
Concrete Multiplicative Complexity of Symmetric
Functions

Joan Boyar1? and René Peralta2??

1 Dept. of Math. and Computer Science, University of Southern Denmark
joan@imada.sdu.dk

2 Security Division
Information Technology Laboratory, NIST

rene.peralta@nist.gov

Abstract. The multiplicative complexity of a Boolean function f is defined as
the minimum number of binary conjunction (AND) gates required to construct
a circuit representing f , when only exclusive-or, conjunction and negation gates
may be used. This article explores in detail the multiplicative complexity of sym-
metric Boolean functions. New techniques that allow such exploration are intro-
duced. They are powerful enough to give exact multiplicative complexities for
several classes of symmetric functions. In particular, the multiplicative complex-
ity of computing the Hamming weight of n bits is shown to be exactly n−HN(n),
where HN(n) is the Hamming weight of the binary representation of n. We also
show a close relationship between the complexity of symmetric functions and
fractals derived from the parity of binomial coefficients.

1 Introduction

Much research in circuit complexity is devoted to the following problem: Given
a Boolean function and a supply of gate types, construct a circuit which com-
putes the function and is optimal according to some criteria. It seems to be very
difficult in general to obtain exact bounds for specific functions. The multiplica-
tive complexity c∧(f) of a Boolean function f is the number of conjunctions
necessary and sufficient to implement a circuit which computes f over the basis
(∧,⊕, 1) (alternatively, the number of multiplications necessary and sufficient
to calculate a function over GF2 via a straight-line program).

Our initial motivation for studying multiplicative complexity came from
cryptography. Many cryptographic protocols involve proving predicates about
a string X that is available in committed form only, i.e., the bits of X are indi-
vidually encrypted using a bit-commitment scheme. In [3] a construction is given

? Partially supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT), and by the Danish Natural Science Research
Council (SNF).

?? Part of this work was done at the Computer Science Department, Yale University, prior to this
author joining NIST. While at Yale, this work was partially supported by NSF grant CCR-
0081823.

for a non-interactive cryptographic proof of an arbitrary predicate F on X . The
predicate F is defined by a verification circuit C containing AND, NOT, and
XOR gates only. The length of these discreet proofs is linear in the number of
AND gates in C and is unaffected by the number of NOT or XOR gates. Another
promising area of application of these results is in the communication complex-
ity of secure multi-party computation. In general, for these protocols, multipli-
cations require communication, but linear operations do not. This holds for very
different paradigms for building protocols, those based on secret sharing were
introduced in [2, 7] and those based on threshold homomorphic encryption were
introduced in [6]. For more recent results, see [9].

We focus on symmetric functions, which are functions dependent only on
the Hamming weight −→H (x) of the input x ∈ GFn

2 . Obtaining tight bounds is
important because symmetric functions can be building blocks for arithmetic
circuits, some of which involve recursive use of simple symmetric functions.
Sub-optimal implementations of the latter, even by an additive constant fac-
tor, translate into multiplicative extra costs when building arithmetic circuits.
In cryptographic applications, whether or not a circuit is of practical use often
depends on constant multiplicative factors in the number of AND gates used.

The study of multiplicative complexity may prove useful in obtaining up-
per bounds on the computational complexity of functions. If a function f has
multiplicative complexity O(log(n)), then, for all x in the domain of f , an ele-
ment of the pre-image of y = f(x) can be found in polynomial-time as follows:
Guess the values of inputs to the AND gates in a circuit for f . This reduces the
circuit to a collection of linear circuits. Now find an x such that y = f(x) us-
ing Gaussian elimination over GF2. This shows that, one-way functions, if they
exist, have super-logarithmic multiplicative complexity. On the other hand, low
multiplicative complexity circuits may lead to better algorithms for inverting
functions of importance in cryptology.

Previous work. Multiplicative complexity has been investigated previously by
Aleksanyan [1], Schnorr [14], and Mirwald and Schnorr [11]. Their work was
exclusively concerned with quadratic forms. Multiplicative complexity has more
often been used to refer to more general algebraic computations. This subject
has an extensive history (see, for example, [5]), since multiplication is often the
dominant operation in this context.

