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Abstract

In CLEAN (Cryogenic Low Energy Astrophysics with Noble gases), a proposed neutrino and dark matter detector,

background discrimination is possible if one can determine the location of an ionizing radiation event with high

accuracy. Here, we develop spatial methods for event reconstruction, and study their performance in computer

simulation experiments. We simulate ionizing radiation events that produce multiple scintillation photons within a

spherical detection volume filled with liquid neon. We estimate the radial location of a particular ionizing radiation

event based on the observed count data corresponding to that event. The count data are collected by detectors mounted

at the spherical boundary of the detection volume. We neglect absorption, but account for Rayleigh scattering. To

account for wavelength-shifting of the scintillation light, we assume that photons are absorbed and re-emitted at the

detectors. In our study, the detectors incompletely cover the surface area of the sphere. In the first method, we estimate

the radial location of the event by maximizing the approximate Poisson likelihood of the observed count data. To

correct for scattering and wavelength-shifting, we adjust this estimate using a polynomial calibration model. In the

second method, we predict the radial location of the event as a polynomial function of the magnitude of the centroid of

the observed count data. The polynomial calibration models are constructed from calibration (training) data. In

general, the Maximum Likelihood (ML) method estimate is more accurate than that of the Centroid method estimate.

We estimate the expected number of photons emitted by the event by a ML method and a simple method based on the

ratio of the number of detected photons and a detection probability factor.
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1. Introduction

We estimate the location of an ionizing radia-
tion event that produces multiple photons within a
spherical detection volume based on count data
recorded by detectors mounted on the boundary of
this detection volume. The detectors cover ap-
proximately 75% of the total area of the detection
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volume boundary. We assume that all detected
photons produced by a particular event can be
distinguished according to their arrival times from
photon counts produced by other events. Beyond
this, we do not require additional temporal
information. We assume that absorption is negli-
gible, and that photons undergo Rayleigh scatter-
ing. We also estimate the expected number of
emitted photons for the event.

Our ‘‘event reconstruction’’ work is motivated
by a proposed experiment called Cryogenic Low
Energy Astrophysics with Noble gases (CLEAN).
In CLEAN [1,2], events would be detected based
on scintillation light produced by neutrino-elec-
tron scattering and WIMP-nuclear elastic scatter-
ing in a large cryostat filled with liquid neon. In
CLEAN, the expected number of scintillation
photons produced by an event would be propor-
tional to the amount of energy deposited by the
event. The proportionality factor would be deter-
mined from a calibration experiment. Such events
of interest would occur uniformly throughout the
cryostat. Here, we consider a cryostat with a
spherical geometry. Because neon has lower
binding energy to surfaces than most radioactive
impurities, there should not be internal back-
grounds in the neon provided that the neon is
purified using cold traps. Background gamma ray
events would also produce scintillation light, and
tend to occur near the walls. Near the center of a
spherical detection volume, the penetration prob-
ability of background gamma rays is very low.
Thus, if the radial position of an event can be
determined accurately, background gamma ray
events can be discriminated with high confidence
from events of interest.

In this current paper, we focus solely on the
event reconstruction problem. In a forthcoming
paper, we will present a detailed simulation of
CLEAN, including background gamma ray pro-
pagation. In this later paper, we will quantify the
performance of our event reconstruction method
for determining the location of an event in the
context of the physics goals of a CLEAN
experiment. We will also discuss experimental
design, calibration, and construction of CLEAN.

Temporal methods, not spatial methods, are
commonly used for event reconstruction in the
current neutrino experiments KamLAND [3,4]
and Borexino [5]. Both of these experiments use
organic scintillators. Here, we present a spatial
method for event reconstruction and carefully
study its performance in computer simulation
experiments. We remark that the XMASS [6]
research team is also studying spatial event
reconstruction methods for their proposed neutri-
no experiment. Liquid xenon would be used as a
scintillator in XMASS. In the field of tomography,
spatial methods are commonly used to reconstruct
spatially varying intensity images [7–11]. For each
pixel or voxel, the corresponding intensity para-
meter is the expected number of photons emitted
during the experiment. Instead of reconstructing a
spatially varying photon intensity image, we seek
to determine the intensity and location of a single
source of photons. Thus, our problem is a special
case of a more general imaging problem. In this
work, we model the observed count data as a
realization of a spatial Poisson process. This
approach is frequently taken to solve a variety
of imaging problems in nuclear medicine [8–11].
We estimate the event location by maximizing
the approximate likelihood function of the ob-
served detector count data assuming a scatter-
free transition matrix. Because the transition
matrix does not account for scattering, the
estimate of the radial location of the event can
be strongly biased. However, we significantly
reduce this bias, that is, systematic error, by
correcting the initial estimate based on a cali-
bration model determined from calibration
(training) data. This is possible because the bias
of the estimate introduced by misspecification of
the transition matrix has a very predictable
structure.

