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Abstract - Real-time speaker verification, with 
speech acquired using the NIST Mk-III 
microphone array and an autodirective 
beamforming algorithm, is demonstrated.  The 
software and hardware backbone of the 
demonstration is the NIST Smart Flow System 
and Mk-III Array, both developed by National 
Institute of Standards and Technology in support 
of multimodal research communities.  A 
microphone array acquires speech signals; a 
steered response beamformer calculates the 
direction of arrival (DoA) of the dominant 
signal; and a speaker verification component 
determines whether the signal is speech from a 
specific privileged speaker.  If so, a camera will 
slew to the DoA of the privileged speaker; but 
not other speakers, or other kinds of sound.  
Novel approaches were taken to the design of the 
basic components to obtain good realtime 
demonstration performance. 
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1.0 Introduction 
 
The Smart Flow System developed by NIST 
provides a platform to support standards that 
promote the interoperability of multimodal 
sensing devices and classification algorithms 
produced by different manufacturers.  The NIST 
system can acquire, transport, time tag, and 
archive, multiple sensor data streams, such as 
voice and video in real-time, for subsequent 
distributed processing.  Many signal, image, and 
speech processing applications such as 
beamforming, speaker verification, face 
identification, or head trackers, can be 
implemented within the framework of the NIST 
Smart Flow System. 
 
Under the support of a NIST Small Business 
Innovative Research grant, we (Intelligent 

Automation Incorporated) developed proof of 
concept for a user sensitive interface that 
performs real time speaker verification.  In this 
system, the two most important components 
include an improved delay-and-sum beamformer 
and a state machine based speaker verification 
algorithm.  
 
The beamforming algorithm has the following 
features: first, it is real time; second, it 
compensates near-field effects; third, it is stable; 
and fourth, it provides good tracking 
performance.  Taken together, these comprise a 
novel and unique implementation for 
autodirective speech acquisition.  

 
The speaker verification algorithm we have 
developed segments speech signals using a state 
machine. Compared with the energy threshold 
based approach, the state machine-based speech 
segmentation has faster tracking performance in 
real time verification; less training time is 
required; and modeling is more accurate. 

 
Previously, we implemented a Gaussian Mixture 
Model based speaker verification algorithm.  
Realtime tests proved the effectiveness of this 
basic algorithm at a fixed speaker bearing using 
microphone-acquired speech.  We improved the 
verification performance and system flexibility 
with several design upgrades.  First, we 
enhanced the speech signals from the 
beamformer with the purpose of reducing the 
residual noise even further from that of a far-
field delay and sum beamformer.  Second, we 
improved the speaker verification performance 
via discriminative training of the population 
model.  As a result, the privileged speaker’s 
voice can more precisely match the 
corresponding model.  Third, we performed 
speaker verification using utterance level 
segmentation in order to achieve high 
performance. 
 



  

We will first present an overview of the 
demonstration system in Sec. 2.0.  An improved 
near-field delay-and-sum beamforming 
algorithm will be then described in Sec. 3.0.  The 
speaker verification algorithm will be explained 
in Sec. 4.0.  In the last section, conclusions and 
future directions will be given. 

2.0 Overview of the 
Demonstration System 

 
The NIST system can acquire and process 
multiple sensor data streams, such as voice and 
image, in real-time.  Here we use it to construct a 
proof-of-concept of the user sensitive interface 
proposed by Stanford in [1] and discussed 
further by Flanagan and Stanford in [2].  The 
data flow diagram of the demonstration system is 
shown in Fig. 1.  To verify the performance of 
the speaker identification and bearing estimation 
algorithms, a camera steered to the privileged 
speaker is used.  The Visca camera control 
client, shown in the diagram, controls the 
orientation of the pan-tilt camera.  The objective 
of the demo is to control the camera so as to 
track a privileged speaker based on his or her 
voice as he or she moves through the room.  
When the privileged speaker moves while he she 
is speaking, the camera will follow him or her.  
When non-privileged speakers talk, the camera 
doesn’t respond.  Moreover, the system blocks 
all non-privileged speakers’ speech and only 
forwards the privileged speaker’s speech signals.  
 