Very little is known about multiplicative complexity of specific functions.
In this paper we concentrate on the concrete (as opposed to asymptotic) multi-
plicative complexity of symmetric functions. In an earlier paper [4], we showed
the following results:

– A general upper bound of n+3
√

n for any symmetric function f . This estab-
lishes a separation between Boolean and multiplicative complexity for sym-

metric functions. Paul [12] and Stockmeyer [15] have shown lower bounds
of the form 2.5n − O(1) for the Boolean complexity of infinite families of
symmetric functions;

– Let Σn
. be the set of symmetric predicates on n bits. We showed an upper

bound of 2n− log2 n for the complexity c∧(Σn
.) of simultaneously comput-

ing all symmetric functions on n bits (the asymptotic result c∧(Σn
.) = O(n)

was obtained earlier by Mihaı̆ljuk [10]).

Our results. Several new upper and lower bounds on the multiplicative com-
plexity of symmetric functions are obtained. In particular, it is shown that the
multiplicative complexity of computing the Hamming weight is exactly n −
HN(n), where HN(n) is the Hamming weight of the binary representation of
n. This is a rather surprising result, given the sparsity of exact computational
complexity bounds known.

A new technique, using a normal form for (⊕, 1,∧) circuits and elemen-
tary linear algebra, is used to show that any non-linear symmetric function on
n variables has multiplicative complexity at least bn

2 c. Properties of binomial
coefficients are shown to yield the following lower bounds for the counting
(exactly-k) and threshold-k functions on n variables:

c∧(En
k) ≥ max{k − 1, n− k − 1, 2blog2 nc − 2, ln,k − 1}

c∧(Tn
k) ≥ max{k − 1, n− k, 2blog2 nc − 1, ln−1,k−1}

where ln,k is the bitwise OR of n− k and k. Tighter bounds for several families
of symmetric functions are obtained by considering the multiplicative complex-
ity of such functions when restricted to hyperplanes in GFn

2 . In particular, this
technique yields the exact complexities of the elementary symmetric functions
Σn

2 , Σn
3 , Σn

n−1, Σ
n
n−2, Σ

n
n−3. Yet another application of hyperplane restrictions

yields new general lower bounds for infinite subclasses of symmetric functions.
Intriguingly, these subclasses are defined by fractals on the Cartesian plane.

More constructively, general techniques are developed for proving upper
bounds for elementary symmetric functions. These, plus properties of Pascal’s
triangle modulo 2 (known in the fractals literature as Sierpinski’s gasket), are
used to prove upper bounds for the counting functions, En

k (x), and the thresh-
old functions, Tn

k (x). These general techniques are shown to give many tight
results. In addition, a general upper bound on the threshold-k functions, Tn

k , is
found: c∧(Tn

k) ≤ n−HN(n) + dlog2(n + 1)e − 1 for all k ≥ 1.
In the following sections, and due to space constraints, most proofs will be

omitted.

2 Some simple observations and a normal form

Each Boolean function f on n variables has a unique representation as a mul-
tilinear (i.e. square-free) polynomial over GF2. Since xi = x over GF2, we
assume throughout the following that all polynomials are multilinear. By the
“degree of f”, we will mean the degree of its unique representing polynomial.
It is known that a Boolean function of degree d has multiplicative complexity at
least d− 1. This we call the degree lower bound.

We say that a circuit is optimal for f if it has c∧(f) AND gates. Since
y ∧ (x⊕1) = (y ∧ x)⊕y, optimal circuits need not have more than one nega-
tion. If present, we may assume this negation is the last gate in the circuit. It
is not hard to see that optimal circuits for a Boolean function f(x) require a
negation if and only if f(0) = 1, which holds if and only if the polynomial of
f has a constant term. Thus we may divide Boolean functions into “positive”
functions (those for which f(0) = 0) and “negative” functions. There is a bijec-
tion σ(f) = f⊕1 between positive and negative functions. Since the bijection
preserves multiplicative complexity, we may restrict our study of multiplicative
complexity to functions over the basis (⊕,∧). For technical reasons, and with-
out affecting the multiplicative complexity of functions, we allow ⊕ gates to
contain any number of inputs (at least one). AND gates, though, are restricted
to fan-in exactly 2. We call a gate “internal” if its output is not the output to
the circuit. We say a circuit is in Layered Normal Form (LNF) if i) all inputs go
only to ⊕ gates; and ii) outputs of all internal ⊕ gates are inputs only to ∧ gates.
It is not hard to see that all positive functions have optimal circuits in Layered
Normal Form.

Logical expressions over the basis (∧,⊕) correspond to arithmetic expres-
sions over GF2. We will use the latter notation for the most part of this paper:
a⊕b, a ∧ b, ā will be written a⊕b, ab, a⊕1, respectively. The kth elementary
symmetric function on n variables x1, x2, . . . , xn is defined by

Σn
k (x1, x2, . . . , xn) =

⊕
S⊆{1,...,n},|S|=k

∏
i∈S

xi (1 ≤ k ≤ n).

