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Abstract - One of the first problems that must be addressed 
when attempting to test the reliability of any software 
implementation is determining what is to be tested.  The 
number of paths an implementation can follow is generally 
much too large to be able to test all possibilities.  
Pragmatic decisions must be made that allow selective 
testing, but exhaustive testing covering all possible paths is 
not possible.   

In this paper we investigate an approach for finding sets of 
messages that provide effective coverage for testing HL7 
applications.  HL7 messages are constrained by an XML 
document that determines the form and content of the 
messages.  We describe a method for determining one 
metric for measuring the set of messages that encompass 
all paths allowed by the XML document.  In general this 
set of messages is also very large.  Nevertheless, the metric 
provides us with a concrete assessment of the scope of the 
testing problem.  Furthermore, we are able to formulate 
techniques for filtering this large message set and 
substantially reduce its size while maintaining the essential 
coverage capabilities inherent in the larger message set. 

Keywords: Combinations; Conformance Testing; 
Filtering; Messaging Systems; Test Messages. 

1 Introduction 
  In the Software Diagnostics and Conformance Testing 
Division [1] of the Information Technology Laboratory 
(ITL) at the National Institute of Standards and Technology 
(NIST) we are interested in conformance testing 
methodologies and their application to various areas of 
information technology.  One area of current interest is 
their application to health care systems.  We are currently 
investigating the Health Level 7 (HL7) messaging standard 
[2, 3], a widely used standard for moving clinical and 
administrative information between healthcare applications. 
   
As part of our work with the HL7 healthcare messaging 
standard, we have developed a tool, Message Maker [4, 5], 
which supports the dynamic generation of HL7 messages.  
The messages are generated based on an XML document or 
profile.  Message Maker provides a powerful means for 
generating test messages.  The messages can be used to 

support the evaluation of HL7 implementations.  Message 
Maker provides the user with considerable flexibility for 
controlling the set of test messages that are generated.  The 
question remains, however, as to what set of messages the 
user should generate. The user can generate an unlimited 
set of messages, inject errors in messages, control specific 
elements of a message, as well as vary other message 
characteristics.  But how many messages will be needed to 
adequately cover the scope of possibilities that an 
implementation should support?  And is the size of this 
message set small enough to be employed in testing HL7 
implementations? 
 
Below we investigate one approach for finding effective 
test messages based on an examination of tree structures.  
We attempt to capture all paths allowed by the profile by 
examining the tree structures representing HL7 messages 
derivable from the profile.  We determine the number of 
messages that can be generated, and once we have 
identified the message set, we take further steps to reduce 
its size, while attempting not to sacrifice the capabilities 
inherent in the original set. 
 
2 Example Profile 
 Conformance was formally introduced into Version 2.5 
[6] of the HL7 standard.  An Implementation Profile was 
the primary mechanism introduced for supporting 
conformance. The Implementation Profile is an XML [7] 
document that provides a well-defined and rigorous 
specification of the set of messages that can be exchanged 
between HL7 applications.  Using profiles, vendors can 
define precisely the set of messages that they will 
exchange. Each message derivable from the profile itself 
has an XML representation.  Since any XML document can 
be represented as a tree, every HL7 message also has a tree 
representation. 
 
Each element in the profile includes attributes that 
determine the element’s presence, or absence, in the 
messages derived from the profile.  Specifically, elements 
include a Usage attribute that determines if the element 
must be present, cannot be present, or might be present in a 
message.  Elements also include MAX and MIN attributes 



that determine the element’s cardinality or the number of 
times the element can be repeated. 
 
To be precise, the allowable values for the Usage attribute 
are R, RE, and X.  Any element with Usage value of R, 
must be present, any element with a Usage value of X 
cannot be present, and any element with Usage value of 
RE, may be present. 
 
The MAX and MIN attributes may take on any non-
negative integer value.  MIN must be less than MAX, but 
MIN is not required to be zero even for an element with a 
Usage value of RE.  In this case, the element may not be 
required to appear, but if it does, it must appear more than 
once. 
 
While a relatively large and complex tree is required to 
represent a typical profile, we will begin by considering an 
unrealistically small and simple tree.  Despite its simplicity, 
the tree will serve as the bases for extending our work to 
more general cases.  A snippet of our simple XML profile 
is shown in Figure 1. 
 