 

 
 

Fig. 1: Demonstration system as shown in a 
NIST Smart Flow Application Map. 

 
Several software clients are involved in the 
demonstration system as shown in Fig. 1.  The 
Array 3.0 Audio Capture Normalized client 
receives data packets from the microphone array.  
It also performs normalization of the data, which 

is required by the beamformer client.  According 
to the specifications of the Panasonic 
microphones used in the array, the gain of the 
microphones can vary in the range of 6 dB.  
Therefore, microphone signals for all channels 
must be normalized to compensate these normal 
gain variations.  The Array 3.0 Conversion to 
DSP Audio client converts the output data format 
of the data capture client to from 24bit to 16 bit 
for the downstream clients in the Smart Flow 
System.  The Multichannel audio highpass filter 
client is a 64-channel high pass IIR filter.  The 
Beamformer client calculates the power 
distribution versus directions, or steered 
response, based on several frames of the input 
data.  It also makes decisions about whether the 
maximum power direction is the direction of 
interest.  Due to the random and intermittent 
nature of speech signals, it is a challenging task 
to select the direction of the sound of interest.  
Many modifications have been made to this 
client and several techniques have been 
implemented to improve the robustness and 
response time of the client.  The BeamDisplay 
client displays the beamspace power distribution 
calculated by the Beamformer client for 
visualization purposes.  The SpeechSeparator 
client separates the speech of the primary 
speaker from other sound while the 
SpeakerDetector client detects the primary 
speaker and controls the camera.  Both clients 
consist of speech activity detection, feature 
extraction and speaker verification.  The speaker 
verification client we developed is based on state 
machines that identify speech onset and offset 
points.  The Camera control client is the 
interface between the system and camera.  It 
receives position information from the speaker 
detection client and uses the information to slew 
the camera.  
 
In the following two sections we will present 
details of the improved delay-and-sum 
beamforming algorithm and the state machine 
based speaker verification algorithm. 

3.0 An Improved Delay-and-
Sum Beamforming 

Algorithm 
 
The default beamforming algorithm in the NIST 
Smart Flow System is very basic and was 
intended only to test the data flow clients and 
illustrate the principals of programming of the 



  

data flow system.  It scans a range bearing angles 
under the assumption that incoming signal is a 
plane wave, i.e. originating in the far field, and 
chooses the bearing angle which gives the 
maximum averaged signal energy. 

 
However, for normal conference room 
applications, the speakers usually stand within a 
few meters at most of the microphone array, so 
the near field effect is no longer negligible given 
the fact that the microphone array is about 1.3 
meters in length. This often puts the speakers 
within three diameters of the array.  Therefore, 
near field compensation becomes necessary, and 
will improve the beamforming performance 
significantly.  Beams of typical human speech 
are shown in Fig. 2.  Our new beamforming 
algorithm with near field compensation and 
hierarchy scanning includes the following steps: 
 
• Initialization: Calculate the theoretical delay 

of all sensors for all possible angles at some 
selected distance interval using simple 
geometry, and round the result to units of 
samples. 

 
• Real-time beamforming: For a segment of 

new data, generate 10 beams using 15 
degrees interval from -69 degree to 69 
degree at the infinite distance (plane wave) 
by first shifting 64 channels by 
corresponding delay value in the delay array 
then sum them together. 

 
• Pick the beam with the maximum energy as 

the course DoA. 
 
• Scan again using 3 degrees interval from 

DoA-9 degree to DoA+9 degree at the 
infinite distance (plane wave), and pick the 
beam with the maximum energy as the 
accurate DoA. 

 
• Given the DoA, scan though different 

distance cases to pick the beam with 
maximum energy as the course distance. 

 
• Calculate the theoretical delay at current 

DoA and around the course distance value 
using finer distance interval, then scan 
through these finer intervals to pick the 
accurate distance. 

 

• Generate the final near field beamforming 
output with the accurate DoA and accurate 
distance.  
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Fig. 2: Beam energy vs. Angle 
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Fig. 3: Beam Energy vs. Angle & Distance 

 
To demonstrate the near field compensation 
scheme, we recorded a segment of speech at 
nearfield proximity to the array.  For this 
recorded speech, Fig. 3 shows the beam energy 
at different angles and distances.  We can see 
that without near field compensation, we will not 
be able to achieve the maximum beam energy at 
the closer distance.  
 