We do not mean to imply that bias results only
because of misspecification of the transition
matrix. For the case where we use the exact
transition matrix, we expect some bias because
nonlinear estimation methods, including the Max-
imum Likelihood (ML) method, generally produce
biased estimates. We expect this bias to be more
significant for low count situations than for high
count situations. For a general discussion of this
point, see Ref. [12]. For a specific illustration of
this point, see Ref. [13].
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We stress that the methods we develop here are
appropriate for the case where absorption of
scintillation photons within the neon is negligible.
For the case where absorption is significant, our
methods are not directly applicable without
further modification. If absorption effects are
significant in the actual CLEAN experiment, we
plan to directly estimate a transition matrix
that will account for scattering, absorption, and
other geometric effects. (This direct transition
matrix modeling approach has been suggested in
Ref. [6] for the planned XMASS experiment.)
Even if we have exact knowledge of the
true transition matrix, further calibration experi-
ments may be necessary to quantify the perfor-
mance of CLEAN. The need for further
calibration studies may be most pressing for low
count situations.

In Section 2, we present the scattering model.
In Section 3, we present a Poisson likelihood
model for the data based on a scatter-free
transition matrix. In Section 4, we study the
statistical properties of both the uncorrected
and corrected radial estimates for a variety of
cases. For the same data, we compare a prediction
model based on the centroid of the observed
counts with the ML estimate. We also estimate
the expected number of emitted photons at
the event location using the ML method and a
simpler method. In the simpler method, the
estimate is proportional to the number of detected
photons.
2. Simulation model

At a particular location, multiple scintillation
photons are produced by an event of interest. The
probability density function (PDF) for the initial
velocity direction of each emitted photon is
uniform on the surface of the unit sphere.
Following standard practice [14,15] we simulate
the distance traveled before first scattering (as well
as the distance between subsequent scatterings) by
sampling from an exponential distribution. The
expected value of this realization is the scattering
length ls: At the point corresponding to the
first scattering, we rotate the velocity direction
about its original direction according to a
model for the differential cross section of the
Rayleigh scattering process. We neglect angular
variation of the atomic form factor. Thus,
the inner product of the new velocity direction
and the old velocity direction, cosðyÞ; has a
PDF proportional to ð1þ cos2ðyÞÞ: We select a
position on the cone defined by cosðyÞ and the
original velocity direction by sampling an azi-
muthal angle f that is uniformly distributed
between 0 and 2p:

We compute the point where a photon crosses
the spherical boundary of the detection volume. If
this point is not within the area of a detector, the
photon is not detected. For the case where the
crossing point is within the area covered by a
detector element, we consider two detection
models. In the ‘‘no-shift’’ model, the photon is
detected by the detector element with probability
pe:We assume that pe is independent of the photon
trajectory with respect to the detector. In the
‘‘shift’’ model, the detector element absorbs the
photon and converts it to lower energy. This
wavelength-shifted photon is randomly re-emitted.
We study the ‘‘wavelength-shifting’’ detection
model because the extreme ultraviolet scintillation
light that would be produced by liquid neon in
CLEAN is not directly detectable by conventional
detectors. However, after being shifted to a longer
wavelength, this light is detectable by conventional
detectors. The corresponding PDF of the velocity
direction of the shifted photon is uniform on the
surface of the unit sphere. If the shifted photon’s
velocity points radially outward, the re-emitted
photon is detected with probability pe at the
detector element where shifting occurs. Otherwise,
the photon travels inward, without scattering,
until it crosses the spherical detection boundary.
If this crossing point falls within the area covered
by a detector element, it is detected with prob-
ability pe: Otherwise, the photon is absorbed by
the spherical wall and lost. Our assumption that
the wavelength shifted photon does not scatter is
based on the fact that the shifted photon has much
longer wavelength (about 400 nm) than the
original scintillation photon (about 80 nm), and
Rayleigh scattering is much stronger at shorter
wavelengths.
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Fig. 1. Detector geometry for simulation study.
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3. Estimation method