<Segment Name="S1" Usage="R" Min="1" Max="2">�       
  <Field Name="F1" Usage="RE" Min="0" Max="3" > 
    <Component Name="C1" Usage="RE" > 
    </Component> 
    <Component Name="C2" Usage="R" > 
    </Component> 
    <Component Name="C3" Usage="RE" > 
    </Component> 
   </Field> 
  <Field Name="F2" Usage="RE" Min="0" Max="2" > 
</Segment 
 

Figure 1. Toy Profile. 

The profile details are omitted; only the aspects of the 
profile relevant to our example are shown.  A real profile 
would include additional XML elements, and the elements 
shown would include additional attributes affecting data 
content.  The Name attribute is shown, however, and the 
profile structure is also revealed.  All profiles contain the 
nesting structure shown: Field elements must be wrapped in 
Segment elements, Component elements must be wrapped 
in a Field, and SubComponent elements—not included in 
our example--may also be included within a Component 
element.  No further nesting of elements is allowed 
however.  
 
The semantics of our profile are relatively simple.  The 
segment element, S1, must be present in all messages 
conforming to the profile and the segment may repeat once.  
The Field element, F1, may be repeated three times if 
present and F2 may be repeated twice.  The element, F1, 
has three children, and the child Component, C2, must be 
present whenever F1 is present; the other children may 

optionally be present, but neither can be repeated.  
Component elements do not include either MIN or MAX 
attributes.  However, if the elements did include these 
attributes, and if the values of the MIN and MAX attributes 
for the optional components were set to zero and one, 
respectively, the semantics would be equivalent to those 
shown without their presence.  For the required component 
including the attributes with both values set to one would 
convey the same semantics.  Noting the equivalence of the 
two representations enables us to use the same notation for 
representing all nodes in the tree.  We will annotate each 
node in the tree with R [m, n] to designate a required node, 
or RE [m, n] to designate an optional node, that must repeat 
a minimum of m times and cannot repeat more than n times.  
Nodes with a Usage value of X are not allowed to appear in 
valid messages and therefore will not be further considered 
here. 
 
The tree representation of our profile is show in Figure 2. 
 
 
 
 
 
 
 

F2: RE [0, 2]  
F1: RE [0, 3]   

S1:  R [1, 2] 

C2: R [1, 1] C1: RE [0, 1] 
C3: RE [0, 1]  

 
Figure 2. Tree Representation of Toy Profile. 

The tree representation shown above does not represent an 
actual tree, but rather represents some number of possible 
trees.  The members of this set of possible trees represent 
the class of conformant HL7 messages derivable from the 
profile shown in Figure 1 above.  
 
To illustrate, Figure 3 shows two tree instances 
representing conforming messages. 
 
 S1 
 
 
 
 
 
 
 
 

Figure 3. Tree Instances. 
 
Next we enumerate a class of messages belonging to our 
toy profile. 
 
3 Counting Messages 
 We want to determine the number of messages that 
belong to the class of well-formed messages derivable from 

F2 F1  

S1 

C2 

F2  F1 
F1 

C2 

C2 C1 C3 



the profile shown in Figure 1. We will use the tree 
representation of this profile shown in Figure 2 to formulate 
a counting strategy. We are only interested in messages that 
are structurally distinct; variations based on content, or 
node values, will not be considered. 
 
To count tree structures we will examine sub-tree 
variations.  We will begin by considering nodes with only 
leaf nodes for children.  We will refer to nodes in the tree 
as node elements to emphasize the relationship between the 
nodes in the tree and the elements in the XML document.  
Considering sub-trees rooted at node element, F1, it is clear 
that the total number of sub-trees that can be formed from a 
single occurrence of this node is exactly 4.  We’ll use a 
more succinct lisp-like notation than we used above to 
enumerate the 4 structures as follows: (F1 (C1 C2 C3)), (F1 
(C1 C2)), (F1 (C2 C3)), and (F1 (C2)).  This number can, 
of course, easily be derived mathematically by observing 
that node C1 and C3 can appear in one of two ways, i.e., 
they can either be present or not present, and node C2 can 
only appear in one way.  The total number of possibilities 
for the nodes appearing then is simply given by the product 
of the number of ways in which each node can appear.  In 
general, for any sub-tree rooted at node element, E, where 
all of E’s children are leaves, the total number of sub-trees, 
SE , that can be formed at E, is given by Equation 1. 
 

