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ABSTRACT
We have developed tools and techniques that allow video
frame level synchronization of multiple free-running com-
modity video cameras, microphones, and computer nodes
using non-realtime operating systems. The techniques rely
on physical audiovisual synchronization pulses, statistical
procedures to correlate and interpolate the multiple times-
tamp streams, and software tools for review to produce
smoothed and drift-corrected timestamp streams in our mul-
timodal corpora.

In this article we present those techniques and tools. Our
project is open source and we are seeking collaborative de-
velopers for future work.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; E.5 [Files]: Organiza-
tion/strucutre; G.3 [Probability and Statistics]: Corre-
lation and regression analysis; H.3 [Information Systems
and Retrieval]: Miscellaneous

General Terms
Algorithms

Keywords
Audio/Video Synchronization; Data Streams; Timestamps;
Commodity Hardware

1. INTRODUCTION
Synchronizing multimodal data streams captured using

non-realtime systems is a complex task. There is clock drift
in the hardware itself, and also a non regular interval be-
tween successive timestamps (jitter) due to the non realtime
schedulers on the systems capturing the data. Some sources
of this jitter include disk writes, DMA, context switching,
and other sources of refractory delays.

Copyright 2006 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
VSSN’06, October 27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-496-0/06/0010 ...$5.00.

Within the National Institute of Standards and Technol-
ogy[1] Smart Space Project[2], in a collaboration with the
Automatic Meeting Recognition Project[3], we have devel-
oped a set of tools and techniques that enables us, when
recording multiple firewire cameras and microphones directly
to disk, to resynchronize all sources to within one video
frame of one another. This technique relies on pre and post
recording audiovisual synchronization pulses, statistical cor-
rection of jitter, and the use of a set of internally developed
visually oriented software tools.

In this article, we will first introduce the Smart Space
Project as well as the Automatic Meeting Recognition Project,
and then describe key technical details of our multimodal
resynchronization tools and techniques.

2. NIST SMART DATA FLOW SYSTEM
The NIST Smart Data Flow System was designed to facil-

itate research in the field of pervasive computing and smart
spaces by facilitating management of numerous sensors and
computer nodes connected in a pervasive network infrastruc-
ture. It focuses on advanced human/computer interaction;
integrated multimodal sensor networks; data flow discovery;
and sensor-fusion based context-aware interfaces that can:

• Identify speakers, gestures, or persons in the video

• Transcribe and respond to what users say

• Implement realtime security mechanisms based on con-
tinuing identification of users

• Protect privacy of vital information with realtime se-
curity

• Implement accessible work spaces for users with special
needs

• Recognize objects in video streams of the environment

In order to support the development of the necessary large-
scale NIST standard reference data sets, the integration
of many complex recognition algorithms, and sensor-fusion
processing, we developed a basic infrastructure layer for mul-
timodal laboratory data collection and experimentation[4, 5,
6]. To serve these goals we developed abstract data trans-
port mechanisms for:

• Interconnecting sensors and systems to explore issues
in distributed sensor processing
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Figure 1: Plan view of the Corpus 02 Meeting Room
Data Collection Laboratory

• Establishing a multimodal interface test-bed for acces-
sible work spaces

• Providing a multi-sensor data recording environment

Therefore, in order to ease the development of these com-
plex and highly integrated sensor-rich environments, we de-
fined a system for distributed processing and network trans-
fer of high bandwidth flows between nodes interconnected
by a server crossbar.

The NIST Smart Data Flow System, first deployed in
1999, was tightly bound to the Linux operating system be-
cause of its open source code base and high performance
networking capabilities. At that time it supported over four
times more network data throughput than other available
operating system technologies. It is the core of our data
collection system used in sensor capture, command, control,
and multimodal data review, for the NIST Automatic Meet-
ing Recognition Project.

The Version 2 Smart Flow System is currently in final
test and will be released later in 2006. It is much higher
performance, and is written to portable interfaces that can
be compiled on Linux, OS X, and Microsoft Windows. We
are testing on OS X, and Linux, but not yet on MS Windows.
We are interested in development partners who wish to port
the system to the Win32 platforms and will work with them
to help resolve any remaining architectural issues. Please
contact the authors to discuss such an undertaking.

