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We perform linear stability calculations for horizontal fluid bilayers that can undergo a phase
transformation, taking into account both buoyancy effects and thermocapillary effects in the
presence of a vertical temperature gradient. We find that the entropy difference between the phases
plays a crucial role in determining the stability of the system. For small values of the entropy
difference between the phases, the system can be linearly unstable to heating from either above or
below. The instability is due to the Marangoni effect in combination with the effects of buoyancy
�for heating from below�. For larger values of the entropy difference, the system is unstable only to
heating from below, and the driving force for the instability is thermodynamic in nature, dominating
the Marangoni effect. This long-wavelength instability can be understood qualitatively in terms of
a variation of the classical morphological stability analysis of a phase boundary. The interface is
unstable if either of the adjacent bulk phases is thermodynamically unstable. To help elucidate the
mechanisms driving the instability on heating from below, we have performed both long-wavelength
and short-wavelength analyses of the two-phase system, and have performed numerical calculations
using materials parameters for a water-steam system. The two-phase system also allows a
conventional Rayleigh-Taylor instability if the heavier fluid overlies the lighter fluid; applying a
temperature gradient allows a stabilization of the interface. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2800339�

I. INTRODUCTION

The study of the stability of a fluid-fluid interface is
important in a number of scientific and technological appli-
cations. In this paper we consider two fluid layers separated
by a horizontal planar interface subject to a vertical tempera-
ture gradient. The case of two fluids that are, to a greater or
lesser degree, immiscible, has been well studied both theo-
retically and experimentally,1–8 and the effects of various
driving forces on the stability of the system have been taken
into account. Examples include the effects of buoyancy
�natural or Rayleigh-Bénard convection9�, the effects of bulk
density differences �Rayleigh-Taylor instabilities10–14�, and
the effects of surface tension gradients along the interface
�Marangoni instabilities3�.

This situation can be contrasted with that of a bilayer
system in which the two layers represent different phases of
a single fluid.15–22 The phase transformation that may then
occur between the two layers is described by a modification
of the usual interfacial boundary conditions that are used to
describe immiscible fluids. For a two-phase system there can
be mass flow across the interface, which is not a material
surface. In addition, latent heat is typically generated at the
interface which is conducted into the surrounding fluid. Fi-
nally, a description of the thermodynamic state of the inter-
face is required, which is often based either on an assump-

tion of local thermodynamic equilibrium or a kinetic
statement governing systematic deviations from local ther-
modynamic equilibrium. As a result, the stability results for a
two-phase bilayer system are quantitatively and even quali-
tatively different than those for an immiscible system. Ex-
amples of the two-phase case arise in many material process-
ing applications.

Many studies of bilayer instabilities of an immiscible
system consider two fluids with materials properties that are
sufficiently different in the two phases that one of the layers
is passive, and can be neglected to produce a simpler single-
layer system. In addition, if the effects of surface tension are
strong enough, the deflection of the interface may be ne-
glected, resulting in further simplification of the analysis. In
contrast, two-phase systems often arise near the thermody-
namic critical point of a single-component fluid or in cases
of phase separation in multicomponent systems. In these sys-
tems, the material constants in each phase are often of simi-
lar magnitude, particularly close to the transition points
where the two phases become indistinguishable. Examples of
single-component systems include the water-steam system as
used in the power industry, and examples of phase-separating
multicomponent systems include the cases of spinodal de-
composition and of monotectic growth.

In this paper we consider a simplified bilayer geometry
in which a horizontal interface separates two semi-infinite
layers of a single-component fluid. This problem is still suf-
ficiently complex that we generally resort to a numerical de-
termination of the linear stability of the system, including the
possibility of oscillatory modes and significant interfacial de-
formations. The governing equations contain a large number
of dimensionless parameters, including a Rayleigh number,
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Marangoni number, Bond number, Crispation number, and
ratios of material properties of the two phases. We consider
material parameters appropriate for a water-steam system.
We find particularly interesting stability results at low wave-
numbers, for a mode that is sensitive to the differences in
enthalpy and entropy between the two phases. To examine
this mode in more detail, we perform a small-wavenumber
expansion of the stability problem, finding that the mode is
also sensitive to the values of both the Bond and Crispation
numbers of the system.

For simplicity, we assume that local equilibrium holds at
the fluid-fluid interface. More general boundary conditions
that apply under nonequilibrium conditions have been dis-
cussed by a number of authors.18,20–22 These conditions can
also be derived by considering sharp-interface limits23 of dif-
fuse interface models.24–26 We note that the assumption of
local equilibrium at the phase boundary does not preclude
evaporation or condensation that accompanies interface mo-
tion; however, in our case we consider a static base state that
supports a heat flux through the system without phase
change, so that evaporation or condensation are small effects
associated with the perturbed system.

We find that a two-phase system that is heated from
below is subject to a type of morphological instability at
small wavenumbers that is similar in origin to other, more
familiar, instabilities that occur in materials processing
applications.27 Multiphase systems are typically subject to
instability if one or more of the phases is in a thermodynamic
state of metastability; specifically, if there are regions of
space where the actual phase of the system is not the phase
of lowest free energy under the given conditions.28–31 The
driving force for an instability is the release of free energy
accompanying a phase transformation from the higher en-
ergy phase to the lower energy phase. In practice, the nucle-
ation of the lower energy phase in the bulk unstable phase is
rarely observed under conditions of mild disequilibrium,
since there is an accompanying energy penalty associated
with the creation of surface area of the new phase. However,
the energy difference can drive the instability at an interface
where the two phases come in contact. The resulting insta-
bility generally displays a wavelength that is determined by a
balance between surface energy �stabilizing� and the differ-
ence in bulk free energy between the phases �destabilizing�.