3.1. Likelihood model

Given that a photon is emitted at location xs;
the probability that the kth detector will detect this
photon is denoted by Pðkjxs; peÞ where pe is the
efficiency of the detector. By varying k and xs; we
call the set Pðkjxs; peÞ the probability transition
matrix. For the ‘‘no-shift’’ detection model where
there is no scattering, that is, ls ¼ N; the
transition matrix is

Pðkjxs; peÞ ¼
pe

4p

Z
Ak

ðx� xsÞ � x

jx� xsj
3jxj

dx ð1Þ

where we integrate over the area of the kth
detector. The expected number of detected
photons at the kth detector is

/nkS ¼ lkðxsÞ ¼ lPðkjxs; peÞ ð2Þ

where the intensity parameter l is the expected
number of photons emitted during the experiment.
We approximate the integral in Eq. (1) as

Pðkjxs; peÞE
pepcR

2

Ndetjdk � xsj2
cosðdk � xs; dkÞ ð3Þ

where dk is the point where the kth detector is
tangent to the sphere, pc is the fractional area of
the surface of the sphere covered by all detectors,
and Ndet is the number of detectors. We simulate
data for Ndet ¼ 2072 detectors tangent to the
spherical boundary of the detection volume
(Fig. 1). We determine the tangent points by an
optimal packing scheme [16].

The actual number of emitted photons at
the event location is a realization of a Poisson
process with intensity parameter l: The expected
value of the realization equals the intensity
parameter. We assume that the number of counts
at the kth detector is a realization of a Poisson
process with intensity parameter lk: Thus, the
Poisson log-likelihood function of the observed
data is

log L ¼
XNdet

k

�lkðxsÞ þ nk logðlkðxsÞÞ � logðnk!Þ ð4Þ

where nk is the number of detections at the kth
detector. We estimate the model parameter vector
y ¼ ðx; y; z; lÞ by maximizing Eq. (4). Since, we use
an inexact transition matrix, strictly speaking, we
obtain an approximate ML estimate of the model
parameters.

For the case where the transition matrix is exact,
the ði; jÞth component of the asymptotic covariance
matrix of the ML model parameters isdCOVCOVð#yi; #yjÞ ¼ ðI�1Þij ð5Þ

where the Information matrix is

Iij ¼
XNdet

k¼1

1

lk

qlkðxsÞ
qyi

qlkðxsÞ
qyj

: ð6Þ

For the Poisson model, VARðnkÞ ¼ lkðxsÞ: The
asymptotic variance of the kth parameter estimate
is the kth diagonal element of the asymptotic
covariance matrix. The asymptotic standard error
(s.e.) of the kth parameter estimate is the square
root of this asymptotic variance.

Our estimate of the radial location of the
event is

#r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#x2 þ #y2 þ #z2

p
: ð7Þ

For the special case where xs ¼ ð0; 0; zÞ and there is
no scattering, we approximate the standard error
of #r as

s#rEs#z ¼ ðI�1Þ33: ð8Þ
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For more details about asymptotic statistical
theory, and a discussion of a closely related ML
estimation problem involving Poisson data, see
Refs. [17,13].

3.1.1. Efficient simulation

If the detector efficiency pe is much less than 1,
many simulated photons are not detected even if
they hit a detector element. Below, we describe an
efficient simulation model which simulates the
relevant fraction of emitted photons that are
detected (provided that they hit a detector in the
‘‘no-shift’’ detection model or in the ‘‘shift-model’’
after wavelength shifting). On average, the rele-
vant fraction that we simulate is pe:

In our simulation model, we assume that the
efficiency of the detector pe is independent of the
photon trajectory with respect to the detector.
Thus, lPðkjxs; peÞ ¼ lpePðkjxs; 1Þ (Eq. (2)). Be-
cause of this relationship, we need not simulate
trajectories for all simulated photons that are
emitted at xs: In our efficient simulation model, the
number of photons simulated is a realization of a
Poisson process with expected value lpe rather
than l: However, in the efficient simulation model,
the detector efficiency is 1 rather than pe: That is,
for data simulated with the efficient approach, we
replace Pðkjxs; peÞ with Pðkjxs; 1Þ: In both simula-
tion models, the simulated number of detected
photons at the kth detector is a realization of a
Poisson process with intensity parameter lk:
Because of this substitution, we estimate a
modified intensity lpe rather than the actual
intensity l: Throughout this work, we use this
efficient approach.

3.1.2. Optimization details

We seek the values of the model parameters that
yield the global maximum (assuming that it is
unique) of the approximate log-likelihood func-
tion, log L (Eq. (4)), using an iterative algorithm.
Since optimization codes search for the global
minimum of a cost function, we actually minimize
�log L: In each iteration, there are three steps:

1. Select initial values of parameter estimates.
2. Estimate model parameters by minimizing

�log L subject to the constraint that the event
location is within the spherical detection
volume.