The difference in the beamforming output signal 
is shown in Fig. 4 and Fig. 5, where we can see 
that after near field compensation, the SNR 
(signal to noise ratio) is increased.  For the input 
signal shown in Fig. 4 and Fig. 5, SNR is 
increased from 36.2dB to 38.4dB, and 2.2dB 
gain is obtained from the near field 
compensation alone.  The SNR of the single 
channel signal is 30.1dB. 
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Fig. 4: Beamforming output without near field 

compensation 
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Fig. 5:  Beamforming output with near field 

compensation 
 

4.0 A State Machine-based 
Speaker Verification 

Algorithm  
 
Gaussian Mixture Models (GMMs) are 
commonly used for speaker verification 
applications. In our demonstration, two GMM 
models are trained and used for speaker 
verification. One model is trained by the 
privileged speaker’s speech data and the other, 
called the population GMM, is trained by speech 
data of a group of male and female speakers.  In 
speaker verification, cepstral coefficients of 
acquired speech signals are scored against these 
two models.  If the privileged speaker’s GMM 
yields the higher likelihood, the signal is imputed 
to come from the privileged speaker.   
 
Our state machine-based speaker verification 
algorithm includes a state machine based speech 
segmentation algorithm, discriminative training 
of the world GMM models, and a novel decision 
making algorithm. 

4.1 State machine based speech 
segmentation algorithm 

 
In order to accurately train the GMM models for 
various speakers, we should use the valid speech 
data only and exclude the background noise and 
the silence from the training data. In a previous 
application [3], we used an energy thresholding 
algorithm to separate the speech signal from the 
background noise.  The energy threshold 
algorithm will consider the incoming frame as 
speech if and only if the signal energy of this 
frame exceeds a preset threshold times the 
background noise energy level.   
 
The energy thresholding algorithm has two 
major disadvantages. First, in order to exclude 
the background noise from the speech data, the 
threshold has to be set quite high. As a result, 
only the speech data with the highest energy is 
considered as speech, and much of the speech 
with low energy is lost.  Second, discontinuous 
speech segments caused by energy thresholding 
will adversely affect the calculation of first- and 
second-order cepstral coefficients.   
 
Therefore, in the current version of 
SpeakerDetector and SpeechSeparator clients, 
we use a state machine based speech 
segmentation algorithm to extract the whole 
utterances from the speech signal. Three states 
are defined: speech, sub-speech and silence. The 
speech state represents the signal period with the 
highest energy, the silence state represents the 
signal period with the lowest energy, and the 
sub-speech state represents the transition period 
from the silence state to the speech state. The 
corresponding state transition diagram is shown 
in Fig. 6.  
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Fig. 6: State transition diagram for state machine 

based speech segmentation algorithm 
 
The detailed procedure of the algorithm is as 
follows: 
 



  

• If the standard deviation of one frame is 
more than X1 (a preset threshold) times the 
back ground noise level, the state is changed 
from the initial silence state to the sub-
speech state and this frame is copied to the 
speech buffer.   
If the standard deviation of one frame is 
more than X2 (a preset threshold > X1) 
times the back ground noise level, the state 
is changed from the initial silence state 
directly to the speech state and this frame is 
copied to the speech buffer. 
 

• If current state is sub-speech state and the 
standard deviation of two consecutive 
frames are both below X1 times of back 
ground noise level, the state is changed back 
to the silence state and the speech buffer is 
cleared without any decision making. 
If current state is sub-speech state and the 
standard deviation of the incoming frame is 
more than X2 times the back ground noise 
level, the state is changed to the speech state 
and this frame is copied to the speech buffer. 
Otherwise, the state remains sub-speech 
state and the incoming frame will be copied 
to the speech buffer. 
 

• If current state is speech state and the 
standard deviation of two consecutive 
frames are both below X1 times of back 
ground noise level, the state is changed back 
to the silence state and the speech buffer is 
cleared after all data is sent to the decision 
making function. Otherwise, the state 
remains speech state and the incoming frame 
will be copied to the speech buffer. 