A portion of the phase diagram for a representative
water-steam system is depicted in Fig. 1. A two-phase system
consisting of liquid and gas is in thermodynamic equilibrium
along the coexistence curve in pressure-temperature space.
The coexistence curve terminates at the thermodynamic criti-
cal point where the properties of the liquid and gas become
equal. The liquid phase is preferred under conditions of
higher pressure and lower temperature, and the gas phase is
preferred for lower pressures and higher temperatures. The
slope of the coexistence curve is given by the Clausius-
Clapeyron equation32

dp

dT
=

�sm
� − sm

��
�1/�̄� − 1/�̄��

, �1�

where sm
� and sm

� are the entropy densities of the phases, and
�̄� and �̄� are the densities; here we assume the lighter gas

phase ��� overlies the denser liquid phase ���. If the bilayer
is heated from below, the respective static pressure and
temperature profiles p�z� and T�z� in each phase satisfy
dp=−�gdz and dT=Gdz, where z is the vertical coordinate, g
is the gravitational acceleration, and G denotes the tempera-
ture gradient, which is negative for heating from below. The
condition that the liquid is superheated or that the gas is
supercooled relative to thermodynamic equilibrium can be
determined graphically by plotting the respective pressure
and temperature profiles p�z� and T�z� in relation to the co-
existence curve, or by comparing the slopes dp /dT=−�g /G
at the interface in each phase with that given by the Clausius-
Clapeyron equation. This relation gives the correct qualita-
tive form for the observed long-wavelength instability, but it
is not quantitatively accurate since the instability involves
lateral pressure and temperature gradients along the interface
that drive convection and alter the thermal transport in the
system. Our results include the derivation of a quantitative
version of this expression that is obtained by performing a
small-wavenumber expansion for the full governing equa-
tions, including the effects of convection. The predictions are
in good agreement with the corresponding numerical results
that we obtain.

The paper is organized as follows. Governing equations
are given in the next section. The numerical procedure is
described briefly in Sec. III. Linear stability results are pre-
sented next, including a comparison of the numerical results
with large- and small-wavenumber expansions. A discussion
is presented in Sec. V, followed by conclusions in Sec. VI.
The Appendix contains a summary of the expansion results.

FIG. 1. Phase diagram for the water-steam system near its critical point. The
solid curve is the coexistence curve for the two-phase system, representing
the locus of equilibrium temperatures and pressures and terminating at the
critical point where the properties of the liquid and gas phases become
identical. The two dashed curves represent schematic profiles of T�z� and
p�z�, respectively, in the gas layer. If the dashed curve has a small enough
slope, it lies within the liquid region of the phase diagram and represents a
supercooled gas state. A similar diagram applies for the profile in the liquid
layer, where a superheated liquid state is possible if the corresponding slope
is sufficiently small.
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II. EQUATIONS

We consider a semi-infinite horizontal two-layer system,
with vertical heating across the layers. The unperturbed
upper layer �denoted by �� extends over the interval
0�z�H�, and the unperturbed lower layer �denoted by ��
extends over the interval −H��z�0. Without loss of gener-
ality, we consider linear stability results for a two-
dimensional system. The horizontal coordinate extends over
the interval −��x��, and the velocity u has components
in the x and z directions given by u and w, respectively.

A. Governing equations in the bulk

In each phase � and �, we consider the Boussinesq
equations

� · u = 0, �2�

�̄ut + �̄�u · ��u + �p = ��2u − �gz , �3�

Tt + �u · ��T = ��2T . �4�

Here, p is the pressure, � is the dynamic viscosity, T is the
temperature, � is the thermal diffusivity, g is the gravitational
acceleration, t is the time, and z is the unit vector in the z
direction �anti-parallel to gravity�. With the exception of the
density, we assume the material properties are constant in
each phase, although the properties can differ from phase to
phase, and will be distinguished by subscripts � and �. We
assume the density � in each phase is constant in all terms
except the gravitational terms, where the densities are given
by

�� = �̄��1 − 	��T − TR��, �� = �̄��1 − 	��T − TR�� . �5�

Here, �̄� and �̄� are the densities in each phase at the refer-
ence temperature TR, and the thermal expansion coefficients
	� and 	� are assumed to be constant in each phase.

B. Boundary conditions

The upper boundary at z=H� and the lower boundary at
z=−H� are assumed to be isothermal with no-slip boundary
conditions. The interface is assumed to have the form
z=h�x , t�.

The temperature is continuous across the interface,

�T� = 0, �6�

where �T�=T�−T� denotes the temperature jump across the
interface. The tangential velocity is assumed to satisfy the
no-slip condition

�u · t� = 0, �7�

where t is any tangent vector to the interface. The stress
boundary condition is

��̄u�u · n − vn�� = �T · n� − 
Kn + �S
 , �8�

where n is a unit normal vector to the interface, T jk=−p� jk

+���uj /�xk+�uk /�xj� is the stress tensor, 
 is the surface
tension, K is the curvature, vn is the normal velocity of the
interface, and �S is the surface gradient. Here, our sign con-

vention is that the curvature K is defined to be positive
for a spherical inclusion of � phase. For example, in
two dimensions with an interface y=h�x , t�, the curvature
is K=−hxx / �1+hx

2�3/2, the interface velocity is vn=ht / �1
+hx

2�1/2, and the surface gradient of the temperature-
dependent surface energy 
=
�T� is given by

�S
 = 
T
�Tx + hxTy�
�1 + hx

2
t , �9�

where 
T=d
 /dT and t is the unit tangent vector to the in-
terface in the direction of increasing x. Here, hxx indicates the
second derivative of h, etc.

Mass conservation across the interface takes the form

��̄�u · n − vn�� = 0. �10�

Thermodynamic equilibrium at the interface is given by

�gm�T,p�� = 0, �11�

where gm�T , p� is the Gibbs free energy density, with
dgm=−smdT+dp /�, and sm is the entropy density. The bal-
ance of energy at the interface can be expressed in the form

��	em +
1

2

u
2��u · n − vn�� = �Tu� · n − �k

�T

�n
� , �12�

where em is the internal energy density and k is the thermal
conductivity. Using Eq. �10�, this can be written in the form
of a flux balance

�k
�T

�n
� = �̄��u� · n − vn�L��, �13�

where L��=hm
� −hm

� is the difference in enthalpy density
hm=em+ p /� between the phases; for simplicity, we have also
neglected some nonlinear convective terms that have no ef-
fect on linear stability.