3. Search for the global minimum of �log L using
the estimates from step 2 as initial values.

In step 1, for the first iteration, the initial
estimate of the location of the event is the centroid
of the observed count data. The initial estimate of
the modified intensity parameter lpe is the number
of observed counts divided by the coverage factor
ðpcÞ: For subsequent iterations, the initial location
is the sum of the centroid and a random
perturbation vector. Each component is a normal
(Gaussian) random variable with expected value
equal to 0 and standard deviation equal to 0:05R:
We require that the location vector has magnitude
less than or equal to 0:95R: We perturb the initial
estimate of lpe by multiplying n=pc by a factor
1þ e; where e is a normal random variable with
expected value 0 and standard deviation 0.02.

In step 2, we minimize the sum of �log L and a
penalty function, using an algorithm based on a
quasi-Newton method [18]. The penalty function
forces the estimate to fall within the detection
volume. The penalty function is 0 when #roR; and
10 000 ð#r=RÞ2 when #rXR:

In step 3, we minimize the cost function, �log L;
using a modified Newton method where we supply
both the first and second derivatives of the cost
function with respect to the model parameters [19].

In general, the numerical stability of the
estimate depends on the number of counts, the
scattering length, and the geometry of the detec-
tors. For low count situations, stability is usually
achieved by 30 iterations. For instance, for the
case of wavelength-shifting and ls=R ¼ 0:1; we
simulate 500 events of interest for each of three
cases. In the three cases, the number of observed
counts n is 10, 25 and 50. For n ¼ 10, the
difference between the uncorrected estimate of
#r=R at 30 and 90 iterations was greater than 0.01
only three times. For n ¼ 25 and 50, the difference
between the estimate at 30 and 90 iterations was
less than 0.01 for all 500 realizations. The number
of cases for which the difference between the
estimate at the first and 90th iterations was greater
than 0.01 is respectively 14, 1, and 4 for n ¼ 10; 25,
and 50. For all cases where the estimate at the first
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Table 1

Calibration model parameters for Maximum Likelihood

estimate

ls=R ba1a1 ba2a2 ba3a3 RMSE

No-shift

N 0.894(16) 0.261(46) �0.156(33) 0.0357

1 0.779(15) 0.312(41) �0.072(28) 0.0308

0.1 0.602(14) 0.264(39) 0.182(26) 0.0271

0.01 0.618(9) 0.047(25) 0.368(17) 0.0246

Shift

N 1.316(20) 0.023(55) �0.366(37) 0.0501

1 1.096(14) 0.347(40) �0.455(28) 0.0435

0.1 0.856(11) 0.419(37) �0.258(28) 0.0344

0.01 0.855(12) 0.189(38) �0.033(28) 0.0328

RMSE is the square root of the mean square prediction error,

adjusted for degrees of freedom, computed from all calibration

data. The number of counts in each calibration data set varies

from 50 to 1200.
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and 90th iterations varied by more than 0.01, the
‘‘instability’’ occurs at #r=R > 0:65: Hence, the
outcome of a classification rule to determine if
an event is either ‘‘background’’ or an ‘‘event of
interest’’ is less sensitive to the number of
iterations than is the point estimate of radial
location. For all cases studied here, stable esti-
mates are obtained by 30 iterations, provided that
the number of detected photons is greater than 50.

3.2. Calibration model

Our calibration model is

brcrc
R

¼ a1
#r

R
þ a2

#r

R

� �2

þa3
#r

R

� �3

ð9Þ

where brcrc is the corrected estimate. We estimate the
calibration model parameters, a1; a2; a3; from
calibration data by minimizing

X
i

ri

R
� a1

#ri

R
þ a2

#ri

R

� �2

þ a3
#ri

R

� �3
 !2

ð10Þ

where ri and #ri are the true and estimated values at
the ith point in the calibration data set. The radial
locations of the points in the calibration data are
uniformly distributed (Table 1). We quantify the
accuracy of the calibration model by computing

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=ðm � kÞÞ

Xm

i¼1
ðð#ri=RÞ � ðri=RÞÞ2

q
;

where m is the total number of points in the
calibration data set and k is the number of
calibration model parameters. For the cases
studied, mE2500: In Table 1 and elsewhere, we
represent the standard error, that is, the estimated
standard deviation, of an estimate in parentheses.
For instance, 0.894(16) means the estimated value
is 0.894, and the associated standard error is 0.016.