Equation 1: SE  =  where N is the number of 

children of node E and  is the number ways in which the 
child node, , can appear. 

Ci
i=1

N

∏
Ci

Ci

 
In the example, we have SF1  = 2 × 1 × 2 = 4. 
 
In our example, node element F1 can appear up to three 
times.  What is the total number of sub-tree combinations, 
then, that can be formed at F1 when the number of times F1 
appears varies over the range of valid repetition values?  
We have shown that for one occurrence of F1, four sub-
trees are possible.  For two occurrences of F1, it is clear 
that there are 4 times 4, or 16, possible ways to combine the 
sub-trees, and for three occurrences there are 4 times 4 
times 4, or 64 possibilities.  The total number of sub-tree 
combinations then that can be formed at F1 from all valid 
repetitions of F1 is given by the sum of the number of 
combinations that can formed for each occurrence of F1.  
In general, for a node element E repeating from 1 to N 
times, the number of sub-tree combinations that can be 
formed at E is given by Equation 2. 
 

Equation 2: =  where CE (SE )k

k=1

N

∑ SE  is the number of 

sub-trees that can be formed at node E for a single 

occurrence of node element E and N equals the maximum 
number of times that E can repeat. 
 
At F1, we have  =  +  +  = 84. CF1 41 42 43

 
We note that since the node element F1 is not required, 
there is one additional sub-tree combination, the empty sub-
tree, which we should add to our count.  This can be 
accounted for more generally, by noting that for a node 
element E repeating from 0 to N times, the above formula 
can be re-written as: 

Equation 3: = CE (SE )k

k= 0

N

∑   

 
Applying the above formula, then, at node F1, we have 85 
sub-tree combinations that can be formed at F1.  To 
proceed up the tree and determine the number of sub-tree 
combinations that can be constructed at S1, we note that if 
the sub-tree at F1 were replaced by a single node that 
varied in 85 ways, then we could again apply Equation 1 
above and get the total number of variations for a single 
occurrence of S1 by taking the product of the variations at 
F1 and F2.  This observation allows us to apply the 
formulas above to calculate the number of sub-tree 
combinations at any node in the tree.   
 
For any arbitrary node in the tree, we can calculate the 
number of sub-tree combinations that can be formed at that 
node by traversing down the sub-tree until we reach a sub-
tree with only leaf nodes.  For any leaf node, E, that is 
required, the value of SE  is always 1, and for a leaf node, 
E, that is not required, the value of SE  is always 2.  We can 
then calculate the value of SE  for a node, E, that has only 
children that are leaves using our product formula, and thus 
proceed back up the sub-tree as illustrated above.  As long 
as we traverse all branches of the sub-tree, the order in 
which we traverse the sub-tree does not matter. 
  
In general a node can repeat from N to M times, where N 
and M are non-negative integers and M is the minimum and 
N the maximum number of times the node can repeat.  The 
equations below can be used to handle the more general 
cases: 

Equation 4: = 1 +CE (SE )k

k=M

N

∑   (node E optional, M > 0) 

 

Equation 5: = CE (SE )k

k=M

N

∑   (node E required, M > 0) 

where SE  is the number of sub-trees that can be formed at 
node E for a single occurrence of node element E, M is a 



positive integer equal to the minimum number of times the 
node can repeat, and N equals the maximum number of 
times that E can repeat. 
 
If node E is optional and repeats from 0 to N times, 
Equation 3 above is used to find the number of sub-tree 
combinations. 
 
Noting that the number of sub-tree combinations that can 
be formed is equal to the number of structurally distinct 
messages that can be constructed, we can now apply our 
method to the tree shown in Figure 2. Above we found that 

 = 85.  For F2, we have  = 3.  We then have at S1, CF1 CF 2
SS1= 85 × 3 = 255.  Node S1 can repeat from one to two 
times.  Therefore, = 255 +  = 65280. CS1

1 2552

 
Thus we see that even for our overly simplified profile, 
there are still 65,280 possible messages that can be 
generated.  Even this number of messages is generally too 
large to work with, and the number for a more realistic 
profile would be much larger.  Before examining a more 
realistic profile below, we continue working with our toy 
profile to illustrate our approach for reducing the number of 
messages through various filtering techniques.  Before we 
proceed with filtering messages, however, we want to take 
a closer look at our counting formulas.  
 