 
Fig. 7 shows the DET curve showing the 
performance of state machine based speech 
segmentation algorithm and engery thresholding 
algorithm for the same set of test data. 
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Fig. 7: Performance comparison of thresholding 

vs. state machine based speech segmentation 
algorithm 

4.2 The discriminative training of 
the world GMM model 

 
Prior to this work, the composition of the speech 
data used to train the population GMM model is 
independent of the selection of the privileged 
speaker and the distribution of speech data from 
different speakers is uniform.  The basic 
architecture of this technique is described in 
[4,5]. 
 
Nevertheless, empirically it is very common that 
a particular speaker in the population model is 
easier to trigger the false alarm in the speaker 
verification system than other speakers due to the 
similarity of his/her voice to the privileged 
speaker’s. Therefore, although the uniformly 
distributed population model described above is 
simple and intuitive, it may not have the optimal 
performance. 
 
In order to boost the verification performance we 
use a discriminative training method to train the 
population model. The discriminative training 
method reorganizes the distribution of the 
population model by increasing the percentage of 
speakers’ training data, which is more similar to 
the selected privileged speaker’s data. Fig. 8 
shows the performance improvement introduced 
by the reorganization of the population model 
compared to the uniformly distributed population 
model. 
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Fig. 8: Performance comparison of optimized 

world model vs. uniform world model 

4.3 The novel decision-making 
algorithm 

 
In order to decrease the false alarm rate without 
sacrificing the response time, we only perform 
speaker verification at the boundary of separate 
utterances based on the assumption that each 
utterance can only come from one speaker. Thus, 
after each new utterance generated from the 
speech segmentation algorithm, we check the 
total size of the speech buffer. If it is big enough, 
we will make one verification decision. 
 
In addition, we added one level of filtering to the 
speaker verification decisions described above. 
We define an integer number with an initial 
value of 0. With each positive raw speaker 
verification decision (privileged speaker), this 
number will increase by 1 until it reaches a 
preset upper limit. Once the upper limit is 
reached, the decision-making algorithm will 
make a final positive decision. For each negative 
raw speaker verification decision, this number 
will decrease by 1 until it reaches a preset lower 
limit. Once the lower limit is reached, the 
decision-making algorithm will make a final 
negative decision. When the privileged speaker 
talks continuously, the integer number will 
remain at the upper limit, and for each new raw 
positive decision, our decision-making algorithm 
will make another final positive decision. 
Therefore, the response time will be satisfactory. 
If a non-privileged speaker is speaking, 
continuous raw negative decisions will make the 
integer number remain at the lower limit. Thus, 
even once a while we have a wrong raw 
decision, our decision-making algorithm will not 
make positive final decision. Therefore, false 
alarms can be mitigated 

5.0 Conclusion and Future 
Directions 

 
In this paper, we have presented a real-time 
speaker verification demonstration based on the 
NIST Smart Flow System infrastructure with 
improved signal acquisition and classification 
algorithms. The demonstration involves 
development of several novel speech processing 
algorithms. The experimental results have shown 
that the improved beamforming algorithm with 
near field compensation increases the SNR by 
about 2.2 dB over a basic far-field delay and sum 
beamformer.  The state machine-based speaker 
verification with discriminative training results 
in faster responses and lower false alarm rates.    
 
The following are some highlights of future 
research directions: 
 
� Noise floor reduction for the microphone 

array.  An improved microphone board has 
been contributed by the EU CHIL project 
and has shown a significantly lower noise 
floor. 

� Improvement of the DOA estimation 
algorithm. Higher resolution beamforming 
methods may be helpful in this regard, as 
may minimum power adaptive 
beamformers. 

� Source separation.  Significant progress has 
been made in blind source separation and 
array beamforming could be combined in 
some way with existing techniques of 
source separation. 

� Explorations of different microphone array 
geometries.  It is possible that linear arrays, 
while manageable are not the optimal 
configuration. 

� Integration of speech recognition with the 
Smart Flow System.  The modular data flow 
architecture of the NIST Data Flow system 
will accommodate improved algorithms and 
new capabilities.  

 
These and other improvements may make it 
feasible to create a new generation of computer 
interface that can respond to specific individuals 
in a context sensitive manner. 
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