In this work, we focus on estimation of the
radial location of an event. If one wishes to
estimate the Cartesian coordinates of the event, we
suggest that the estimates of x; y and z are
corrected in the same way as #r: That is, #xc ¼
ð#rc=#rÞ #x; #yc ¼ ð#rc=#rÞ #y; and #zc ¼ ð#rc=#rÞ#z: In Fig. 2,
we illustrate how this approach works for an
example.
4. Simulation results

4.1. Position estimation

In our first study, we simulate data at selected
points on the z-axis of our detector coordinate
system for the ‘‘no-shift’’ detection model. For
each point, we simulate 100 data sets. The
modified intensity parameter is lpe ¼ 200: For
the ‘‘no-shift’’ case, the bias of the uncorrected
estimate increases as the scattering length de-
creases (Fig. 3). This bias is expected because, in
general, scattering increases the probability that a
photon emitted in the upper hemisphere z > 0 will
cross the spherical boundary in the upper hemi-
sphere. For instance, for the case where photons
are emitted at x ¼ ð0; 0; 0:9RÞ; the probability that
the crossing occurs at z > 0:9R is 0.541(5),
0.708(5), 0.801(4) for ls=R ¼ 1; 0:1; 0:01: This
phenomenon appears to be related to the behavior
of particles undergoing Brownian motion near
absorbing walls [20].

The bias of the corrected estimate is significantly
lower than the bias of the uncorrected estimate. In
general, the RMSE of the corrected estimate
decreases as the scattering length decreases. More-
over, the standard error of the corrected estimate
is often below the asymptotic standard error
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Fig. 2. Top row: 100 realizations of the x; y; z and radial components of the uncorrected ML method estimate of event location.

Bottom row: corrected version of estimates in top row. True event location is ðx; y; zÞ ¼ ð0; 0; 0:4RÞ: The scattering length is ls ¼ 0:1R:
‘‘No-shift’’ detection model. The modified intensity parameter is lpe ¼ 400:
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computed from asymptotic theory for the scatter-
free case. This is not inconsistent with statistical
theory. Moreover, our estimation method exploits
additional information provided in the calibration
data that is not accounted for in the asymptotic
theory calculation. We stress that our results
correspond to the case where absorption is
negligible. For the more general case where
absorption effects are significant, the accuracy of
a corresponding prediction model may decrease as
the scattering length decreases.

For the case where there is no scattering, that is,
ls ¼ N; ‘‘shifting’’ introduces a negative bias
(Fig. 4). For the ‘‘shift’’ model, as the scattering
length decreases, the bias increases in general.
In CLEAN, events of interest would occur
uniformly throughout the detection volume.
Hence, the PDF for the radial location of an
event of interest is proportional to r2: We simulate
events of interest that produce a fixed number of
counts n: In Fig. 5 we display scatterplots of the
true value of r and the uncorrected estimated value
of r for three cases. In case A, we consider the
‘‘shift’’ detection model where ls=R ¼ N: In case
B, we consider the ‘‘no-shift’’ detection model
where ls=R ¼ 0:1: In case C, we consider the
‘‘shift’’ detection model where ls=R ¼ 0:1: In
Fig. 6, we display scatterplots of the true value
of r and the corrected estimated value of r for the
same three cases. In each scatterplot, we show the
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Fig. 3. Bias and standard error of the corrected and uncorrected ML method estimates of the radial location of event for events that

occur on z-axis. The modified intensity lpe is 200. ‘‘No-shift’’ detection model.

K.J. Coakley, D.N. McKinsey / Nuclear Instruments and Methods in Physics Research A 522 (2004) 504–520 511
0.1 quantile of the empirical distribution of the
estimate as a dashed line and the level rp=R ¼ p1=3

where p ¼ 0:1 as a solid line. If our estimate #r were
uniformly distributed in the spherical detection
region, the fraction of estimates less than rp ¼
Rp1=3 would be p: Thus, ideally, for each value of
n; one tenth of the estimates should fall below r0:1:

Assuming that events that produce a fixed
number of observed photons occur uniformly
throughout the detection volume, the expected
value of the fraction of corrected estimates of r

below rp divided by p is the efficiency of the
detector. Ideally, the detector efficiency should be
1 for all n: However, our calibration model
(Eq. (9)) does not guarantee a detector efficiency
equal to 1. Since a nonuniform detector efficiency
as a function of n will distort the count spectrum
of the detected events, one should quantify the
detector efficiency. As an illustration, we estimate
detector efficiency for the ‘‘shift’’ detection model
where ls=R ¼ 2

9
(Fig. 7).

