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Background: Biochemical quality control (QC) data have been reported to be

autocorrelated. Serial correlation may increase the rate of false alarms if the

traditional exponentially weighted moving average (EWMA) control chart to

monitoring the process mean is used. False alarms are the focus of this paper,

where an alarm is defined as the occurrence of a QC value outside the three

standard deviation control limits. Methods: Daily QC measurements of common

biochemical (Vitros 500) and hematological (SF-3000 and Behring Coagulation

Timer (BCT)) quantities were recorded during several months while methods

and analyzers showed no signs of malfunctioning. The time series were examined

for autocorrelation and the performance of the EWMAST chart was compared

with that of the EWMA chart when autocorrelation was present. Results: Many

of the time series showed significant signs of autocorrelation. Using the EWMA

chart to monitor the process mean, false alarms were noted for positively

autocorrelated time series, while this was seldom the case when the EWMAST

chart was used. For some quantities, the EWMAST chart gave alarms. However,

when the process autocorrelation and therefore the limits of the control chart

were updated, the alarms given by the EWMAST chart were reduced or

disappeared. In some cases the mean level changed over time, which is expected

due to calibrations. This problem will be the topic of a subsequent paper.

Conclusions: Positive autocorrelation may be present in QC data. In this case the

EWMAST chart should be used in place of the EWMA chart.
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INTRODUCTION

The use of most control charts is based on

the assumption that all quality control (QC)

values follow the same distribution while the

analyzer is in operational control. Furthermore,

it is assumed that all values are statistically

independent.
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If serial autocorrelation is present this latter

condition is no longer fulfilled. A serial auto-

correlation of lag 1 is present if each value (xt)

(starting with the second value) in a time series

of values is correlated with xt�1, the value

preceding it. Usually, when the autocorrelation of

lag 1 is positive, we say the process is positively

autocorrelated. A serial correlation of lag k is

present if xt is correlated with xt�k.

In 1988, Alwan & Bissell [1] showed that QC

values measured twice daily for 4 months on

a Kodak (Vitros) analyzer for the majority of

quantities demonstrated significant positive

autocorrelation and in some cases near non-

stationarity with a wandering mean. They also

showed that it was possible to fit various

models (auto-regressive integrated moving aver-

age (ARMA) models (see Box & Jenkins [2])

to QC data. Apparently, this important paper

received relatively little attention.

Usually an X chart is used in clinical

chemistry where the process standard devia-

tion (SD) is calculated using the formula
PN

i~1

xi{xð Þ2
.

N{1ð Þ based on data {x1,…,xN}

rather than based on the moving range that is

usually recommended in textbooks of industrial

quality control [3]. This chart does not produce

too many false alarms (condition when a value

falls outside the 3 SD limits while the process is

in statistical control) where a positive auto-

correlation is present. But it is less sensitive to

changes in the mean level than the exponentially

weighted moving average (EWMA) chart.

Zhang [4], however, showed that when a

process is positively autocorrelated, the auto-

correlation has a considerable impact on the

cumulative sum (CUSUM) chart and EWMA

chart. In this case, these control charts will give

frequent false alarms.

Alwan & Bissell [1] suggested two types of

control charts be used: one depicting the predicted

value of the process (using the ARMA model, see

above) and one (the X residual chart) depicting

the residuals, i.e. the deviations between observed

and predicted values. Then the Westgard et al.

rules [5] may be applied using the X residual chart.

This chart, however, has been shown to have a

poor performance in detecting a process mean

shift in Harris & Ross [6], Zhang [7, 8], Long-

necker & Ryan [9], and Wardell [10] when applied

to a positively autocorrelated process (an AR [1]

process with a positive parameter). Furthermore,

the use of the residual chart has a serious

drawback in that it requires that the model is

estimated. Recently, an alternative control chart,

the EWMAST chart proposed in Zhang [7], has

been developed. This chart is similar to the well-

known EWMA chart but with the important

exception that its control limits depend on the

autocorrelation of the process. Furthermore,

when using the EWMAST chart it is not necessary

to find the time series model fitting the data.