3.1 Concept of Order 
 We began our attempt at counting sub-trees by examining 
the node element F1.  We found that for a single 
occurrence of F1 there are four sub-trees that can be 
formed; we represented them as: (F1 (C1 C2 C3)), (F1 (C1 
C2)), (F1 (C2 C3)), and (F1 (C2)). 
 
We want to take another look at the sub-tree combinations 
we can form at F1.  We’ll simplify our representation of the 
sub-trees above by adding some definitions.  We will 
define N1 to be exactly (F1 (C1 C2 C3)), we will define N2 
to be exactly (F1 (C1 C2)), N3 to be (F1 (C2 C3)), and N4 
to be (F1 (C2)).  In this way, we can represent all sub-tree 
combinations that can be formed by two occurrences of 
F1with the first occurrence of F1 equal to N1 as:   
 
(N1 N1), (N1 N2), (N1 N3), and (N1 N4).   
 
We can represent all combinations where the first 
occurrence of F1 is N2 as:  
 
(N2 N1), (N2 N2), (N2 N3), and (N2 N4).   
 
When the first occurrence is N3, we have:  
 
(N3 N1), (N3 N2), (N3 N3), and (N3 N4).   
 
And for N4, we have: (N4 N1), (N4 N2), (N4 N3), and (N4 
N4).   

  
We can see that we have sixteen combinations, but if order 
is not significant, some of the combinations are equivalent.  
If we count combinations and order is insignificant, we 
only have ten combinations.  To make this calculation in 
general, we make use of formulas from combinatorial 
mathematics.  When repetitions are allowed (and order does 
not matter), the expression C  can be used to 
represent the number of combinations for choosing r 
objects from a set of n objects.  The value of the expression 
is given by:  

' n,r( )

 
C' n,r( )= (n + r - 1)! / r!(n - 1)! 
 

When two objects are selected from a batch of four, the 
value of the expression is ten as we got above. 

We can then replace Equation 4 and Equation 5 above, with 
the following formulas for counting sub-tree combinations 
when order does not matter.  From above, we have the 
number of sub-tree combinations that can be formed at E 
given by: 

Equation 6: = 1 +CE C ' (sE ,k)
k=M

N

∑ (node E optional, M 

> 0) 

When node E is required, we have: 

Equation 7: = CE C ' (sE ,k)
k=M

N

∑   (node E required, M > 

0) where SE  is the number of sub-trees that can be formed 
at node E for a single occurrence of node element E, M is a 
positive integer equal to the minimum number of times the 
node can repeat, and N equals the maximum number of 
times that E can repeat. 
 
If node E is optional so that the node may appear from 0 to 
N times, we replace Equation 3 above for the number of 
sub-tree combinations with: 

Equation 8: = CE C ' (sE ,k)
k= 0

N

∑  

If we apply Equation 8 at F1, we have CF1 = 1 + 4 + 10 + 
20 = 35, instead of the 85 combinations we calculated 
above.  If we continue and calculate the number of sub-tree 
combinations possible for our toy example above, we find 
that there are only 5,670 combinations instead of the 65,280 
that are possible when order is significant. 
 



4 Message Filtering 
        We now want to look at techniques for filtering the 
message set. Rather than create messages for all possible 
sub-tree combinations, we seek to find a subset of messages 
that does not grow exponentially with node cardinality.  We 
will outline a filtering approach whereby we attempt to 
maintain the structural richness of the original message set.  
We do this by including all sub-trees that we identified 
above, but we do not include all the sub-tree combinations 
in our messages.  We follow a practical approach that is 
based largely on an examination of the end point values. 
  
Leaf nodes are handled in a simple and somewhat arbitrary 
manner, but a manner that will not sacrifice the structural 
richness we are seeking to maintain.  For optional leaf 
nodes, we include two sub-trees.  In one we omit the node.  
In the second, we construct a sub-tree for the maximum end 
point value.  
  
For non-leaf nodes, we examine a number of cases below.  
For all cases, if the minimum endpoint value is zero, we 
change it to one, and work with that case instead.  Once we 
complete our calculations, we then add one additional sub-
tree.  Since the minimum endpoint value does not have to 
be zero for an optional node, we apply the same strategy for 
all optional nodes.  
 