For readability we will also use the alternative notations Σn
k (x) or simply Σn

k .
It will prove convenient as well to define Σn

0 = 1.
A classical result states that every symmetric function can be represented

as a sum of elementary symmetric functions (see [16]). Consider, for example,
the MAJORITY function on three variables (i.e. the threshold function T 3

2 =
Σ3

2). Σ3
2(x1, x2, x3) = x1x2⊕x1x3⊕x2x3 = (x1⊕x2)(x1⊕x3)⊕x1. The last

equality establishes c∧(T 3
2) = 1, and also serves to show that the algebraic

manipulations necessary to obtain optimal circuits may not be obvious.
The following lemmas appear in [4]:

Lemma 1. Represent the positive integer k as a sum of powers of 2: k = 2i0 +
2i1 + . . .+2ij . Each i is a position of a non-zero bit in the binary representation
of k. Then for any n ≥ k, Σn

k = Σn
2i0

Σn
2i1

. . . Σn
2ij

.

Lemma 2. Let y = ykyk−1 . . . y0 be the Hamming weight, in binary represen-
tation, of the n-bit string x. Then yi = Σn

2i(x) for i = 0, . . . , k.3

These show, for example, that Σn
11 = Σn

8 Σn
2 Σn

1 for n ≥ 11, and the Hamming
weight of a 10-bit string x is a string of length 4 whose bits are Σ10

8 (x), Σ10
4 (x),

Σ10
2 (x), and Σ10

1 (x). Finally, we observe that if g : GF k
2 → GF2 is derived

from f : GFn
2 → GF2 by fixing the values of n − k variables of f , then

c∧(g) ≤ c∧(f). We call g a restriction of f .

3 A tight lower bound on the multiplicative complexity of
symmetric functions

Given a Boolean function f over GFn
2 and a subset S of {x1, . . . , xn}, we

denote by fS̄ the function obtained from f by complementing the inputs in S.
If fS̄ = f , we say S is complementable. We say S is “proper” if 0 < |S| < n.

Lemma 3. If a Boolean function f over GFn
2 has multiplicative complexity less

than bn−1
2 c, then it has a proper complementable set.

Proof. Consider an optimal LNF circuit for f . If the circuit has at most bn−1
2 c−

1 AND gates, the number of ⊕ gates is at most k = 2(bn−1
2 c − 1) + 1 ≤ n− 2

(recall that a circuit in LNF form may have at most one ⊕ gate which is not
the input to an ∧ gate). Label these gates γ1, . . . , γk. Define an n × k matrix
A = (aij) over GF2 as follows: aij = 1 iff xi is an input to γj . Rows of the
matrix correspond to inputs of the circuit. Columns correspond to⊕ gates. Since
rank(A) ≤ k ≤ n− 2, there is a subset S (with 0 < |S| ≤ n− 1) of the rows
whose sum over GF k

2 is 0. Since in a LNF circuit all inputs go only to ⊕ gates,
and each ⊕ gate has an even number of inputs from S, S is a complementable
set of inputs. ut

For a symmetric function f , if a proper set S of cardinality k is comple-
mentable, then every set of cardinality k is complementable, including the sets
{x1, . . . , xk} and {x2, . . . , xk+1}. Hence, {x1, xk+1} is also complementable,
so any two inputs are complementable. Thus if the Hamming weights of x and
y have the same parity, then f(x) = f(y), so f is linear. We have shown

3 See also [13].

Lemma 4. If a symmetric Boolean function f has a proper complementable set
S, then f must be linear (i.e. c∧(f) = 0).

A lower bound of bn−1
2 c for non-linear symmetric functions immediately

follows. In the full paper, we prove the slightly stronger result:

Theorem 1. The multiplicative complexity of an n−variate non-linear symmet-
ric function is at least bn

2 c.