C. Base state

We linearize about a quiescent base state �also indicated
by bars�. The thermal field is

T̄��z� = TE + G�z �14�

in the � phase, and

T̄��z� = TE + G�z �15�

in the � phase, where TE is the unperturbed interface tem-
perature. The temperature gradients in the base state satisfy

0 = k�G� − k�G�. �16�

The pressure field in the base state is hydrostatic, with

dp̄�

dz
= − �̄�g,

dp̄�

dz
= − �̄�g . �17�

Note that we assume that the base state consists of a static
planar interface. Although there is a heat flux through the
system that can drive instabilities, in the base state there is
no transformation of phase taking place �i.e., no evaporation
of liquid or condensation of vapor�.
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D. Dimensionless parameters and linearized
governing equations

Following the treatment in Ref. 1, we make the equa-
tions dimensionless based on a length scale given by the total
depth d=H�+H�, a time scale based on the thermal time
d2 /��, a velocity scale �� /d, a temperature scale G�d, and a
pressure scale �����̄� /d2. These scales introduce the dimen-
sionless parameters

�* =
��

��

, �* =
�̄�

�̄�

, 	* =
	�

	�

, �18�

�* =
��

��

, k* =
k�

k�

, G* =
G�

G�

, �* =
��

��

, �19�

Pr =
��

��

, Ra =
g	�G�d4

����

, Cr =
����

d

,

�20�

Bo =
g��d2



, Ma = −


TG�d2

����

,

L�� =
��L����

k�G�d
, S�� =

s��G�d3

����

, � =
− H�

H�

. �21�

Here, � is a geometrical parameter, and s��=sm
� −sm

� is the
difference in entropy density between the phases, so that L��

and S�� represent a dimensionless latent heat and dimension-
less entropy difference, respectively �see Table I�. We note
that in dimensional terms, these quantities are related by
L��=TEs��, where TE is the equilibrium transition tempera-
ture at the interface. Since the proportionality factor TE

does not appear in any other parameters, L�� and S�� repre-
sent independent dimensionless parameters. We note that
�*=�*�* and k*G*=1.

We assume a horizontal wavenumber a and a temporal
growth rate =r+ ii. The perturbed quantities �indicated
by tildes� then satisfy

iaũ� + w̃z
� = 0, �22�

Pr−1ũ� + iap̃�/�* = �*�ũzz
� − a2ũ�� , �23�

Pr−1w̃� + p̃z
�/�* = �*�w̃zz

� − a2w̃�� + 	*RaT̃�, �24�

T̃� + G*w̃� = �*�T̃zz
� − a2T̃�� , �25�

for z�0, and

iaũ� + w̃z
� = 0, �26�

Pr−1ũ� + iap̃� = ũzz
� − a2ũ�, �27�

Pr−1w̃� + p̃z
� = w̃zz

� − a2w̃� + RaT̃�, �28�

T̃� + w̃� = T̃zz
� − a2T̃�, �29�

for z�0. Henceforth, all variables are considered to be di-
mensionless.

The boundary conditions at z=0 are

T̃� + G*h̃ = T̃� + h̃ , �30�

ũ� − ũ� = 0, �31�

�p̃� − p̃�� − Bo Cr−1��* − 1�h̃ + a2Cr−1h̃ = 2��*w̃z
� − w̃z

�� ,

�32�

��*ũz
� − ũz

�� + ia��*w̃� − w̃�� − ia Ma�T̃� + G*h̃� = 0,

�33�

TABLE I. Thermophysical properties of the steam �� phase� water �� phase� system at the equilibrium state
with TE=640 K and pE=202.7 bar used in the numerical calculations.

Property Symbol Value Unit

Density of water �� 481.6 kg/m3

Density of steam �� 177.4 kg/m3

Dynamic viscosity of water �� 5.526�10−5 Pa s

Dynamic viscosity of steam �� 2.795�10−5 Pa s

Thermal conductivity of water k� 0.4177 W/mK

Thermal conductivity of steam k� 0.2499 W/mK

Thermal diffusivity of water �� 3.276�10−8� m2/s

Thermal diffusivity of steam �� 2.682�10−8 m2/s

Surface energy 
 8.09�10−4 J / m2

d
 /dT 
T −1.42�10−4 J /K m2

Thermal expansion coefficient of water 	� 3.94�10−2 K−1

Thermal expansion coefficient of steam 	� 7.34�10−2 K−1

Difference in entropy density s��=sm
� −sm

� 8.632�102 J /K kg

Difference in enthalpy density �latent heat� L��=TEs��=hm
� −hm

� 5.524�105 J /kg

Total thickness of layer d 2.0�10−3 m

Gravitational acceleration g 9.8 m/s2
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S���T̃� + G*h̃� = p̃�/�* − p̃�, �34�

��* − 1�h̃ = �*w̃� − w̃�, �35�

k*T̃z
� − T̃z

� = �*L���w̃� − h̃� . �36�

Equation �34� is the linearized version of the Clausius-
Clapeyron equation for our system. Since we are working
fairly close to the critical point, the densities of the two
phases are comparable, and the pressures in each phase at the
interface appear in this equation. In related work by Ozen
and Narayanan,19 an approximate version of the linearized
Clausius-Clapeyron equation is employed that contains only
the pressure in the vapor, valid in the limit �*�1. Our nu-
merical results using their thermophysical properties are in
fair agreement �within 10%�, given the difference in the
models.

E. Control parameter

Critical conditions are often determined experimentally
by varying the temperature gradient across the system. The
temperature gradient G� appears in the dimensionless param-
eters Ma, Ra, L��, and S��. In order to study various com-
binations of the independent effects of buoyancy, latent heat,
entropy, and the temperature dependence of the surface en-
ergy �Marangoni effect�, it is convenient to introduce a sepa-
rate dimensionless temperature gradient

G =
G�d

TE
, �37�

which can be used as a control parameter. We then introduce
versions of the parameters Ma, Ra, L��, and S�� that are
independent of G� by setting

Ma = Ma˜ G, Ra = Ra˜G, L�� = L̃��/G, S�� = S̃��G ,

�38�

where

Ma˜ = −

TTEd

����

, Ra˜=
g	�TEd3

����

,

�39�

L̃�� =
��L����

k�TE
, S̃�� =

s��TEd2

����

.

Linear stability calculations can then be performed by vary-

ing G for fixed values of Ma˜ , Rã, L̃��, and S̃��; these param-
eters then can be set to zero to consider simplified systems.