The purpose of the present study was 1) to

gain an impression of the generality of the

problem, i.e. to find whether it is only the Vitros

control values that are autocorrelated and 2) to

examine the performance of the EWMA and

the EWMAST control charts in the presence of

autocorrelation under conditions where the

analyzer is in operational control. Therefore,

we have examined QC data covering a selection

of commonly measured biochemical and hema-

tological quantities and three different analy-

zers, the Vitros 500, the Sysmex SF-3000 and

the Behring Coagulation Timer (BCT) during

periods where there were no assignable causes

of variation due to malfunctioning of the

analyzers. [Commercial equipment is identified

in this paper to describe the experimental

procedure. Identification does not imply recom-

mendation or endorsement by the National

Institute of Standards and Technology, nor

does it mean that the equipment is necessarily

the best available for the purpose.]

MATERIALS AND METHODS

QC data material

Measurements of control material were made

daily between 08.00 h and 10.00 h using the

Vitros 500, the SF-3000 hematology analyzer

and the BCT.

Commercial QC material was used on the

Vitros 500 and the Sysmex SF-3000, namely the

Vitros products Performance verifier Johnson &

Johnson Clinical Diagnostics covering low

values and the Vitros products Performance

verifier II, Johnson & Johnson Clinical Diag-

nostics covering high values on the Vitros 500

and the SF-check-L covering low values, the

SF-check-M covering normal values and the

SF-check-H covering high values on the SF-

3000 analyzer.
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Since commercial QC material was not used

daily on the BCT, a plasma pool (P-Pool)

comprising blood donor material was prepared

and distributed into vials which were kept at

280‡C until used, with one vial being used per

day during the study period.

The Vitros analyzer

QC-Glucose; c/mmol/L (GLU), QC-Urea;

c/mmol/L (UREA), QC-Creatinin; c/mmol/L

(CREA), QC-Potassium-ion; c/mmol/L(K) and

QC-Sodium-ion; c/mmol/L (Na) values mea-

sured in the two Vitros QC materials during the

period 4 April 1998 to 12 December 1998 using

the Vitros 500 were examined. Since recurrent

problems with the lamp of the Vitros 500 were

recorded from 9 September until 27 October

1998, at which time the lamp was removed and

replaced by a new one, data from this period

were excluded from the study. The QC prefixed

to the component name symbolizes the system,

i.e. a quality control material. The names in

parentheses symbolize the quantities divided by

their respective units. For each of the 10 above-

mentioned quantities (5 components in 2 QC

materials) all time series satisfying the following

conditions were extracted from the remaining

data:

1) no technical or other problems with Vitros

500 as evidenced from the log book;

2) all measurements were made on QC

material from the same lot;

3) no missing values in any of the series;

4) each series included at least 50 consecutive

data points.

The SF-3000 analyzer

QC-MCV; volume/fl (MCV), QC-RBC;

numberfr./1012/L (RBC), QC-PLT; numberfr./

109/L(PLT) and QC-WBC; numberfr./109/L

(WBC) measured daily on the SF-check-H, M

and L QC materials using the Sysmex SF-3000

located at the Esbjerg Community Hospital

during the period 17 November 1998 to 4

January 1999 were recorded and included in the

study. The QC prefixed to the component name

symbolizes the system, i.e. a quality control

material. The names in the parentheses

symbolize the quantities divided by their

respective units. During the period, the follow-

ing conditions were all satisfied:

1) according to the log books there were no

technical or other problems with the

Sysmex SF-3000 analyzer;

2) for each quantity, QC material from the

same lot was used.

There were no missing values except on days 12

and 13.The missing data points were substituted

by data constructed from linear interpolation

between the results obtained on day 11 and day

14.

The BCT analyzer

P-Pool-F (II, VII, X); time/s (F(II, VII, X)),

P-Pool-APTT; time/s (APTT), P-Pool-ATIII;

arb. units/1 (ATIII) and P-Pool-Fib (functional

method); c/mmol/L (Fib) measured daily on the

P-Pool using the BCT during the period 24

December 1998 to 28 February 1999 were

recorded and included in the study. The P-

Pool in front of the component name symbo-

lizes the system, i.e. the quality control material.

The names in parentheses symbolize the quan-

tities divided by their respective units. During

the period when the measurements were made

the following conditions were all satisfied:

1) according to the log books there were no

technical or other problems with the BCT;

2) all results obtained measuring commercial

QC material once daily on Monday

through Friday were within the control

limits specified by the company (The Dade

Behring Company)

3) There were no missing P-Pool values

during the study period covering 67 days

A quantity includes a system, a component and

kind of quantity. The system in this context is a

QC material referred to in this paper as L, M or

H symbolizing materials covering low, normal

and high values, respectively. Thus L-GLU

symbolizes the quantity L-Glucose; c divided by

its unit mmol/L.