4 Hyperplane restrictions yield fractal lower bounds

We now describe a new technique which uses the degree lower bound, but often
achieves stronger lower bounds. A plane E in GFn

2 can be specified by an equa-
tion

⊕
i∈IE

xi = 0, where IE ⊆ {1, . . . , n}. For notational simplicity, if the in-
dex set is empty, we define

⊕
i∈φxi = 0. Given a Boolean function f on n-bits,

we denote the restriction of f to the plane E by f↓E . Letting t = Max(IE), we
view f↓E as a function on n−1 variables obtained by substituting

⊕
i∈IE−{t}xi

for xt in the polynomial for f . There are many ways to obtain a circuit for f↓E
from a circuit for f . For C in Layered Normal Form, C↓E will denote the circuit
constructed by replacing xt by all of the other variables in IE , removing pairs
of identical inputs to XOR gates, and repeatedly removing XOR gates with no
inputs and unnecessary AND gates. C↓E will be in Layered Normal Form. We
now proceed to prove lower bounds by choosing planes which will decrease the
number of AND gates in a circuit without decreasing the degree of the func-
tion which is computed. The degree lower bound is then applied to the function
resulting from the restriction.

Lemma 5. Suppose f is an n−variate function of degree k > 1. If c∧(f) =
k − 1 + e, where e ≥ 0, then there exist u ≤ e + 1 planes E1, E2, ..., Eu such
that the degree of (. . . ((f↓E1)↓E2) . . .)↓Eu is at most k − 1.

Corollary 1. Suppose f is an n−variate symmetric function of degree k > 1.
If c∧(f) = k− 1, then deg(f↓E) ≤ k− 1 for at least two distinct planes E1, E2

where E1 can be specified by xn =
⊕t1

i=1xi (t1 < n), and E2 can be specified
using an equation with at most n− 2 terms in the sum.

The technique of hyperplane restrictions yields lower bounds on multiplica-
tive complexity which are better than the degree lower bound for many symmet-
ric functions, including all with degree less than n − 1. We next state some of
these bounds. In section 6, the bound given by the following theorem is shown
to be tight for Σn

n−2 and Σn
n−3.

Theorem 2. Let f be a n−variate symmetric function of degree m, with 1 <
m < n− 1. Then c∧(f) ≥ m.

The proof of Theorem 2 involves one hyperplane restriction. Lemma 5 can
be used to prove tighter bounds using successive hyperplane restrictions under
certain combinatorial constraints.

Theorem 3. Let f be a n−variate symmetric function of degree m. Suppose
1 < m ≤ n− 2 and n > 4. Then, if

(
n−4
m−2

)
is even,

(
n−3
m−1

)
is even, and

(
n−2
m

)
is

odd, then c∧(f) ≥ m + 1.

Theorem 4. Let f be a n−variate symmetric function of degree m. If
(

n−6
m−3

)
,(

n−5
m−2

)
, and

(
n−4
m−1

)
are even, while

(
n−3
m

)
is odd, then c∧(f) ≥ m + 2.

Theorem 3 gives the nontrivial lower bound c∧(Σ8
4) ≥ 5. The set of points

in the plane that satisfy the conditions of either Theorem 3 or Theorem 4 form
fractals. Figure 1 plots these points for Theorem 3. The hyperplane restriction
technique is a general tool for relating combinatorial constraints to multiplica-
tive complexity. The combinatorial constraints thus derived seem to always yield
fractals. An interesting question is whether this is solely a result of the bounding
technique or the exact complexity of the elementary symmetric functions is in
fact fractal in nature.

0

100

200

300

400

500

0 100 200 300 400 500
··
···············
··
·····
·····················
··
·····
·············
··
·····
··
·····
··
·····
··
·········
······
·········
··········
·
··
·
····
·
··
·
··
·
··
·
··
···
····
···
······
·
··
·
··
·
··
·
··
···
····
···
····
·
··
·
··
···
····
···
····
···
····
···
····
·······
········

