂|
))

+ 8Bλ2

|ω̂| + 256Kλ1λ2

3 |ω̂| δ + 2B| ¨̂x |λ0

}]
δ |g − g̃| .

Finally, we set

E2(δ) =
[
λ1

{
32Kλ1 + 4λ0

(
2K

∣∣ ˙̂x
∣∣ + B

|ω̂|
) }

+ λ0

{
16λ2

0

3

(
16

|ω̂| + 4

)
δ

+ 4λ1

(
2K

∣∣ ˙̂x
∣∣ + B

(
1 + 2

|ω̂|
))

+ 8Bλ2

|ω̂| + 256Kλ1λ2

3 |ω̂| δ + 2B| ¨̂x |λ0

}]
δ,

(131)

and let F2 be any constant such that

F2 ≥ λ1

{
32Kλ1 + 4λ0

(
2K

∣∣ ˙̂x
∣∣ + B

|ω̂|
) }

+ λ0

{
16λ0

2

3

(
16

|ω̂| + 4

)
δ

+ 4λ1

(
2K

∣∣ ˙̂x
∣∣ + B

(
1 + 2

|ω̂|
))

(132)

+ 8Bλ2

|ω̂| + 256Kλ1λ2

3 |ω̂| δ + 2B| ¨̂x |λ0

}
.

As in the selection of F1 we again use the fact that we

need to set δ ≤ ω̂/4λ0 to write

F2 = λ1

{
32Kλ1 + 4λ0

(
2K

∣∣ ˙̂x
∣∣ + B

|ω̂|
) }

+ λ0

{
16λ0

2

3

(
16

|ω̂| + 4

)
ω̂

4λ0

+ 4λ1

(
2K

∣∣ ˙̂x
∣∣ + B

(
1 + 2

|ω̂|
))

+ 8Bλ2

|ω̂| + 256Kλ1λ2

3 |ω̂|
ω̂

4λ0

+ 2B
∣∣ ¨̂x

∣∣ λ0

}
. (133)
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