III. NUMERICAL IMPLEMENTATION

We solve the eigenvalue problem that governs the linear
stability of the system by using two complementary proce-
dures. In the first approach, the equations are discretized us-
ing pseudospectral Chebyshev collocation, and the resulting
generalized matrix eigenvalue problem is solved using the
package RGG from the EISPACK software library.33 For a dis-
cretization with N degrees of freedom, this routine produces
approximations to the first N eigenvalues of the system; that

is, values of the growth rate =r+ ii are obtained as a
function of wavenumber for given values of the dimension-
less input parameters given in Eqs. �18�–�21�.

The second approach is to use the two-point boundary
value solver BVSUP,34 coupled with the root finder SNSQ,35

both from the SLATEC library,36 to implement a method de-
scribed in Ref. 37 to solve the eigenvalue problem. In imple-
menting this procedure, we generally set r=0 and use the
root finder to determine marginal values of i and the control
parameter G for each wavenumber. We then scan over wave-
numbers to determine the critical conditions. The BVSUP pro-
cedure provides a very accurate solution for a given eigen-
mode provided a good enough initial estimate is available for
the root-finding procedure.

The pseudospectral method is efficient for small values
of N, and is well suited for searching parameter space to
detect real and complex eigenvalues. Rather than performing
fine grid calculations with the pseudospectral procedure,
however, the coarse grid results from the pseudospectral
method are often used as initial guesses for the BVSUP code.
Continuation from previous solutions is also used once an
eigenmode has been identified.

The BVSUP software works in a single domain, so we
have mapped the two layers to a common domain by setting

z̄ =  z , for 0 � z � H�,

− H�z/H�, for − H� � z � 0,
� �40�

so that 0� z̄�H� in each phase. We then have

d

dz
=  d/dz̄ , for 0 � z � H�,

�1/��d/dz̄ , for − H� � z � 0,
� �41�

where �=−H� /H�. To simplify the treatment of the problem,
we also introduce an auxiliary ordinary differential equation

in z̄ for the interface h̃, by setting

dh̃

dz̄
= 0, �42�

which allows us to avoid eliminating h̃ as an unknown from
the interface boundary conditions.

We generally present numerical results to five or more
significant figures. This is done to facilitate comparison with
other numerical calculations, although we note that material
parameters are usually not known to this level of accuracy.

IV. RESULTS

In this section we present numerical results for the linear
stability of the two-layer system, with thermophysical prop-
erties corresponding to the water-steam system.38–40 The
water-steam system has a critical point at temperature
Tc=647.096 K, and we choose parameters at the lower
temperature T=640 K, which is far enough below the critical
point to allow an incompressible approximation for the flow
field to be valid. Dimensional parameter values are given in
Table I. Here, the surface energy is given by 
=0.2358�1
−��1.256�1−0.625�1−��� J /m2, where �=T /Tc.

38–40 Corre-
sponding dimensionless parameters are given in Table II.
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In our calculations, we find that the stability of the sys-

tem is quite sensitive to the parameters S̃�� and L̃��, and in
fact the nature of the driving mechanism changes as the di-

mensionless entropy S̃�� varies from small to large values.

The value of S̃�� for the water-steam system is quite large,
and tends to mask the appearance of the Marangoni mode, as
will be discussed below.

For the values of S̃�� that we consider for the water-
steam system, we have not found any neutral modes for the
case of heating from above, either with or without buoyancy.
For the case of heating from below with buoyancy, the neu-
tral curves shown in Fig. 2 are obtained. For this value of

S̃��, we find that these modes are all insensitive to 
T, in that

setting Mã=0 does not affect the indicated modes. To em-

phasize the insensitivity to Mã, in Fig. 2 we plot results in
terms of G, as discussed in Sec. II E. Since we have

Ma=Mã G with Mã�108 for our choice of parameters, we
plot the quantity 108G to facilitate the comparison with
Marangoni numbers. In Fig. 2, the most dangerous mode
occurs at low wavenumbers, and is found to be insensitive to
buoyancy as well. As mentioned in Sec. I, this is a novel
two-phase mode that we discuss in more detail below. The
remainder of the modes shown in Fig. 2 are all buoyant
modes. There are oscillatory modes in Fig. 2 connecting re-
gions where the low-wavenumber mode intersects the family
of stationary buoyant modes; the oscillatory modes occur
over very small ranges of wavenumber and are barely visible
in the figure. The most dangerous of the buoyant modes has
a critical wavenumber a=4.5 for 108G=−527.19, with uni-
cellular flow mainly in the top layer and no significant inter-
face deformation.

To better illustrate the mechanisms for instability, in this
and in subsequent figures the displayed range of G values
exceeds by several orders of magnitude the critical condi-
tions. Although the linear stability model can be readily
solved for large values of G �or Ra�, the range of tempera-
tures for which the linear model for the temperature depen-
dence of the density as given in Eq. �5� is a reasonable ap-
proximation is generally much smaller than the extreme
values given in the plots. However, the critical values of G
are small enough that this approximation, and the more gen-
eral Boussinesq approximations that we employ, are valid at
the critical conditions. The rough criterion 
�− �̄
 / �̄=	
T
−TR
 / �̄�1 for the validity of Eq. �5� becomes, in dimension-
less terms, 
Ra
�Bo/Cr, and for our system, Bo/Cr
=O�107� and Ra=5.24Ma.

The low-wavenumber mode is shown in more detail in
Fig. 3. In these calculations, we have eliminated the effects

of buoyancy by setting Rã=0. To help understand this mode,
we have also performed computations that illustrate the ef-
fects of the Bond number Bo and the Crispation number Cr

TABLE II. Dimensionless variables for the steam �� phase� water �� phase�
system at TE=640 K and pE=202.7 bar.

Parameter Symbol Value

Ratio of densities �* 0.368

Ratio of dynamic viscosities �* 0.506

Ratio of thermal conductivities k* 0.598

Ratio of thermal diffusivities �* 0.819

Ratio of thermal expansion coefficients 	* 1.86

Marangoni number Mã 1.004�108

Rayleigh number Rã 5.26�108

Dimensionless latent heat L̃��
3.27�10−2

Dimensionless entropy difference S̃��
5.86�1014

Crispation number Cr 1.12�10−6

Bond number Bo 23.3

Prandtl number Pr 3.50

Thickness parameter � −1/2

FIG. 2. Marginal stability curves for the water-steam system heated from
below. Solid curves represent stationary modes, and the dotted curves rep-
resent oscillatory modes.