For experiments like CLEAN, we wish to
determine whether an event occurs within a
particular inner spherical region or fiducial volume
defined by roRp1=3; where 0opo1: In principle,
given enough calibration data, we can determine
the radial boundary of a 100� p percent fiducial
volume so that the detector efficiency is arbitrarily
close to 1 by setting rp equal to the pth quantile of
the distribution of estimated values of r: This
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Fig. 4. Bias and standard error of the corrected and uncorrected ML method estimates of the radial location of event for events that

occur on z-axis. The modified intensity lpe is 200. ‘‘Shift’’ detection model.
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classification problem can be viewed as a statistical
hypothesis test where the null hypothesis is that
the actual radial location of a particular event is a
realization from a distribution that has a PDF
proportional to r2: In this way of looking at the
problem, the estimated value of r (corrected or
uncorrected) can be interpreted as the test statistic.
We accept the null hypothesis if the test statistic
falls below a certain critical level. The pth quantile
of the distribution of this test statistic (simulated
under the assumption that the null hypothesis is
true) is the critical level for a test with size 1� p

[21]. For a test with size 1� p; when the null
hypothesis is true, we reject it with probability
1� p: When one sets the critical level of a test with
size 1� p to the pth quantile of a test statistic, one
has calibrated a confidence point [22, p. 263]. We
wish to reject the null hypothesis with high
probability when an event is due to background.
That is, we wish the power of the test to be high.
When events are due to background, a high
rejection rate will yield a low background.

4.1.1. Centroid method

For comparison, we predict the radial location
of an event based on the magnitude of the centroid
of the count data. The centroid ~CC is defined to be

~CC ¼
X

k

wkdk ð11Þ
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Fig. 5. Realizations of the uncorrected ML method estimate of the radial location of event for events that occur uniformly within the

sphere. Case A: ls ¼ N and ‘‘shift’’ detection model. Case B: ls ¼ 0:1R and ‘‘no-shift’’ detection model. Case C: ls ¼ 0:1R and ‘‘shift’’

detection model. For each plot, we show the 0.1 quantile of the estimate (dashed horizontal line), rp=R ¼ p1=3 where p ¼ 0:1 (solid

horizontal line), and the line of equality corresponding to a perfect estimate.
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where

wk ¼
nkPNdet

j¼1 nj

ð12Þ

and nk is the number of counts at the kth detector.
Our Centroid method estimate of the radial
location of the event is

#rcentroid

R
¼ b1

j~CC j
R

þ b2
j~CC j
R

 !2

: ð13Þ

In general, the variability of the Centroid method
estimate (Fig. 8, Table 2) is higher than that of the
ML method (Fig. 6, Table 1). The difference in
performance is most dramatic for low count
ðno50Þ cases.

4.2. Intensity estimation

In the efficient simulation model, we simulate a
Poisson random variable N with expected value
equal to modified intensity lpe: To derive a simple
estimate of the modified intensity, we assume that
the number of detected counts n; given N; is a
binomial random variable with expected value
Np and variance Npð1� pÞ: For the ‘‘no-shift’’
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Fig. 6. Realizations of the corrected ML method estimate of the radial location of event for events that occur uniformly within the

sphere. Estimates computed from the same simulation data analyzed in Fig. 5.
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detection model p ¼ pc: For the ‘‘shift’’ detection
model, p ¼ pcð1� 0:5ð1� pcÞÞ: Thus, our ‘‘naive’’
estimate of the modified intensity isclpelpe naive ¼

n

p
: ð14Þ

Our second estimate of the modified intensity isclpelpe ML ¼
pc

p
#y4; ð15Þ

where #y4 is the ML method estimate of lpe

determined by maximizing the log-likelihood of
the observed data (Eq. (4)). We adjust #y4 because
our transition matrix does not account for the
effects of wavelength-shifting by the detectors. For
the cases studied, for r=Ro0:9; the two methods
yield similar results. However, for rER; the
variability of ML method estimate is generally
higher than that of the naive method estimate. To
illustrate this point, we compare the two methods
for the ‘‘shift’’ detector model where ls=R ¼ 0:1
(Fig. 9).