For the cases considered below, let L equal to the lower 
endpoint value and U equal to the upper end point value for 
a given node.  Let N equal to the number of sub-trees that 
can be formed at that node. 
 
First we consider required nodes that have only leave nodes 
for children. 
 
Case 1.   L = U = N.  In this case, a message with the node 
element repeated U times is constructed.  With each 
repetition of the node, a distinct sub-tree is represented.  
Since the number of sub-trees, N, that can be formed at the 
node is equal to U, all sub-tree structures are encompassed 
with this one message. 
 
Case 2.   L + U = N.  In this case, a message with the node 
element repeated U times is again constructed.  A second 
message with the node element repeated L times is also 
constructed. A distinct sub-tree is represented for each 
occurrence of the node in the two messages.  Since, the 
total number of sub-trees, N, is equal to the sum of L and U, 
all sub-trees can be maintained with two messages. 
  
Case 3.   L + U > N.  In this case, two messages are again 
constructed, one with the node repeated U times and one 
with it repeated L times.  For the first N occurrences of the 
node, a distinct sub-tree representation is included.  For the 
remaining N – L + U occurrences, sub-trees are arbitrarily 
selected. 

 
Case 4.   L + U < N.  For this case, let K be a positive 
integer equal to N – (L + U), i.e., K + L + U = N, the 
number of sub-trees.  Then 2 +upper (K ÷ U) messages are 
constructed, where upper is a function that maps its 
argument to the nearest integer that is greater than or equal 
to its argument.  When K≤ U, this results in constructing 
three messages.  If K > U, then the number of times that K 
divides U determines how many messages are constructed. 
 
First two messages are constructed in the same manner as 
above, one with the node repeated U  (maximum) times and 
the second with the node repeated L (minimum) times.  
After these two messages have been constructed, there are 
K sub-trees that have not been accounted for in either 
message.  When K≤ U, upper (K ÷ U) equals one.  And 
since K is less than U, and the element can be repeated up 
to U times, with one additional message the remaining K 
sub-trees can be accounted for. If K > U, then when U 
divides K, with K / U additional messages all sub-trees can 
be accounted for.  If U does not divide K, then the 
remainder will be the number of sub-trees that are 
unaccounted for.  Since this number must be less than U, 
with one additional message all sub-trees can be accounted 
for.  Thus, 2 + upper (K + U) is the number of messages we 
want in both cases.   
 
An example of the above can be illustrated by selecting a 
few arbitrary numbers.  If L = 2 and U = 5 and there are 10 
sub-trees so that N = 10, then K = 3.  It’s clear that with the 
first two messages 7 sub-trees can be accounted for and 
with one additional message the remaining 3 can be 
accounted for.  So, 3 messages are needed, which is the 
number the above formula yields.  If N is 20 instead, then K 
is 13.  The above formula yields 5 messages in this case.  
We can see that with 4 messages 17 sub-trees are accounted 
for (one of the messages accounts for only 2 sub-trees) and 
to account for the remaining 3 one more message is needed. 
  
The cases examined above apply to required nodes.  
Optional nodes can easily be handled by adding one to the 
results obtained for required nodes to account for the empty 
sub-tree. 
 
To extend our approach to include all nodes, we proceed 
from the bottom of the tree as we did above and work 
upwards.  Once we establish the numbers for sub-trees at 
nodes near the bottom of the tree, we treat the nodes as 
leave nodes and continue moving up the tree until we reach 
the root of the tree.  Rather than trying to elaborate the 
details abstractly as we’ve done above, we’ll illustrate by 
applying the technique to the toy tree we constructed in 
Figure 2 above. 
 



4.1 A Filtering Example 
  Here we illustrate the technique described in the 
previous section by applying the technique to the profile 
tree shown in Figure 2.  We begin by examining node 
element F1.  There are four sub-trees to account for at F1.   
Using the notation introduced above, the four possibilities 
are represented as follows:  (F1 (C1 C2)), (F1 (C1 C2 C3)), 
(F1 (C2 C3)), (F1 (C2)). 
  
Ignoring the optional case initially, at F1, L = 1, U = 3 and 
N = 4.  Thus Case 2 above applies where L + U = N.  In this 
case, two messages are constructed.  Three of the sub-trees 
are accounted for with one message, and with one 
additional message the remaining sub-tree is accounted for.  
Ignoring the other branches of the tree for now (here, we 
can use any valid configuration), we would construct one 
message for the maximum endpoint containing the 
following structure:  (F1 (C1 C2)), (F1 (C1 C2 C3)), (F1 
(C2 C3)) 
 
The second message with the node element repeated only 
one time would capture the one remaining sub-tree:  (F1 
(C2)) 
  
Since the node element F1 is optional, another message 
would be needed to account for the empty tree.   
 