Time series analysis

Measurements of QC materials were subjected

to various statistical analyses. First, we introduce

some basic concepts for time series analyses.

Serial correlation of QC data 197



One such concept is the stationarity of a time

series. A time series {Xt;t~1,2…} is said to be

(weakly) stationary if (a) E[Xt]~m, i.e. a

constant mean not depending on the time t;

(b) the covariance between Xt and Xtzk

depends only on k.

In particular, it follows from (b) that the

process variance is a constant. For a stationary

process, the correlation between Xt and Xtzk is

called the autocorrelation of lag k denoted by

r(k). The function r(k) (k~1,2, …) is called the

autocorrelation function (ACF) of the process.

The simplest stationary process is white noise

which has m~0 and r(k)~0 when k|0. If a

process has zero mean and a Gaussian dis-

tribution, an independently identically distrib-

uted (IID) sequence is the same as white noise.

A simple process is the first order autoregressive

(AR(1)) process {Xt;t~1,2,…} which is defined as

Xt{k~� Xt{1{kð Þzat

where the parameter w is a constant, m is the

process mean, and at is white noise with a finite

variance p2
a . Loosely speaking, the parameter w

defines the ‘‘memory’’ effect. w~0 correspond-

ing to white noise or an IID when the process is

normally distributed while ww0 for positive

autocorrelation. When �j jv1, the process {Xt}

is stationary. In this case, p2
x~p2

a

�
1{�2
� �

and

r(k)~wk for k§0.

For each observed series, we first inspected

whether it was autocorrelated or just white

noise. We used the plot of the autocorrelation

function of the series and the Ljung – Box Test

(Ljung & Box [11]) to determine this.

For illustrative purposes, we will review the

analysis of the quantity L-NA-1. The time series

plot is shown in Figure 1. The sample auto-

correlation function of the series with a 95%

confidence band is displayed in Figure 2. The

autocorrelations at the first and second lags are

significantly different from zero. That means the

process is not white noise or an IID process.

The EWMAST chart

The EWMAST chart is an extension of the

traditional EWMA chart designed to monitor a

stationary process. For a time series {Xt}, the

chart is constructed by plotting the EWMA

(Zt), which is defined as:

Zt~ 1{jð ÞZt{1zjXt

for t~1,2,…, where Z0~m. The parameter

l(0vlƒ1) is a constant. Zt can be expressed

as a weighted average of all previous Xt. Namely,

Zt~jXtzj 1{jð ÞXt{1zj 1{jð Þ2Xt{2z . . .

zj 1{jð Þt{1
X1z 1{jð ÞtZ0

FIG. 1. The time series plot of the quantity L-Na-1.

FIG. 2. The sample autocorrelation function of the
L-Na-1 time series with a 95% confidence band.
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Notice that l~1 corresponds to the ordinary X

chart. According to Zhang (7), the variance of

Zt (p2
z) is given by the equation

p2
z~

j
2{j

� �

p2
x 1{ 1{jð Þ2t

z2
Xt{1

k~1

o kð Þ 1{jð Þk 1{ 1{jð Þ2 t{kð Þ
h i

( )

,

where r(k) is the process autocorrelation at lag

k and p2
x is the variance of the process. For a

large integer M, an approximate variance is

p2
z&

j
2{j

� �

p2
x 1z2

XM

k~1

o kð Þ 1{jð Þk 1{ 1{jð Þ2 M{kð Þ
h i

( )

when twM. l~0.2 is selected for the EWMA

and EWMAST charts in this paper. The control

limits of the EWMAST chart are m¡Lsz where

m is the process mean and L is a constant,

usually 3. Notice that when the process is an

IID sequence or white noise, r(k)~0 when

k|0. In this case, the EWMAST chart and the

traditional EWMA are same.

In this paper M~12 is used, since for a time

series of size N, a reliable estimate of

autocorrelation r(k) may only be obtained

when kƒN/4. The mean, process variance and

autocorrelations are estimated from the data

during a period in which the process was under

control. It is noted that calculating the process

variance does not require prior knowledge of

the structure of the underlying process model. It

is also noted that p2
x is estimated using the usual

formula

p̂p2
x~

PN

t~1

xt{xð Þ2

N{1

For the estimation of the process variance of a

stationary process, we refer to Zhang [12].