FIG. 3. Marginal stability curves for the water-steam system heated from

below. Here, the effects of buoyancy are neglected by setting Rã=0. The
solid curves represent numerical results, and the symbols correspond to a
small wavenumber expansion. The dashed curve represents a large-
wavenumber expansion.
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for this mode. Three cases are shown in Fig. 3; the case
corresponding to Table II is the intermediate curve and
symbols that asymptote to a small wavenumber limit for
108G=−2.8. The upper curve and symbols result from setting
Cr=0, and the lower curve and symbols correspond to set-
ting Bo=0. The solid curves correspond to numerical results,
and the symbols on the curves correspond to analytical re-
sults from a small-wavenumber approximation given in the
Appendix. The small-wavenumber results depend strongly
on both Bo and Cr. For Cr�0 and Bo�0,

− 108G �
d1�1 − �*�Bo

d2Cr
= 2.8351. �43�

For Cr=0,

− 108G �
− d1

d4
a−2 −

d6

d4

=
2.7668 � 106

a2 + 3.4724 � 106. �44�

For Bo=0 and Cr�0,

− 108G �
d1

d2Cr
a2 = 0.1925a2. �45�

The coefficients d1, d2, d4, and d6 depend on the layer geom-
etry and the remaining material constants and are given in
the Appendix; here we have evaluated these expressions for
the values given in Table II. The curve for Cr�0 and
Bo�0 reaches low values of G for small wavenumbers, cor-
responding to very shallow temperature gradients; in prac-
tice, a reasonable lower limit on the wavenumber that is set
by a lateral container size would produce reasonable values
for the critical temperature gradients. All three curves have
the same behavior for larger wavenumbers, given by a large
wavenumber approximation shown as the dashed curve. As
described in the Appendix, this curve is given approximately
by

− 108G � 1.0097 � 106a . �46�

For the parameter values in Table II, the low-
wavenumber mode is insensitive to the Marangoni effect
and, for low wavenumbers, to the effects of buoyancy. It is,

however, quite sensitive to the entropy S̃�� and to the latent

heat L̃��. To illustrate the sensitivity of the system to the

parameters S̃�� and L̃��, we next consider calculations per-

formed for various values of S̃��, while keeping the ratio of

S̃�� and L̃�� fixed at its nominal value for the water-steam
system under our chosen conditions.

In Fig. 4 we show neutral stability curves for the water-
steam system heated from above �Ma�0� without buoyancy

�Rã=0� for four values of S̃��. For S̃��=0, the system is
unstable to a stationary mode with a critical wavenumber
a=2.7 for Ma=227.20. The flow is mostly confined to the
upper layer and is unicellular, without significant interface
deformation. This neutral curve exhibits asymptotes at both
smaller �a=8.88�10−3� and larger �a=7.76� wavenumbers.

As the entropy difference S̃�� increases, this mode is stabi-

lized, and the wavenumbers of the asymptotes approach each

other. For the largest value S̃��=2.955�108 shown in the
figure, the range of unstable wavenumbers has contracted to

0.27�a�0.37, and for slightly larger values of S̃��, the

system is linearly stable. We note that the value of S̃�� for

the water-steam system in Table II is S̃��=5.86�1014, and

for these parameter values �including the case Rã�0� we
have found no instabilities in heating from above.

In Fig. 5 we show neutral stability curves for the water-
steam system heated from below �Ma�0� without buoyancy

�Rã=0� for three values of S̃��=0, 2.955�108, and 3.5

�108. For S̃��=0, the marginal stability curve has two sta-
tionary branches at high and low wavenumbers. The two
branches have asymptotes for a=8.88�10−3 and a=7.76,
which are the same values obtained for the asymptotes of the

marginal stability curve shown in Fig. 4 for S̃��=0 with
heating from above �Ma�0�. If the data are instead plotted
as 1/Ma versus wavenumber, a single smooth neutral curve
is obtained that passes through the points 1 /Ma=0 at the
wavenumbers corresponding to the asymptotes occurring in

Figs. 4 and 5 for S̃��=0. For heating from below, there is a
gap in wavenumber between the asymptotes where there is
no stationary mode; instead, an oscillatory mode is observed
that begins and ends with i=0 at points on the stationary

branches. The minimum on the S̃��=0 neutral curves occurs
at a critical wavenumber a=10.8 for Ma=−4028.83. Similar

behavior also occurs for S̃��=2.955�108, with a critical
wavenumber a=5.4 for Ma=−681.22. In this case the dis-
tance between asymptotes of the stationary modes has de-

creased considerably, as in Fig. 4. For S̃��=3.5�108, the
asymptotes have disappeared, and a single stationary mode
occurs over the full range of wavenumbers. The minimum on

FIG. 4. Marginal stability curves for the water-steam system heated from

above for various values of the entropy jump S̃��, keeping the ratio S̃�� / L̃��

fixed. Here, the effects of buoyancy are neglected by setting Rã=0, and we
have plotted Ma�108G vs the wavenumber a. From bottom to top, the

curves correspond to S̃��=0, 2.5�108, 2.9�108, and 2.955�108,
respectively.
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the neutral curves occurs at a critical wavenumber a=4.4 for
Ma=−478.30. Although there is no gap in wavenumber for
the stationary mode in this case, an oscillatory mode persists
over a small range of wavenumbers near a=0.01, as can be
seen by careful examination of Fig. 5.

The low wavenumber mode in Fig 2 can be thus viewed
as the continuation of the Marangoni mode shown in Fig. 5

for S̃��=3.5�108 to much larger values of S̃��. In the pro-
cess, the critical wavenumber has decreased significantly,
and the Marangoni effect has been rendered ineffective by
the large entropy. This can be seen from the boundary con-

ditions given in Eqs. �33� and �34�. For large values of S̃��,
Eq. �34� shows that the interface becomes isothermal, and
the Marangoni term in Eq. �33� that is proportional to the
perturbed interface temperature is then negligible.