·······
············
·
··
·
··
·
··
·

···
···
·

···
···
·
··
·
··
·

···
···
·

···
···
·

···
···
·

···
···
·

·····
·····
·····

·····
·····
·····
··
·
··
·
···
···
·

···
···
·

···
···
·

···
···
·

·····
·····
·····

·····
·····
·····

···
···
·

···
···
·

·····
·····
·····

·····
·····
·····

·····
·····
·····

·····
·····
·····

·········
·········
·········
····

·········
·········
·········
········

·

··

·

····

·

··

·

··

·

··

·

··

···

····

···

······

·

··

·

··

·

··

·

··

···

····

···

····

·

··

·

··

···

····

···

····

···

····

···

····

·······

········

·······

··········

·

··

·

··

·

··

·

··

···

···
·

···

···
·

·

··

·

··

···

···
·

···

···
·

···

···
·

···

···
·

·····
··
·····
···

·····
··
·····
···

·

··

·

··

···
···
·

···
···
·

···
···
·

···
···
·

·····
··
·····
···

·····
··
·····
···

···
···
·

···
···
·

·····
··
·····
···

·····
··
·····
···

·····
··
·····
···

·····
··
·····
···

·········
······
·········
·······

·········
······
·········
·······
··
·
·
·

·
·
·

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

···
····
····
····

···
····
····
····

·······
········
········
········

·······
········
········
········

·
·
·

·
·
·

··
··
··
·

··
··
··
·

··
··
··
·

··
··
··
·

···
···
···
···
···

···
···
···
···
···

··
··
··
·

··
··
··
·

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

··
··
··
·

··
··
··
·

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

···
···
···
···
···

···
···
···
···
···

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

·········
·········
·········
·········
·········
·········
·········

·········
·········
·········
·········
·········
·········
·········
····

·

··

·

····

·

··

·

··

·

··

·

··

···

····

···

······

·

··

·

··

·

··

·

··

···

····

···

····

·

··

·

··

···

····

···

····

···

····

···

····

·······

········

·······

··········

·

··

·

··

·

··

·

··

···

···
·

···

···
·

·

··

·

··

···

···
·

···

···
·

···

···
·

···

···
·

·····
··

·····
···

·····
··

·····
···

·

··

·

··

···

···
·

···

···
·

···

···
·

···

···
·

·····
··

·····
···

·····
··

·····
···

···

···
·

···

···
·

·····
··

·····
···

·····
··

·····
···

·····
··

·····
···

·····
··

·····
···

·········
······

·········
·······

·········
······

·········
·······
··

·

·
·

·

·
·

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

···
····

····
····

···
····

····
····

·······
········

········
········

·······
········

········
········

·

·
·

·

·
·

··
·

··
··

··
·

··
··

··
·

··
··

··
·

··
··

···
···
·

···
···
··

···
···
·

···
···
··

··
·

··
··

··
·

··
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

··
·

··
··

··
·

··
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

···
···
·

···
···
··

···
···
·

···
···
··

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

·········
·········
·········
····

·········
·········
·········
·····

·········
·········
·········
····

·········
·········
·········
·····

··

·

·

·

·

·

·

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

···

····

····

····

···

····

····

····

·······

········

········

········

·······

········

········

········

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···

···
·

···
·

···
·

···

···
·

···
·

···
·

·

··

··

··

·

··

··

··

···

···
·

···
·

···
·

···

···
·

···
·

···
·

···

···
·

···
·

···
·

···

···
·

···
·

···
·

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·

··

··

··

·

··

··

··

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

···
···
·
···
·
···
·

···
···
·
···
·
···
·

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·········
······
·········
·······
·········
·······
·········
·······

·········
······
·········
·······
·········
·······
·········
·······

·

·

·

·

·

·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·······
········
········
········
········
········
········
········

·······
········
········
········
········
········
········
········

·
·
·
·
·
·
·

·
·
·
·
·
·
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·

Fig. 1. Points (n,m) for which c∧(Σn
m) ≥ m + 1, m < n < 512.

5 The exact multiplicative complexity of the Hamming weight
function

The result of computing a symmetric function on some inputs is determined
completely by the Hamming weight of those inputs. In this section, we in-
vestigate the multiplicative complexity of computing the Hamming weight. Let

−→
H (x) denote the binary representation of the Hamming weight of a bit string
x ∈ GFn

2 . −→H (x) has fixed length dlog2(n + 1)e and may contain leading ze-
ros. The function −→H () will be denoted by Hn when the parameter n needs to
be explicitly stated. Let HN(n) denote the Hamming weight of the binary rep-
resentation of the integer n. Theorem 8 in [4] can be seen to give the result
that c∧(Hn) ≤ n − HN(n). Here we prove a matching lower bound. It will
prove useful to define the Hamming weight of the empty string λ to be 0, i.e.−→
H (λ) = HN(0) = 0.

Theorem 5. c∧(Hn) = n−HN(n), for all n ≥ 1.