In Zhang [4, 7] comparisons of the

EWMAST chart, the traditional EWMA

chart, the X chart and the X residual chart

were done based on the average run length

(ARL). ARL is the mean of the run length,

defined as the number of observations that must

be plotted before a point indicates an out-of-

control condition. A desired control chart

should have large in-control ARLs and small

out-of-control ARLs. The ARLs of the

EWMAST chart, the EWMA chart, the X

chart and the X residual chart for various

TABLE I. Comparisons of ARLs for the X-chart, X residual chart, the EWMA chart and the EWMAST
chart applied to a positively autocorrelated process (AR(1) process with ww0).

W Shift X chart Residual chart EWMA (l~0.2) EWMAST (l~0.2)

0.0 0 370.4 370.4 547.7 547.7
0.5 155.2 155.2 44.6 44.6
1 43.9 43.9 10.8 10.8
2 6.30 6.3 3.7 3.7
3 2.00 2.0 2.4 2.4

0.25 0 381.6 370.4 139.6 664.6
0.5 166.5 206.0 32.8 74.2
1 46.6 75.4 10.7 17.5
2 7.25 12.2 3.9 5.02
3 2.21 2.85 2.4 2.93

0.50 0 400.7 370.4 56.0 829.5
0.5 181.2 258.4 27.0 147.3
1 56.4 123.8 10.8 31.9
2 9.16 24.2 4.00 7.49
3 2.60 4.14 2.50 3.93

0.75 0 496.0 370.4 30.4 1135.2
0.5 236.0 311.2 21.6 333.8
1 74.3 197.7 11.6 82.0
2 14.4 40.2 4.39 14.9
3 3.59 3.01 2.63 6.32

0.95 0 1382.2 370.4 30.8 2653.1
0.5 753.2 331.0 25.4 1376.4
1 286.1 138.8 16.8 446.3
2 46.8 1.08 5.72 74.1
3 9.13 1.00 2.83 18.8

ARL~average run length; EWMA~exponentially weighted moving average.
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AR(1) processes with positive parameters are

listed in Table I.

The ARLs were calculated for various step

shifts of the process means according to a shift

parameter (0, 0.5, 1, 2 and 3) to be multiplied

with the process SD sx.

In Table I, the ARLs for the X chart are

based on simulations with the exception of the

value for w~0, which can be easily calculated.

The ARLs for the residual chart were calculated

with a formula devised by Zhang [8]. From

Table I, it is clear that when the process is

positively autocorrelated, the autocorrelation

has a big impact on the EWMA chart. When

w~0.25, the in-control ARL is reduced to 139.6

from 547.71 when w~0. Thus, even when the

process is weakly autocorrelated, the EWMA

chart will give frequent false alarms even when

the process is stable and under control. When

w~0.5, the in-control ARL for the EWMAST

chart is 829.5, which is much larger than 56 for

the EWMA chart and 400.7 for the X chart.

For the relationship between the X chart and

EWMAST chart, for small shifts (0.5, 1 and 2)

and weak to moderate autocorrelation (w~0.25

and 0.5) the EWMAST chart has a better

performance (lower ARL). Table I shows that,

overall, the EWMAST chart performs better

than the residual chart, the X chart and the

EWMA chart when the process is stationary

(wv0.95). The detailed discussion on the

comparisons among the three control charts

can be found in Zhang [4, 7].

RESULTS

For each biochemical time series examined, its

size (N), the mean, SD and the estimates of the

autocorrelation coefficients of lags 1, 2 and 3

are shown in Table II. In Table III the

corresponding results are shown for the hema-

tological quantities. Only in 13 out of the 34

time series could the data be adequately

modeled as IID or white noise. In the remaining

cases the data were autocorrelated. The results

obtained when the EWMA and the EWMAST

charts were applied to each of the 11 time series

that included more than 55 data points are

presented in Table IV. For each chart, the chart

parameters including the process mean, process

variance and autocorrelations were calculated

using the first 50 data points and the chart was

then applied to the whole series. In 6 of the 9

series where significant process autocorrelations

were demonstrated, all values fell within the

control limits of the EWMAST chart. In one

case (ATIII) a single value fell outside the limits

and in two cases more than one value fell

outside the limits (11 values in the case of

APTT and 5 in the case of L-CREA series 1).