3. NIST AUTOMATIC MEETING
RECOGNITION PROJECT

Significant research efforts have been undertaken, or are
ongoing, in mining information from newswire services, news
broadcasts, and conversational speech; and also in accessing
metadata extracted in these domains. However, less focus
has been placed upon the more challenging and equally im-
portant meeting domain which includes many subdomains
such as: judicial proceedings, legislative proceedings, lec-
tures, seminars, board meetings, and other less formal meet-
ings. All of these could benefit from automatic recognition,

Figure 2: NIST Meeting Room Data Collection
Laboratory Capture Map showing the client nodes
for camera capture, MPEG-2 demultiplexing, sound
capture, and recording

Figure 3: View of the recording operator’s Capture
and Replay station
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understanding, summarization, and information extraction
technologies, linked to online information retrieval systems.
Currently, such technologies exist only as early research pro-
totypes and require substantial continuing development.

NIST, through its Automatic Meeting Recognition Project
(also referred to as the Meeting Room Project) has begun to
make it possible for researchers to access data and metadata
associated with a variety meetings; allowing them to work
on understanding the logistics of meetings, the human-to-
human interaction involved, and other detailed speech and
video analyzes. The project supports the development of au-
dio and video recognition technologies in the context of hu-
man meetings through an extensive data collection effort[7,
8, 9].

The Meeting Room Data Collection Laboratory allows us
to record people in a common meeting environment using
a whiteboard, a large-screen Windows desktop, a computer
projector, and audio-conference equipment. In addition to
these meeting room presentation aids, there are seven high
definition cameras, six with fixed view and focus, and a
seventh with auto-focus and manual pan-tilt to follow the
presenter, as well as a Commercial Off The Shelf (COTS)
recording system enabling us to collect up to twenty-four
synchronized microphone channels. Seven of these chan-
nels are tabletop microphones, comprised of three omni-
directional microphones, and a 4-channel unit with a di-
rectional microphone pointed in each compass direction. We
also have a multiplexed tap into an audio teleconference line.
Finally, there are 16 wireless microphones, used as either 8
head-mounted and 8 lapel-mounted, or as 16 head-mounted
microphones for the meeting participants. Figure 1 presents
the current layout of the room.

The Smart Data Flow map for Meeting Room capture is
shown in Figure 2. The boxes represent client nodes, and
links between boxes the data flows. The servers (sfd) are
not represented but run one on each distributed system.
The capture map features:

• Seven MPEG-2 capture client nodes, each reading from
its Firewire video camera interface

• Seven MPEG-2 demultiplexers that split audio and
video, and export MPEG-2 Elementary Streams (ES)
to output flows of MPEG-2 I frames, and of all I, P,
and B frames

• A COTS capture client to compute and display chan-
nel volume meters, as well as listen to specific channels
being recorded

• The record-station client that displays the seven cam-
era views and a volume meter for each audio channel;
all under operator control

Each camera data stream is recorded to disk on its asso-
ciated capture computer, at 1280 x 720, 30 fps in MPEG-
2 ES, with one MPEG-2 Group Of Pictures (GOP) per 6
frames at 18Mbps, which uses about 8GB per hour. The
24 microphones collected by the COTS system are always
recorded, at 48kHz and 24bits per channel, taking over 12GB
per hour. Data is recorded on each of those systems using
the NIST Smart Data Flow System, in special file formats
(SMD) containing each individual video and audio frame,
as well as Unix Epoch timestamps, as given either by the
capture device driver, or capture software.

While this data is collected at each individual capture
system, it is also processed for display on the review station
that enables the operator to view all cameras and check the
level of each captured microphone. A view of the recording
station during an actual meeting as seen by the recording
operator can be seen in Figure 3.

4. SYNCHRONIZING MULTIMODAL DATA

4.1 A practical solution based on NTP, and
statistical interpolation

For cost and reliability reasons we elected to use commod-
ity hardware and non-realtime operating systems to record
data from multiple devices, each interfaced to a free run-
ning commodity computer. This presents some problems
in high-resolution data synchronization across the channels.
One problem is to assure that all capture systems use the
same external clock information to limit, as much as pos-
sible, drift between the clocks on the capture systems. We
found that uncorrected system clocks on commodity moth-
erboards could drift a minute or more in a single twenty-four
hour period. To help limit the extent of the problem we are
using the Network Time Protocol (NTP)[10] as an external
clock source to stabilize the commodity clocks in our data
collection network.