Proof. We begin supposing that x is a bit string of length 2k. By Lemma 2, the
k + 1st bit of −→H (x) is Σ2k

2k (x), which is a polynomial of degree 2k. Thus, by
the degree lower bound, c∧(H2k

) ≥ 2k − HN(2k) = 2k − 1 for all k ≥ 0.
This matches the upper bound, and these known bounds will now be used to
prove the lower bound for lengths which are not powers of 2. For notational
brevity, we will denote c∧(Hn) by hn. Our proof is by induction on k with
base k = 1. Let k > 1 and assume the theorem holds for all n′ ≤ 2k−1. Let
n = 2k − i for some integer 1 ≤ i < 2k−1. Then n + (i − 1) = 2k − 1. Note
that if 0 ≤ a, b, k and n = 2k − 1 = a + b, then HN(n) = HN(a) + HN(b).
Thus, k − HN(i − 1) = HN(n). We design a circuit for the Hamming weight
of a string x of length 2k = n + (i − 1) + 1 as follows. We split x into three
strings u,v, c of lengths n, i− 1, and 1, respectively. We use optimal circuits to
compute −→H (u) and −→H (v). Note that the longest of these two strings is −→H (u),
which has length k. Then we use the standard addition circuit with carry-in c to
compute c+−→

H (u)+−→
H (v) (which uses k multiplications since a full adder uses

just one multiplication for T 3
2). The result is−→H (x). By the inductive hypothesis,

the circuit for −→H (v) contains hi−1 = (i−1)−HN(i−1) multiplications. Thus
the circuit for −→H (x) contains hn + (i − 1) − HN(i − 1) + k multiplications.
Since c∧(H2k

) ≥ 2k − 1, this quantity must be at least 2k − 1, i.e.

hn + (i− 1)−HN(i− 1) + k ≥ 2k − 1.

Substituting HN(n) for k − HN(i − 1), n for 2k − i, and rearranging terms,
we obtain hn ≥ n − HN(n). This proves the theorem since the lower bound
matches the upper bound from [4]. ut

Truncated Hamming weight. Let Hn
r be the function which computes the r

low-order bits of the Hamming weight of a vector of length n ≥ 2r−1. The
complexity of this function is 0 when r = 1 and n−HN(n) when n ≤ 2r − 1.
A recursive construction (see the full paper) yields the following results:

Lemma 6. For j ≥ r ≥ 1, we have c∧(H2j−1
r) ≤

(
2r−1−1
2r−1

)
2j − r + 1.

Lemma 7. Let r ≥ 1 and n ≥ 2r. Let γ = n mod 2r. Then, c∧(Hn
r) ≤(

2r−1−1
2r−1

)
(n− γ) + γ −HN(γ).

6 Building blocks

We now discuss subclasses of symmetric functions. The idea is to bound, as
tightly as possible, the multiplicative complexity of classes of functions which
can be used to construct arbitrary symmetric functions. We focus on three classes
of functions:

– The elementary symmetric functions Σn
k (x).

– The “counting” function En
k (x), which is 1 if and only if the Hamming

weight of x is k.
– The “threshold” function Tn

k (x), which is 1 if and only if the Hamming
weight of x is k or more.

First, we consider the elementary symmetric functions, Σn
k . Let c∧(f1, . . . , fk)

denote the multiplicative complexity of simultaneously computing f1, . . . , fk.
An immediate corollary of Lemma 7 is the following:

Corollary 2. Let r ≥ 1, n ≥ 2r−1, and γ = (n mod 2r). Then

c∧(Σn
20 , . . . , Σ

n
2r−1) ≤

(
2r−1 − 1

2r−1

)
(n− γ) + γ −HN(γ).

By Lemma 1, the value of Σn
k (x) is simply the GF2 product of at most HN(k)

of the low-order dlog2(k + 1)e bits of the Hamming weight of x. Therefore,
Corollary 2 yields a general upper bound for Σn

k and a less general result:

Theorem 6. Let n ≥ k ≥ 1, and r = dlog2(k + 1)e. Let γ = (n mod 2r).
c∧(Σn

k) ≤
(

2r−1−1
2r−1

)
(n− γ) + γ −HN(γ) + HN(k)− 1.

Corollary 3. For n ≥ 4 and n′ = n mod 4,
c∧(Σn

4) ≤ c∧(Σn
2 , Σn

4) ≤ 3
4n′ + bn mod 4

2 c.

For example, Corollary 3 yields the result c∧(Σ5
4) = 3, though this upper

bound also follows from Theorem 5, since Σ5
4(x) is the high-order bit of −→H (x).

We now state several results for the complexity of Σn
k for various specific values

of k.

Theorem 7. c∧(Σn
2) = bn

2 c and c∧(Σn
3) = dn

2 e.

Lemma 8. If m is odd and 1 ≤ m ≤ n, then Σn
m = Σn−1

m−1Σ
n
1 and therefore

c∧(Σn
m) ≤ c∧(Σn−1

m−1) + 1.

Lemma 9. c∧(Σn
n−1) = n−2, c∧(Σn

n−2) = n−2 for n > 3, and c∧(Σn
n−3) =

n− 3 for n > 4.