However, the two last -mentioned time series

TABLE II. Mean, number of observations per time series and SD of biochemical QC values and the autocor-
relations at the first three lags.

Quantity variate Series # N Mean SD r1 r2 r3

L-GLU 1 78 4.54 0.0604 0.315 0.328 0.324
2 51 4.68 0.0517 0.362 0.137 20.132

H-GLU 1 72 14.9 0.1477 0.595 0.377 0.203
2 53 15.1 0.1926 0.560 0.341 0.303

L-UREA 1 78 5.73 0.1646 0.284 0.124 0.102
2 51 5.76 0.1131 0.284 0.290 0.255

H-UREA 1 56 16.5 0.5168 IID
2 53 16.9 0.4518 0.335 20.050 20.076

L-CREA 1 78 80.6 1.684 0.590 0.475 0.513
2 51 80.9 0.9697 IID

H-CREA 1 79 552 5.379 0.274 20.002 0.190
2 53 550 7.877 0.479 0.440 0.371

L-NA 1 78 121 1.075 0.378 0.363 0.260
2 51 120 1.160 0.507 0.534 0.435

H-NA 1 53 140 1.110 0.313 0.282 0.196
L-K 1 51 3.11 0.0412 0.371 0.206 0.147
H-K 1 73 5.08 0.0638 IID

2 52 5.10 0.1292 0.650 0.631 0.457

QC~quality control.
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were both strongly autocorrelated and the

charts demonstrated that the mean probably

did change during the period examined. By

contrast, when the EWMA chart was used

instead (see column 3 of Table IV), more than

one point fell outside the limits in 6 of the 9

cases and one value fell outside the limits in 3

cases. These results show that the traditional

EWMA chart is more likely to give false alarms

in the presence of autocorrelation than the

EWMAST is. The latter, therefore, is the chart

of choice in the presence of autocorrelation,

especially when the autocorrelation is positive.

Table V presents the results obtained when

the appropriate control chart was constructed

using the first 50 values of the first time series

and then applied to the second time series of the

same quantity collected some time after the first

one. If the model of the first time series was

IID, the EWMA chart was used, and if not the

EWMAST was used. In 6 out of the 8 cases

several values fell outside the control limits (see

column 3 of Table V). Column 4, Table V

shows the results obtained when the autocorre-

lation of the second time series was used instead

of that of series 1 when constructing the control

chart (the mean value was still calculated using

the first 50 values of series 1). In three cases (H-

CREA, L-NA and H-K) all values now fell

within the control limits indicating that the out-

of-control condition had probably been caused

by a change in the process autocorrelation and

not a change in the mean level. In two of the

cases (L-GLU and H-UREA) it is fair to

TABLE III. Mean, number of observations and SD of hematological QC values and the autocorrelations at
the first three lags.

Quantity Variate N Mean SD r1 r2 r3

L-MCV 49 71.38 0.509 0.251 20.060 0.062
M-MCV 49 78.47 0.462 IID
H-MCV 49 86.51 0.417 IID
L-PLT 49 66.99 4.078 IID
M-PLT 49 233.01 11.034 0.463 0.275 0.196
H-PLT 49 529.95 13.949 IID
L-RBC 49 2.57 0.032 IID
M-RBC 49 4.75 0.040 IID
H-RBC 49 5.49 0.052 0.475 0.380 0.398
L-WBC 49 2.45 0.050 IID
M-WBC 49 7.87 0.121 IID
H-WBC 49 20.37 0.308 IID

P-Pool-F(II,VII,X) 67 20.83 0.475 0.145 0.177
P-Pool-APTT 67 33.09 0.993 0.415 0.382 0.346
P-Pool-AT III 67 0.891 0.016 0.109 20.155 0.037
P-Pool-FIB 67 10.55 0.379 IID

QC~quality control.

TABLE IV. Control chart constructed from the first 50 data points and applied to whole-time series.