NTP concepts rely on the fact that time synchronization
to a local source can be achieved by synchronizing to mul-
tiple external clocks repeatedly and estimating the network
delays statistically. NTP needs a reference clock that defines
the true time to operate, and all clocks are set towards that
true time. Even when a network connection is temporarily
unavailable, NTP can use measurements from the past to
estimate current time and error. NTP will also maintain
estimates for the accuracy of the local time, and maintain
its synchronization to the master server. If the system has
been running for about an hour, it can be considered sta-
ble, and will be able to avoid setting the clock to values in
the past. It will adjust the way the computer sees time to
resynchronize to the master clock, making sure no major
synchronization issues can occur.

We are using NTP with a master node as the master clock
located on the same physical network switch as the cap-
ture nodes to propagate time synchronization information
as quickly as possible. This insures that all capture nodes
are and remain within a few milliseconds of one another
during capture.

4.2 The audio visual slate
In order to provide a common reference point in each indi-

vidual camera and individual microphone channel, we cou-
pled a movie slate clap, that generates an acoustic impulse
from an impact, to the electrical contact of a photographic
strobe flash, which triggers when the slate clap bars hit.
This gives us a multimodal event:

• on the audio channels, the clap sound is easy to spot
by displaying the audio waveform.

• on the video channel, the flash produces a light burst
that is visible in only one video frame.

In our new recording settings, since we are recording at 1/60
of a second, it is possible for the flash not to appear in a
video frame that corresponds to a flash frame, therefore we
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Figure 4: Distribution of timestamp jitter (log-log
scale) for a COTS twenty-four microphone bank.
The range spans three orders of magnitude, and
shows a complex structure.

chose to do three flashes per direction seen by a camera; i.e.
one camera on each wall and the ceiling mounted camera.

4.3 Using a capture device block index
The capture clients are designed to record data and the

timestamp associated to each frame captured. For video,
this means that each video frame should be 1

29.97
= 33.366ms

apart. Unfortunately, most off-the-shelf recording devices
do not provide internal timestamp information. In addi-
tion, the computers used to capture the data obtained from
the recording devices are simple PCs running Linux with-
out a real time kernel. The timestamps recorded by those
computers are assigned by a call to the operating system’s
internal time querying function after the data has been re-
ceived and made available to the recording program. Suc-
cessive recorded timestamps show a large random jitter on
the expected interframe Δt. This jitter can be explained by
several sources (in addition to the ones listed above), includ-
ing: scheduler delays caused by varying load on the system,
local system clock drift, disk operation, uninterruptible ker-
nel time, and particularly for the MPEG-2 cameras: data
compression time. This gives us a delay between frames
that can be quite irregular, but which is fairly accurate in
the long term owing to the properties of the NTP system.
To regularize the individual timestamps we correct them
post-capture using a simple statistical procedure.

Figure 4 shows an example of the frequency distribution
of the timestamp jitter during a COTS capture session. The
irregularity stems from the fact that we can only timestamp
the data when we get a data buffer from the Linux ker-
nel. The majority of the timestamps are under the average
value as the kernel masks other interrupts during disk in-
put/output processing, so data builds up in the capture de-
vice internal buffers, and the system processes them as fast
as it can during other periods.

The accuracy of the long-term average of the interframe
Δt suggests that simple statistical procedures might be used
to interpolate the very noisy, but relatively unbiased time es-

timate represented by the individual timestamps. However,
simply averaging the Δt values over time will not necessarily
be robust with respect to loss of blocks. We therefore use a
simple linear regression procedure against the block index.
Thus our model of time progression is:

t̂n = Δ̂ · ιn + τ̂

Where ιn is the nth block index and is not necessarily
consecutive; e.g.: there may be gaps in the sequence if blocks
were lost. The parameters Δ and τ are estimated by the
elementary expedient of minimizing the sum of squares:

S(Δ, τ) =
X

1≤n≤N

[tn − (Δ · ιn + τ)]2

This is simply done by differentiating with respect to Δ
and τ , and setting the result equal to zero, as:

δS

δΔ
= −2

X

1≤n≤N

ιn · (tn − (Δ · ιn + τ)) = 0

and

δS

δτ
= −2

X

1≤n≤N

(tn − (Δ · ιn + τ)) = 0

So that:

Δ̂ =

P
1≤n≤N (ιn − ῑ)(tn − t̄)
P

1≤n≤N (ιn − ῑ)2

and

τ̂ = t̄ − Δ̂ · ῑ
Where tn is the nth timestamp obtained from the kernel

with its highly variable additive jitter noise. This allows
a practical timestamp correction procedure that performs
well across the time spans involved in normal meetings. We
are currently developing a recursive least squares technique
using the Widrow FIR filter estimation technique[11] so as
to allow online correction of the timestamps and will report
on that at a future date.

As a basis for the linear regression, we need to have a
list of all the observed timestamps for a given capture de-
vice. Where available we also need block numbers for the
data frames. If the particular hardware device does not pro-
vide a block or frame number, we must synthesize one from
the frame count. The SMD files contain the actual data
chunk and the timestamp information for each collected data
frames. When required, another file format, using the SMM
extension collects metadata information related to each col-
lected frames (such as the the block number or frames type).
It is very resource intensive and time consuming to work
with all the data contained within SMD files, therefore we
introduced the use of a separate data chunk index file (usu-
aly refered to as the “index” files), designated by the SMI
extension, containing only the timestamp and location in
the SMD file of the corresponding data. The index file for
an 8GB video file is less than 2MB, so we can manipulate it
easily.

4.4 Jitter fix example
We apply the linear regression to the timestamp from the

original index for each capture device to the block times-
tamps, and this gives us a new index containing not only
jitter corrected timestamps, but also corrected start and end
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Insert 1 Example program output for a timestamp correc-
tion regression run

Initializing: Index check, memory allocation, ...
Checking: 20050928-0928-cots1.smi

Preprocessing, Part 1: From source index file
Analyzing: 20050928-0928-cots1.smi

Summary:
Beginning timestamp: 1,127,914,091,169,480,000 ns
End timestamp: 1,127,919,986,582,873,000 ns
Total Length: 5,895,413,393,000 ns
Seen buffer: 1,768,549
Calculated jitter: 3,333,474 ns

Preprocessing, Part 2: From memory
Method: Linear regression by method of least squares

with x_mean = 884,274.500,000
and y_mean = 2,947,871,028,514.230,957

with ’y = a + b * x’ knowing that 0 <= x < 1,768,550
where a = 268,018,824.381,486 ns

(value added to the first timestamp)
where b = 3,333,357.469,530 ns

(delay between two consecutive timestamps)
and real_y = beg_ts + y

Expected beg ts: 1,127,914,091,437,498,752 ns
Expected end ts: 1,127,919,986,643,518,080 ns

Processing to Disk
File: 20050928-0928-cots1.smi
First timestamp written: 1,127,914,091,437,498,752 ns

Last timestamp written: 1,127,919,986,643,518,080 ns

timestamps that enhance the re-linearization of the data.
Insert 1 shows the actual process involved in correcting the
index file whose jitter distribution was shown in Figure 4.

If all capture devices had no internal delays following this
step, provided no loss of blocks, the captured data would
be perfectly synchronized. Unfortunately, hardware capture
devices have various internal delays for which we must com-
pensate. For example, the video cameras have an internal
audio/video compression delay of approximately 350ms.

4.5 Finding the audiovisual synchronization
points

In order to find the point of synchronization between au-
dio and video channels we use a modified video production
slate with a strobe flash attached that is triggered by the
arm used to make the clap sound. This gives us a stable
reference point that is simultaneous in both acoustic and
video domains. To use this information, we have to find
both the audio clap in the audio signal and the flash in a
single frame of the video signal, and align the two signal
streams. To this end we developed a resynchronization tool
that displays the video frame and the corresponding audio
waveform for the specified audio and video channels. This
software uses indices from the video and audio SMD files,
as a frame-by-frame capable viewer and can jump in time
as well as change the delay between the audio and video
timestamps.