Rayleigh-Taylor instability

The two-layer system can also exhibit the classical
Rayleigh-Taylor instability10–14 if heavier fluid overlies
lighter fluid. In the absence of buoyancy effects, the gravita-
tional stability of the system is governed by a simple poten-
tial energy argument that balances the increased surface en-
ergy of a deformed interface y=h�x� against the change in
the gravitational potential energy of the displaced fluid,

g��̄� − �̄��h = − 
hxx. �47�

In terms of our dimensionless variables, this takes the simple
form

− Bo =
a2

�1 − �*�
, �48�

which can be seen as a factor in the normal stress balance
boundary condition �32�.

In the situation we have studied above, we have lighter
steam overlying heavier water, so the Rayleigh-Taylor insta-
bility does not occur. To study this instability for our system
with a minimal change in notation, we temporarily choose to
change the direction of gravity while keeping steam and wa-
ter in the original orientation, so that the water and steam are
unstably stratified with respect to gravity. We take G��0, so
that buoyancy has a stabilizing effect on the system; the
resulting sign conventions produce Ma�0, Ra�0, and
Bo�0. Here we have modified the numerical procedure to
compute marginal values of Bo as a function of wavenumber.
In Fig. 6 we show the corresponding numerical results for
the Rayleigh-Taylor instability. The dashed curve in Fig. 6

shows the curve −Bo=a2 / �1−�*�, which holds for Rã=0.
The solid curve shows numerical marginal stability results
for Ma=−1.0�106 and Ra=−5.24Ma. The stabilizing effects
of buoyancy are evident at small wavenumbers, where the
system is then stable if 
Bo
 is sufficiently small.

V. DISCUSSION

A mechanism for the two-phase instability can be iden-
tified in the large-wavenumber limit that is summarized in

the Appendix. We ignore buoyancy by setting Rã=0, and
also ignore interface deformation by setting Cr=0. To help
visualize the flow, we introduce a two-dimensional stream-
function � with w=�x and u=−�z.

The driving mechanism for the large-wavenumber insta-
bility arises from the coupling of the temperature field and
vertical velocity that occurs in the thermal transport equa-
tions �25� and �29� and the latent heat boundary condition
�36�. The coupling is illustrated in the contours of the tem-
perature and streamfunction, as shown in Fig. 7. To simplify
the plot, we have assumed the material properties are equal

FIG. 5. Marginal stability curves for the water-steam system heated from

below �Ma�0� for various values of the entropy jump S̃��, keeping the

ratio S̃�� / L̃�� fixed. Here, the effects of buoyancy are neglected by setting

Rã=0. The solid curves represent stationary modes, and dashed curves cor-
respond to oscillatory modes that connect to stationary modes with the same

values of S̃��. From top to bottom on either the extreme left or extreme right

sides of the plot, the stationary curves correspond to S̃��=0, 2.955�108 and
3.5�108, respectively.

FIG. 6. Marginal stability curves for the water-steam system that is unstably
stratified with respect to gravity. The dashed curve corresponds to the clas-
sical Rayleigh-Taylor instability in the absence of buoyancy, given by
−Bo=a2 / �1−�*�. The solid curve represents numerical results that include
the effects of buoyancy, with Ma=−1.0�106 and Ra=−5.24 Ma.
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in both phases, and have exaggerated the size of the pertur-
bation to emphasize the distortion of the isotherms near the
interface. For the large value of S�� in the water-steam sys-
tem, there is no significant interface deformation. The fluid
flow is normal to the interface, and the plot shows that the
downflow in the center of the plot tends to compress the
distance between isotherms near the interface in the upper
phase, and expand the distance between them in the lower
phase. The opposite is true for the regions with upflow at the
interface. The resulting net change in the temperature fluxes
at the interface are balanced by the evolution of latent heat at
the interface, which in turn is driven by the vertical velocity
at the interface. When the system is heated from below as
shown, these effects reinforce each other to drive the insta-
bility. When the system is heated from above, the effects are
in opposing directions and no instability is possible.

The instability illustrated in Fig. 7 corresponds to the
case of large entropy S��, and the Marangoni effect is neg-
ligible in this limit. For very small values of S��, the Ma-
rangoni effect becomes dominant and produces a large-
wavenumber instability.

If the bilayer is heated from below, in the rest state the
upper layer of gas is colder than the equilibrium temperature
and the lower layer of liquid is hotter than the equilibrium
temperature; these are both potentially destabilizing distribu-
tions. The pressure in the upper layer of gas is lower than the
equilibrium pressure and the pressure in the lower layer of
liquid is higher than the equilibrium pressure, which tends to
stabilize the system. As discussed in Sec. I, a criterion for the
underlying liquid �� phase� to be superheated is obtained by
comparing the local pressure and temperature gradients at the
interface with the Clausius-Clapeyron equation �1�, giving

− G� �
g��̄�/�̄� − 1�

�sm
� − sm

��
. �49�

Similarly, the criterion for the overlying gas �� phase� to be
supercooled is

− G� �
g�1 − �̄�/�̄��

�sm
� − sm

��
. �50�

If we assume Rã=0 and Mã=0 in the small-wavenumber
expansion given in the Appendix in Eq. �A1�, we obtain the
dimensional result

− G� = ��*d1

d2
�2� �g��̄�/�̄� − 1�

�sm
� − sm

��
, �51�

where the prefactor evaluates to �*d1 /d2
�2�=0.465 for our sys-

tem. Thus, a supercooling argument is in qualitative agree-
ment with the observed low-wavenumber instability. The su-
percooling argument is not expected to be quantitatively
accurate, since it neglects the effects of capillarity and of
flow, which arise when there are lateral pressure and tem-
perature gradients in the system.