Quantity variate N

Number of EWMAs outside control limits

EWMA chart EWMAST chart

H-K series1 73 1 –
L-NA series1 78 3 0
L-GLU series1 78 15 0
H-GLU series1 72 6 0
L-CREA series1 78 21 5
H-CREA series1 79 4 0
L-UREA series-1 78 1 0
P-Pool-ATPP 67 12 11
P-Pool-ATIII 67 1 1
FIB 67 0 –
F(II,VII,X) 67 1 0
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conclude that the mean had changed signifi-

cantly since the number of values outside the

control limits did not change when the auto-

correlation was updated. The interpretation of

the remaining cases is less clear-cut.

These results demonstrate that (at least in the

case of the analyzer examined) the process

autocorrelation may not be stable. The same is

true for the mean level. This has to be taken

into account when the EWMAST chart is being

applied.

DISCUSSION

As mentioned in the introduction, the

EWMAST chart was chosen because it has

been shown to be superior to the X chart, the

residual charts (Zhang [4, 8]) and the EWMA

chart, and it is simple to use. Recently a new

chart, the ARMAST chart, has been proposed

for stationary processes by Jiang et al. [13] and

the EWMAST chart can be treated as a special

case of the ARMAST. Using the ARMAST

chart in place of the EWMAST chart for the

data of the present study, however, would only

result in a marginal improvement of the ARLs.

Since the use of the ARMAST chart is more

complicated than that of the EWMAST chart,

the ARMAST chart was not used in the present

study.

Other approaches have been suggested when

dealing with autocorrelation. For example,

Montgomery & Mastrangelo [14] proposed to

plot one-step-ahead EWMA prediction errors

on a control chart. According to the simulation

results of Zhang [7] and Jiang et al. [13],

however, this chart appears to be less effective

than the EWMAST chart.

Essentially, the focus of this paper has been

the problem of false alarms. We found that, in

the presence of autocorrelation, a considerable

number of values fell outside the control limits

when the traditional EWMA chart was used

while none of the values fell outside the control

limits when the EWMAST chart was used

(see Table IV). The reason is that the

EWMAST chart accommodates the process

autocorrelation and the limits of the chart

are based on the process autocorrelation.

Notice that the variances for EWMA chart

and EWMAST chart differ by a factor of

2
PM

k~1

o kð Þ 1{jð Þk 1{ 1{jð Þ2 M{kð Þ
h i

shown pre-

viously. When this factor is positive, which is

true when all or most r(k) s are positive, the

control limits of the EWMAST chart are larger

than those of the corresponding EWMA chart.

In this case, the false alarms are reduced. We

conclude that as long as the process autocorre-

lation remains stable, the EWMAST chart

reduces the false alarms caused by the process

autocorrelation.

It was noticed that on some occasions the

process autocorrelation changed over time

although the mean level remained stable, and

as a consequence some values fell outside the

control limits. Since the purpose of the chart is

to control the mean level, we do not want the

chart to be sensitive to a change in the process

autocorrelation. To minimize this effect, the

process autocorrelation could be updated con-

tinuously by using, say, the most recent 50

values to estimate the autocorrelation and

adjusting the control limits accordingly.

Another approach is to find the cause of the

autocorrelation and modify the system accord-

ingly so that the autocorrelation disappears, or,

alternatively, to model the underlying mechan-

ism and to modify the calibration equation. An

example of the latter approach would be the

modeling of the carry-over in the old AMA II

analyzers.

In their study [1] of the Vitros analyzer

Alwan & Bissell observed that sometimes the

time series were strongly and positively auto-

correlated. In our study, the time series are not

as strongly autocorrelated as those of Alwin &

Bissell but they were also shorter than theirs.

When we applied the EWMAST chart based on

TABLE V. Control chart applied to series 2 but con-
structed using the mean and autocorrelation of the first
50 data points of series 1 (A) or using the mean of the
first 50 data points but autocorrelation of series 2 (B).

Quantity
variate

N
(of series 2)

Number of points outside
limits

(A) (B)

L-GLU 51 49 49
H-GLU 53 20 8
L-UREA 51 0 2
H-UREA 53 8 9
L-CREA 51 0 19
H-CREA 53 5 0
L-NA 51 3 0
H-K 52 33 0
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one time series to a second time series of the

same quantity but recorded several weeks later,

we found that in some cases the mean level had

changed significantly.

Recalibrations and/or changes of the reagents

batches may account for this phenomenon. In a

subsequent paper we examine this hypothesis.
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