We now turn to the counting and threshold functions, En
k (x) and Tn

k (x). The
degree of En

k = a0Σ
n
0 ⊕ . . . ⊕ anΣn

n is the largest i such that ai is non-zero.
It is clear that ai = 0 for i < k. It turns out there is a simple formula for the
remaining ai.

Lemma 10. En
k =

⊕n
i=k aiΣ

n
i , where ai =

(
i
k

)
mod 2.

Thus, the expansions of the exactly-k functions can be “read off” rows of
Sierpinsky’s gasket. For example the expansion of E13

6 corresponds to the sixth
column (1 1 0 0 0 0 0 0) of the fractal: E13

6 = Σ13
6 ⊕Σ13

7 . Now, Σ13
6 ⊕Σ13

7 =
Σ13

4 · Σ13
2 · (1 ⊕ Σ13

1). Thus c∧(E13
6) ≤ c∧(Σ13

4 , Σ13
2) + 2. By Corollary 3,

c∧(Σ13
4 , Σ13

2) ≤ 9. Therefore c∧(E13
6) ≤ 11. This is quite remarkable given the

general upper bound of 13 + 3
√

13 > 23 from [4] (or if one considers that the
associated polynomial has over 18 thousand multiplications).

A similar lemma holds for the threshold functions since Tn
k can be expressed

recursively using Tn
k = xnEn−1

k−1⊕Tn−1
k , which says that at least k of x1, . . . , xn

are ones if and only if at least k out of x1, . . . , xn−1 are ones or (exclusive) xn is
one and exactly k − 1 out of x1, . . . , xn−1 are ones. This leads to the following
characterization of the expansion of Tn

k based on Sierpinski’s gasket.

Lemma 11. Tn
k =

⊕n
i=k biΣ

n
i where bi =

(
i−1
k−1

)
(mod 2).

Since En
k (x) = En

n−k(x̄), we have c∧(En
k) = c∧(En

n−k) for 0 ≤ k ≤ n.
Then the degree lower bound yields c∧(En

k) ≥ max{k−1, n−k−1}. Similarly,
since Tn

k (x) = 1⊕Tn
n−k+1(x̄), we have c∧(Tn

k) = c∧(Tn
n−k+1) for 1 ≤ k ≤ n,

and the degree lower bound yields c∧(Tn
k) ≥ max{k − 1, n− k}. Since Tn

n =
Σn

n , we have c∧(Tn
1) = c∧(Tn

n) = c∧(Σn
n) = n− 1.

As mentioned above, the degree of En
k (or Tn

k) will be the largest value j
such that the expansion of En

k (Tn
k) contains the term Σn

j . In the case of En
k this

will be the largest k ≤ j ≤ n such that the binomial coefficient aj =
(

j
k

)
is odd,

and in the case of Tn
k this will be the largest k ≤ j ≤ n such that bj =

(
j−1
k−1

)
is odd. Thus, the degree of Tn

k is one more than the degree of En−1
k−1 . Given this

relation, we will only consider the degree of En
k .

A theorem by Kummer [8] shows that the binomial coefficient
(

j
k

)
is odd if

and only if k v j, where the notation k v j means that if the binary represen-
tations of k and j are ksks−1...k1 and jsjs−1...j1, respectively, then for each i

such that ki = 1, it also the case that ji = 1. This can be used to give the fol-
lowing degree lower bounds on the multiplicative complexity of the exactly-k
and threshold-k functions:

Theorem 8. c∧(En
k) ≥ max{k − 1, n − k − 1, 2blog2 nc − 2, ln,k − 1} and

c∧(Tn
k) ≥ max{k − 1, n− k, 2blog2 nc − 1, ln−1,k−1}, where ln,k is the bitwise

OR of n− k and k.

We now turn to upper bounds. We develop new techniques for producing cir-
cuits with few AND gates. We refer to a set of Boolean functions on n variables
as a complete basis if any symmetric function can be expressed as a linear com-
bination of these functions. Examples of complete bases are {Σn

i | 0 ≤ i ≤ n},
and {En

i | 0 ≤ i ≤ n}. Define Aq
m =

⊕q
i=m Σn

i for m ≤ q ≤ n.4 Then
Σn

n = An
n and Σn

m = An
m⊕An

m+1 for m < n. Therefore, {An
i | 0 ≤ i ≤ n}

is complete basis. We will prove upper bounds on the multiplicative complexity
of several classes of functions by constructing circuits for functions in the class
Aq

i with 0 ≤ i ≤ q ≤ n.