Next, we move up the tree to node S1.  The node is treated 
as a node with children that are all leaf nodes would be 
treated.  At F1, the child node is treated as a node that can 
vary in one of three ways to account for the three messages 
that need to be incorporated.  At F2, two variations are 
accounted for.  So, S1 is treated as a node where six sub-
trees need to be incorporated into the messages that are to 
be constructed. 
 
Thus, L = 1, U = 2, and N = 6 at S1.  This falls under Case 
4 above with L + U < N.  In this case K = 3, and upper (K ÷ 
U) = 2, so that four messages are constructed.  The four 
messages can be represented as follows: 
 
(i) (S1) (S1 (F1 (C1)(C2)) (F1 (C1)(C2)(C3)) (F1 (C2)(C3))) 
(ii) (S1 (F1 (C1)(C2)) (F1 (C1)(C2)(C3)) (F1 (C2)(C3)) (F2)(F2)) 
(iii) (S1 (F1 (C2))) (S1 (F1 (C2)) (F2)) 
(iv) (S1 (F2)) 
  
In the first message, the element S1 is repeated twice, the 
maximum endpoint value.  In the second, the minimum end 
point value is used.  In the third, the element is again 
repeated the maximum number of times allowed.  At this 
point, one sub-tree is still not represented, and this structure 
is handled with the forth message. 
 
We have thus substantially reduced the number of messages 
that need to be constructed for our toy tree from 65,280 
(when order is significant) to only 4. 

 
4.2 Applying the Counting and Filtering 

Techniques 
  We have developed a Java implementation of the above 
techniques and have successfully applied them to 
substantially larger profiles than the toy example we looked 
at above.  We have also incorporated the implementation 
into our Message Maker application.  This addition to 
Message Maker gives it the capability to provide a count of 
the total number of structurally distinct messages for any 
profile, provide a message count for the various filtering 
techniques, and generate the filtered message sets. 
 
The table below shows the results of applying two filters to 
a more realistic test profile.  The second filter is a 
modification of the one described above.  The essential 
difference between it and the one described above is 
captured in how we handle the element node F1 in our toy 
example.  Rather than accounting for four sub-trees, we 
only consider two, one with all optional children included 
and one with only required nodes included.  By applying 
both filtering techniques we were able to reduce the 
message set from over 8 million to less than 8 hundred; we 
are investigating additional techniques that should further 
reduce the message set. 
  

Order Significant Order Insignificant 
None F2 None F2 F1 F1&2 

8257536 8064 5308416 5184 786432 768 

Table 1: NIST Test Profile 

5 Conclusions 
 We have successfully formulated a technique for 
identifying HL7 messages conforming to an XML profile.  
The technique gives us a measurement for assessing the 
scope of our testing problem.  While the scope of the 
problem is generally very large, through filtering 
techniques, we are able to reduce it to a workable size.  We 
can apply filters that substantially reduce the size of the 
total message set without significantly sacrificing the 
structural qualities of the original set.  Furthermore, we are 
capable of generating HL7 encodings of the filtered 
message sets. 
 
As of yet, we have not attempted to assess the effectiveness 
of our message sets in evaluating HL7 implementations.  In 
the next phase of our work, we plan to undertake the 
development of a testing framework that will enable us to 
make this assessment.  We anticipate that the message sets 
generated using the techniques discussed in this paper will 
provide an effective set of messages for assessing the core 
behavior of an HL7 implementation.  To comprehensively 
test an implementation, it will be necessary to also 
incorporate error messages, i.e., messages that adhere to the 
implementation profile in a number of ways, but violate 



important aspects of the profile requirements.  Also, it will 
be necessary to consider content variations of the test 
messages.  Support for generating messages in both the 
latter cases is provided by our Message Maker 
implementation.  With the capabilities built into Message 
Maker combined with the use of the techniques described 
in this paper, we anticipate the capability to generate sets of 
messages that will enable thoroughly assessing the behavior 
of implementations of the Hl7 standard. 
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