VI. CONCLUSIONS

We have performed linear stability calculations for hori-
zontal fluid bilayers that can undergo a phase transformation,
taking into account both buoyancy effects and thermocapil-
lary effects. We mainly consider the case of the lighter phase
overlying the heavier phase, so that the base state is stably
stratified in this sense. We find that the two-phase system can
be linearly unstable to heating either from above �Ma�0� or
below �Ma�0�. More specifically, for small values of the

entropy difference S̃�� between the phases, the marginal sta-
bility curve, if plotted as 1/Ma versus the wavenumber a, is
smooth with both positive and negative values �see Figs. 4
and 5�. The zeroes of this curve then represent wavenumbers
for which a plot of Ma versus wavenumber exhibits vertical
asymptotes. The two-phase instability persists to small wave-
numbers in the case of heating from below. For the larger

values of S̃�� that characterize the water-steam system, we
find that the two-phase system is unstable only for heating

from below �see Fig. 2�. The large value of S̃�� renders
the system insensitive to the value of 
T for heating both
from above and below in the water-steam system, and the
Marangoni effect is masked by a stronger effect due to the
morphological instability driven by the large entropy differ-
ence across the interface. The absence of a Marangoni effect
for the two-phase system was previously noted by Ozen and
Narayanan.19 From our calculations, the basic reason for the
absence of the Marangoni effect in the water-steam system is
that, because of the large magnitude of dp /dT, typical values
of the pressure variation are insufficient to cause appreciable
deviations of the interface from isothermality; hence, there is
no driving force for the Marangoni instability. We have con-
firmed numerically that if the entropy difference is artificially
reduced to values significantly lower than that for the water-
steam system, the Marangoni instability does become active.

To help understand the mechanisms driving the instabil-
ity on heating from below, we have performed both long-
wavelength and short-wavelength analyses of the two-phase
system. The short-wavelength analysis �large a� shows that
the instability is driven by a coupling between the flow nor-
mal to the interface and the latent heat generation at the

FIG. 7. Streamfunction contours �light lines� and temperature contours for
the large-wavenumber solution with a=1 and equal material properties in
both phases. The magnitude of the perturbation is exaggerated to emphasize
the deformation of the temperature contours.
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interface �see Fig. 7�. For the large-wavelength �small a�
instability �see Fig. 3�, the exponent n in the leading order
expansion Ma�an depends on the Crispation and Bond

numbers as well as on S̃��. We also note that the two-phase
system allows a conventional Rayleigh-Taylor instability if
the heavier fluid overlies the lighter fluid;10–14 applying a
temperature gradient allows a stabilization of the interface
�see Fig. 6�.
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APPENDIX: LARGE AND SMALL WAVENUMBER
EXPANSIONS

Here we consider the limits of large and small wavenum-
bers. We introduce the dimensionless layer widths

H̄�=H� /d=1/ �1−�� and H̄�=H� /d=−� / �1−��, where
d=H�+H� and �=−H� /H�=−1/2 in our calculations.

A. Small wavenumbers

Small-wavenumber asymptotics can be performed in the
two-phase case for general values of Ra. Since there are
several possible cases to consider for the two-phase system
depending on the assumed values of Ma, Ra, L��, and S��,
we use the dimensionless temperature gradient G as a control

parameter, so that the dimensionless parameters Mã, Rã,

L̃��, and S̃�� can all appear as independent quantities in the
expansion coefficients. For Bo�0 and Cr�0, we find the
leading order result

G =
d1 Bo��* − 1�

Cr�d2 + d5 Rã�
, �A1�

where

d1 =
4

3�* �H̄� + k*H̄���4H̄�H̄��*�H̄�
2 + ��*�2H̄�

2�

+ 6H̄�
2H̄�

2�*�* + �H̄�
4��*�2 + H̄�

4��*�2�� , �A2�

d2 = d2
�1� Ma˜ + d2

�2�S̃��, �A3�

d2
�1� =

8

�*H̄�H̄��*�1 − �*��H̄� + �*H̄�� , �A4�

d2
�2� =

4

3
�3H̄�

2H̄�
2�*�1 + �*� + 4H̄�H̄��*

��H̄�
2 + �*H̄�

2� + �H̄�
4�* + H̄�

4��*�2�� , �A5�

d5 =
�1 − k*��1 − �*�

15k*�* �23�*H̄aH̄b�k*H̄b
4 + 	*��*�2H̄a

4�

+ 7�k*��*�2H̄b
6 + 	*��*�2H̄a

6� + 15�*�*H̄a
2H̄b

2�k*H̄b
2

+ 	*H̄a
2�� . �A6�

For the values given in Table II, we have

d1 = 0.508 715, d2 = 2.365 61 � 1014,

�A7�
d5 = 0.032 388,

d2
�1� = 0.893 976, d2

�2� = 0.402 588. �A8�

Rã=0

For the case with Rã=0, the dispersion relation for
=0 can again be evaluated symbolically in closed form.
The result can then be expanded for small wavenumbers,
giving

0 = a8�d1��* − 1�Bo − d2CrG� + a10�− G�d3Cr + d4

���* − 1�Bo� − �d1 − d6��* − 1�Bo�� + O�a12� . �A9�

The expression can be solved for G as a rational expression
of the form

G =
d1��* − 1�Bo − �d1 − d6��* − 1�Bo�a2

d2Cr + �d3Cr + d4��* − 1�Bo�a2 + O�a4� .