Lemma 12. Let r ≥ 1 and 2r−1 ≤ n. Assume the values of Σn
2i are known for

i = 0, . . . , r−1. Then A2r−1
0 can be computed using r−1 additional AND gates.

Corollary 4. Let r ≥ 1 and 2r−1 ≤ n. Assume the values of Σn
2i are known for

i = 0, . . . , r−1. Then the functions A2s−1
0 (0 ≤ s ≤ r) can be simultaneously

computed using at most r − 1 additional AND gates.

We view the set of functions {A2s−1
0 | 0 ≤ s ≤ r}∪{Σn

2i | i = 0, . . . , r} as
a basis. The number of AND gates sufficient to compute any linear combination
of functions in this basis is no more than c∧(Hn

r) + r − 1.5 The following
corollary allows us to expand the basis.

Corollary 5. Let r ≥ 0 and 2r − 1 ≤ n. Assume the values of Σn
2i are known

for i = 0, . . . , r − 1. Then the basis {A2s−1
0 | 0 ≤ s ≤ r} ∪ {A2s−1

m | 0 ≤ s ≤
r, m = 2q, q < s} ∪ {A2s−1

m | 0 ≤ s ≤ r, m = 2q + 1, q < s} can be computed
using r − 1 additional AND gates.

Examples of results obtained using this basis are:

Lemma 13. Any symmetric function on 7 inputs has multiplicative complexity
at most 8.

Corollary 6. Let r ≥ 1, n = 2r − 1, and m = 2r−1. Then c∧(En
m) = n− 1.

4 Note that, in the notation Aq
m, the parameter n is implicit.

5 Hn
r is defined in section 5.

The majority function, a special case of the threshold function, is of partic-
ular importance in applications of this theory (e.g. electronic voting protocols).
The first two results below give bounds for the majority function and the third
general result on threshold functions is obtained using similar techniques.

Theorem 9. Let n = 2r and m = 2r−1 + 1. Then c∧(Tn
m) = n− 1.

Theorem 10. c∧(T 2m−1
m) ≤ 2dlog2 me + m− dlog2 me − 2 for all m ≥ 2.

Theorem 11. c∧(Tn
m) ≤ n−HN(n) + dlog2(n + 1)e − 1 for all m ≥ 1.

References

1. A. A. Aleksanyan. On realization of quadratic Boolean functions by systems of linear equa-
tions. Cybernetics, 25(1):9–17, 1989.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In Proceedings of the 20th ACM
Symposium on the Theory of Computing, pages 1–10, 1988.

3. J. Boyar, I. Damgård, and R. Peralta. Short non-interactive cryptographic proofs. Journal of
Cryptology, 13:449–472, 2000.

4. J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean functions
over the basis (∧,⊕, 1). Theoretical Computer Science, 235:43–57, 2000.

5. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315
of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.

6. R. Cramer, I. Damgård, and J. B. Nielsen. In EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 280–300. Springer-Verlag, 2001.

7. D. Chaum, C. Crépeau, and I. Damgård. Multi-party unconditionally secure protocols. In
Proceedings of the 20th ACM Symposium on the Theory of Computing, pages 11–19, 1988.

8. E. E. Kummer. Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine
Angew. Math., 44:93–146, 1852.

9. J.B. Nielsen and M. Hirt. Upper bounds on the communication complexity of optimally
resilient cryptographic multiparty computation. In ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 79–99. Springer-Verlag, 2005.

10. M. V. Mihaı̆ljuk. On the complexity of calculating the elementary symmetric functions over
finite fields. Sov. Math. Dokl., 20:170–174, 1979.

11. R. Mirwald and C. Schnorr. The multiplicative complexity of quadratic Boolean forms.
Theoretical Computer Science, 102(2):307–328, 1992.

12. W. J. Paul. A 2.5n lower bound on the combinational complexity of boolean functions. In
Proceedings of the 7th ACM Symposium on the Theory of Computing, pages 27–36, 1975.

13. R. Rueppel and J. Massey. The knapsack as a nonlinear function. In Abstracts of papers,
IEEE Int. Symp. on Information Theory, page 46, 1985.

14. C. P. Schnorr. The multiplicative complexity of Boolean functions. In Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, volume 357
of Lecture Notes in Computer Science, pages 45–58, 1989.

15. L. Stockmeyer. On the combinational complexity of certain symmetric Boolean functions.
Mathematical Systems Theory, 10:323–336, 1977.

16. B. L. van der Waerden. Algebra. Frederick Ungar Publishing.