In an additional study, we simulate realizations
of N that are uniformly distributed between 50
and 1200. The Cartesian coordinates of each event
location are randomly generated so that the
radial location of a random event is uniformly



ARTICLE IN PRESS

•

•

• • • •
• • •

counts

de
te

ct
or

 e
ffi

ci
en

cy

10 50 100 500 1000

0.
4

0.
6

0.
8

1.
0

10 percent fiducial volume

•

•
•

•
• •

•

•
•

counts

de
te

ct
or

 e
ffi

ci
en

cy

10 50 100 500 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1 percent fiducial volume

Fig. 7. Detector efficiency for 1% and 10% fiducial volumes for ls=R ¼ 2
9
(71-sigma uncertainty intervals shown) based on corrected

ML method estimate of the radial location of event. ‘‘Shift’’ detection model.

K.J. Coakley, D.N. McKinsey / Nuclear Instruments and Methods in Physics Research A 522 (2004) 504–520 515
distributed between 0 and R: We compute the test
statistic

z ¼
n � Npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1� pÞ

p ð16Þ

for each event. Assuming that our binomial
assumption is correct, the PDF of z should be
well approximated by a unit normal (Gaussian)
distribution centered on 0. That is, the expected
value and variance of z should be approximately 0
and 1. Clearly, for events near the wall, the
observed variability of z is inconsistent with the
binomial assumption (Fig. 10). We attribute this
high variability to the incomplete coverage of
the walls by the detectors. For instance, in some
cases events can occur near the wall in gaps
between detectors. For such cases, almost all
of the emitted photons traveling radially outward
could be lost to the walls. Assuming that the
other half of the photons that travel radially
inward are detected with probability p; the
overall detection probability would be approxi-
mately p=2 rather than p: We attribute the
apparent outliers for case A in Figs. 5–7 to a
similar wall effect.

For the ‘‘no-shift’’ detection model, the prob-
ability of detecting a photon that is emitted at the
center of the spherical detection volume is pc ¼
0:75295ð13Þ: Based on pc; we predict the prob-
ability of detecting a photon emitted from the
center of the spherical detection volume to be p ¼
0:65994ð16Þ using the formula p ¼ pcð1� 0:5ð1�
pcÞÞ presented in Section 4.2. For simulated events
where the initial radial position of the photon was
uniformly distributed between 0 and 0.9R; we
compute the ratio of detected to emitted photons
for scattering lengths ls=R ¼ 0:01; 0:1; 1;N: For
the ‘‘no-shift’’ detection model, this ratio is
respectively 0.7536(3), 0.7526(3), 0.7529(3), and
0.7528(3). For the ‘‘shift’’ detection model, this
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Fig. 8. Realizations of the Centroid method estimate of the radial location of event for events that occur uniformly within the sphere.

Estimates computed from the same simulation data analyzed in Figs. 5 and 6.
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ratio is respectively 0.6607(3), 0.6605(3), 0.6606(3)
and 0.6604(3).
5. Discussion

Since the variability of the Centroid method
estimate of radial location is higher than the
variability of the ML method estimate, we expect
the ML method to be a more powerful method for
background discrimination applications. The re-
lative performance of the two methods should be
most dramatic for low count situations. Quantify-
ing this relative performance is a subject for
further study.

For an actual energy spectrum of interest, due to
wall effects, the actual distribution of events of
interest that produce n observed events might deviate
slightly from a uniform distribution even if the actual
distribution of events that yield N has a uniform
distribution. If this deviation from uniformity is
significant, we should account for it when construct-
ing critical levels of statistical tests to determine
whether an event is due to a background event.

It is reasonable to assume that the number of
emitted scintillation photons is a realization of a
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Table 2

Calibration model parameters for Centroid estimate

ls=R bb1b1 bb2b2 RMSE

No-shift

N 1.483(10) 0.0108(194) 0.0465

1 1.326(6) �0.0525(115) 0.0370

0.1 1.049(5) 0.0167(64) 0.0291

0.01 0.991(4) 0.0176(53) 0.0257

Shift

N 2.094(21) �0.113(56) 0.0675

1 1.826(15) �0.084(35) 0.0563

0.1 1.475(8) 0.006(14) 0.0438

0.01 1.386(7) 0.018(14) 0.0415

RMSE is the square root of the mean square prediction error,

adjusted for degrees of freedom, computed from all calibration

data. The number of counts in each training data set varies

from 50 to 1200.
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Fig. 9. For the ‘‘shift’’ detection model and ls=R ¼ 0:1; we compa