Knowing that audio data is collected at 48Khz, and writ-
ten to disk with a timestamp every 160 samples, recorded
audio frame are 3.333ms apart. Because we only have one
audio source and the audio frames are under 4ms in du-
ration, we have about 10 audio frames per video frame.
We synchronize all cameras to the microphone located at
the center of the conference table –the microphone which is
closest to the source of the clap sound. The synchronization

Figure 5: Resynchronization tool showing the video
flash and audio clap from indices after resynchro-
nization process. The Synchronization tool allows
the operator to determine delay between audio and
video by allowing the audio delay to be varied until
the clap impulse is visible in the flash frame

process then proceeds in four steps:

• Locate the acoustic claps in the audio, at the beginning
and end of the recording.

• Locate the frames with visible strobe flashes in each
video camera recording.

• Change the delay of the audio channel until the onset
of the clap impulse synchronizes with the flash frame.

• Average the delay on multiple leading flashes, and val-
idate by checking that the value does not differ by
more than one frame for slate claps at the end of the
recording.

Once the delay has been found and verified using the trail-
ing flashes, time-synchronized indices are created applying
the device-specific delays to their respective index files. Fig-
ure 5 shows the audio/video synchronization tool.

4.6 Trimming the Indices
Once the audio and the video are synchronized, we re-

play the synchronized audio and video at the beginning and
end of the meeting, and select the logical beginning and end
times. Those times gives us our “trim” times. This step is
not required for the synchronization process. It is done to
make it easier for an operator to review a recorded meet-
ing using the meeting’s real start and end times, without
including the pre- and post-recording operations. The data
contained within this subset is the core meeting informa-
tion, and is necessary for the extraction of data prior to
distribution.

Trimmed indices, also represented as SMI files, are the
result of this process. They contain all the index entries from
the original index file (timestamp and data chunk location
inside the SMD file), for a subset of the original index file,
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here, from the selected meeting beginning timestamp to the
selected meeting end timestamp. Trimmed indices allow the
use of specific parts of the full meeting without having to
create new multiple gigabyte files. They are very useful for
generating the final distribution corpora. The tools used
to extract the content of the raw audio and video data go
through the distribution pipeline using only the data content
specified by the trimmed indices. Our work in this area is
an open source project and we invite the interested reader
to contact us about collaborative development of additional
tools, or simply to obtain the tools we have described.

5. CONCLUSIONS
We have described a set of tools and techniques that

was developed to facilitate post-recording synchronization
of multimodal data on non-realtime operating systems and
commodity video and audio hardware. From audiovisual
synchronization pulses, using linear regression techniques,
and performing hardware delay correction, we offer a com-
plete method to resynchronize this type of data. The result-
ing re-synchronization is accurate to within 33ms (ie 1 video
frame).

The resynchronization tool presented was developed using
the SMD file format. SMD files record one timestamp per
data frame, which allows us not only to re-linearize captured
data, but also when using the frame-per-frame resynchro-
nization tool to be able to match an audio clap with a video
flash.

We are investigating means of replacing the flash with a
series of timed LEDs, which would give us sub frame infor-
mation and allow for an even more precise synchronization.

In the future, we will be including both the “block” count
information in case of data loss, and also will introduce an
on-the-fly smoothing of timestamps, where jitter should be-
come very minimal within minutes of starting a recording.

We also intend to record the table’s center microphone on
the audio channel of each of the cameras. Using the MPEG-
2 Presentation Time Stamp information, it is possible to
have an accurate audio video synchronization within the
MPEG-2 stream. Then, comparing the extracted MPEG-
2 audio to the recorded high quality source, we will be able
to automatically isolate the audio claps, and find the corre-
sponding video frame.

6. DISCLAIMER & LICENSE STATEMENTS
The Smart Data Flow software was developed at the Na-

tional Institute of Standards and Technology by employees
of the Federal Government in the course of their official du-
ties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and
is in the public domain.

Certain commercial products may be identified in order
to adequately specify or describe the subject matter of this
work. In no case does such identification imply recom-
mendation or endorsement by the National Institute of

Standards and Technology, nor does it imply that the
products identified are necessarily the best available for the
purpose.

The Smart Data Flow is an experimental system. NIST
assumes no responsibility whatsoever for its use by other
parties, and makes no guarantees, expressed or implied,
about its quality, reliability, or any other characteristic.

The National Institute of Standards and Technology and
the Smart Space Project would appreciate acknowledgments
if the tools are used.
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