�A10�

The coefficients d1 and d2 are as given above, and d3, d4, and
d6 are given by

d3 = Ma˜ d3
�1� + S̃��d3

�2�, �A11�

d4 = Ma˜ d4
�1� + S̃��d4

�2�, �A12�

d6 = d6
�1� + Ma˜ L̃��d6

�2� + L̃��S̃��d6
�3�, �A13�

with

d3
�1� =

4

3�*H̄�H̄� � �3H̄�H̄��*�H̄� − ��*�2H̄��

+ 2H̄�H̄��*�H̄� − ��*�2H̄�� + �*�H̄�
3 − ��*�2H̄�

3�

+ 2���*�2H̄�
3 − ��*�2H̄�

3� + 3�*�*�H̄�
3 − H̄�

3�

+ H̄�H̄��*�*�H̄� − H̄��� , �A14�

d3
�2� =

2

45
�15H̄�

2H̄�
2�*�H̄�

2 + �*H̄�
2� + 90H̄�

3H̄�
3�*�1 + �*�

+ 55H̄�
2H̄�

2�*�H̄�
2 + �*H̄�

2� + 44H̄�H̄��*�H̄�
4

+ �*H̄�
4� + 65H̄�

2H̄�
2���*�2H̄�

2 + �*H̄�
2�

+ 10H̄�H̄����*�2H̄�
4 + �*H̄�

4� + 9���*�2H̄�
6 + �*H̄�

6�� ,

�A15�
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d4
�1� =

− 1

30�*�*H̄�
2H̄�

2 � �5H̄�
2H̄�

2�H̄��* − H̄���*�2�*�

− 7H̄�H̄��*�H̄�
3 − H̄�

3�*�*� − 2�H̄�
5��*�2

− H̄�
5�*�*�� , �A16�

d4
�2� =

− 1

90�*H̄�
3H̄�

3 � �14H̄�H̄��H̄�
2 + H̄�

2�*�*�*�

+ 11H̄�
2H̄�

2��* + �*�*� + 3�H̄�
4�* + H̄�

4�*�*�� ,

�A17�

d6
�1� =

2

45�* �60�*H̄�
3H̄�

3�H̄� + k*��*�2H̄�� + 84�*H̄�
2H̄�

2�H̄�
3 + k*��*�2H̄�

3� + 100�*H̄�
3H̄�

3�k*H̄� + ��*�2H̄�� + 44�*H̄�H̄��k*H̄�
5

+ ��*�2H̄�
5� + 35H̄�

3H̄�
3���*�2H̄� + k*��*�2H̄�� + 19H̄�H̄����*�2H̄�

5 + k*��*�2H̄�
5� + 45H̄�

2H̄�
2�k*��*�2H̄�

3 + ��*�2H̄�
3�

+ 9�k*��*�2H̄�
7 + ��*�2H̄�

7� + 60�*�*H̄�
2H̄�

2�H̄�
3 + k*H̄�

3� + 120�*�*H̄�
3H̄�

3�H̄� + k*H̄��� , �A18�

d6
�2� = 2

3H̄�
3H̄�

3��*H̄�
2 − �*H̄�

2� , �A19�

d6
�3� = 4

9H̄�
4H̄�

4�*�H̄� + �*H̄�� . �A20�

For the values given in Table II, the additional constants are
given by

d3 = 7.171 45 � 1013, d4 = − 1.84596 � 1011,

�A21�
d6 = 6.3844 � 109.

Essentially the same values for dj are obtained by setting

Ma˜ =0; thus, the small-wavenumber behavior of the system
is insensitive to the Marangoni effect for the parameters in
Table II.

B. Large wavenumbers

We next consider the limit of large wavenumbers for a
stationary mode. For our system, the numerical results sug-
gest that buoyancy effects and interface deformation are un-
important in this limit, so we also consider the formal limit
of small Crispation number, i.e., Cr→0, along with Ra=0.
For Ra=0, the governing equations for the velocity field are
decoupled from the thermal field, which simplifies the analy-
sis. For Cr→0, the dimensionless form of the normal mo-
mentum balance,

Cr�p̃� − p̃�� − Bo��* − 1�h̃ + a2h̃ = 2Cr��*w̃z
� − w̃z

�� ,

�A22�

then reduces to

Bo��* − 1�h̃ − a2h̃ = 0. �A23�

For Bo��*−1�−a2�0, we conclude that the interface defor-

mation vanishes; i.e., h̃=0.
In the limit of large wavenumber, the disturbances are

concentrated near the interface and the effects of the outer
boundaries are insignificant. The appropriate solution can

then be computed using decay conditions in an unbounded
domain as z→ ±�. The vertical components of the velocity
field are given by

w̃��z� = A�e−az + B�aze−az, w̃��z� = A�eaz + B�azeaz.

�A24�

The temperature fields are given by

T̃��z� =
− G*A�

2a2�* �az�e−az −
G*B�

4a2�* �az�e−az

−
G*B�

4a2�* �a2z2�e−az + C�e−az, �A25�

T̃��z� =
A�

2a2 �az�eaz −
B�

4a2 �az�eaz +
B�

4a2 �a2z2�eaz + C�eaz.

�A26�

The corresponding horizontal velocities and pressures are

ũ� = i�B� − A��e−az − iB�aze−az,

�A27�
ũ� = i�B� + A��eaz + iB�azeaz,

and

p̃� = 2�*�*aB�e−az, p̃� = 2aB�eaz. �A28�

The interface boundary conditions determine the remaining
six constants A�, B�, C�, A�, B�, and C�, leading to the
relations

A� = �*A�, B� = B� − �1 + �*�A�, C� = C�, �A29�

and

A� =
Ma S���1 − �*� + 8a3�*��* − 1��1 + k*�

�
C�, �A30�

B� =
Ma S��R − 8a3�*�1 + �*��1 + k*�

�
C�, �A31�

where
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� = 2a��1 + �*��1 − �*� + R��* − 1�� , �A32�

R = − ��*�1 + 3�*� + 2 + 4a�*�*L��/Ma� . �A33�

The dispersion relation takes the form

 �1

2�1 + �*�
− S���1 − �* − R1��

�Ma = 8a3�*�1 + k*����* + �*�� − S��R2

−
�2

2�1 + �*�
, �A34�

where

R1 = − ��*�1 + 3�*� + 2�, R2 = − 4a�*�*L��, �A35�

�1 = 2a��1 + �*��1 − �*� + R1��* − 1��,
�A36�

�2 = 2aR2��* − 1� .

For interpreting the large-wavenumber two-phase mode,
we consider the limit of large entropy S��, which produces
some simplification by eliminating the Marangoni effect and

making the interface isothermal with T̃�= T̃�=0. We then
have C�=C�=0, A�=�*A�, B�=A�, and B�=−�*A�. We note
that the steady-state vertical velocity fields and temperature
fields then take the form

w̃��x,z� = A��1 + �az��e−az cos az,

�A37�
w̃��x,z� = �*A��1 − �az��eaz cos az ,

T̃��x,z� = G*z −
�az�G*

4a2�* �3 + �az��A�e−az cos az , �A38�

T̃��x,z� = z +
�az��*

4a2 �3 − �az��A�eaz cos az . �A39�

The resulting dispersion relation then has the simple form

Ma

L��

=
k�G�

��L�����/d�
= −

4�*�*

3�1 + �*�*�
a . �A40�
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