intensity for events that occur on the z-axis. The modified intensity i
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Poisson process with a rate parameter propor-
tional to the energy deposited by the event.
Imagine that some physical process of interest
produces events with energy deposit spectrum
f ðEÞ: The spectrum f ðEÞ is a PDF in energy space.
Due to the Poisson assumption, the number
spectrum gðNÞ generated by this process will be
proportional to the convolution of f ðEÞ with a
transition matrix pðN jEÞ: The spectrum for ob-
served counts qðnÞ is

qðnÞp
X

N

Z
E

Z
xs

f ðEÞpðN jEÞhðnjN;xsÞ dxs dE ð17Þ

where hðnjN;xsÞ is a transition matrix that
accounts for incomplete detector coverage and
position effects like the wall effects noted in this
work. Estimation of the true energy spectrum of
interest f ðEÞ from the empirical count distribution
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s lpe ¼ 200:
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Fig. 10. ‘‘Shift’’ detection model and ls=R ¼ 0:1: We predict N based on the number of detected photons n using our ‘‘naive’’

estimation model. If our ‘‘naive’’ model for predicting modified intensity is valid, z should be approximately a Gaussian random

variable with expected value and standard deviation equal to 0 and 1.
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observed in an experiment is a challenging
statistical inverse problem worthy of further study.
However, it is possible to develop statistical tests
to determine whether a theory explains the
observed data without ‘‘solving’’ the inverse
problem if, given a theoretical estimate of f ðEÞ;
we can predict the count spectrum for the observed
data.
6. Summary

We estimated the radial location of an ionizing
radiation event that produced multiple photons at
a point within a spherical detection volume, based
on the observed count data collected by detectors
mounted at the spherical boundary of the detec-
tion volume. We neglected absorption but ac-
counted for Rayleigh scattering as well as photon
conversion and re-emission at the detectors. In one
method, the predicted value was a polynomial
function of the centroid of the observed count
data. In the second method, the predicted value
was a polynomial function of the approximate
maximum likelihood estimate of the radial loca-
tion. In both cases, the polynomial correction
models were constructed from calibration data. In
general, the ML method estimate was more
accurate than the Centroid method estimate. In
this work, our ML estimate of location was
determined using a transition matrix that neglects
scattering and detector conversion of photons. We
corrected our estimate of radial location in a post-
processing step using a calibration model. For the
case of negligible absorption, as the scattering
length decreased, the accuracy of the corrected
estimate improved. For the case where absorption
is significant, we may not observe this sort of
improvement.

The event reconstruction methods presented in
this work do not account for photon absorption in
neon. For the case where absorption is significant,
we would either modify our methods or adopt a
different method. For the case where absorption is
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significant, a spatial ML method based using
estimate of the true transition matrix, as suggested
in Ref. [6], is a promising approach. However, as
we mentioned earlier, even if one has a perfect
estimate of the transition matrix accounting for
scattering and other effects such as absorption, the
ML method estimate of radial position may still be
biased. Additional calibration experiments may
be necessary to quantify detector efficiency even if
we know the true transition matrix.

We estimated the intensity of the event using the
ML method and a much simpler scheme. In the
simpler scheme, the estimate is the number of
detected photons divided by a detection prob-
ability factor. In general, the simpler method was
as good as or better than the ML method. For the
events near the wall, the variability of the ML
estimate was higher than the variability of the
simple method.

In future work, we will study how well our event
reconstruction method discriminates events of
interest from background events for simulated
data. In particular, we plan to study the relative
performance of the Centroid and Maximum Like-
lihood methods. We expect the relative perfor-
mance of the two methods to be most dramatic for
low count situations. For high count situations,
both methods could be useful. For instance, the
Centroid method might serve to validate results
obtained by the Maximum Likelihood method. In
an actual experiment, multiple-point background
events can occur because background gamma rays
can deposit fractional amounts of their total
energy. Additional simulation studies indicate that
we can discriminate such multiple-point back-
ground events from single-point events of interest.

Our work demonstrates the feasibility of spatial
methods for event reconstruction for the case
where scattering is significant but absorption is
negligible. We developed calibration models to
adjust estimates of the radial location of an event
based on simulated calibration data. In a simula-
tion, one can sample calibration data throughout
the entire detection volume. In a real experiment,
one might not have such freedom. If sampled
points are not sufficiently representative of all
points in the detection volume, the accuracy of the
calibration model could be affected. Thus, valida-
tion of empirical calibration methods for an actual
experiment is an important topic for further study.
Other important topics for further study include:
energy spectrum estimation, quantification of
detector efficiency and false detection rate as a
function of the number of detected counts, and
development of statistical hypothesis tests for
neutrino models.
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