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ABSTRACT 
 
Service-discovery systems aim to provide consistent views of 
distributed components under varying network conditions. To 
achieve this aim, designers rely upon a variety of self-healing 
strategies, including: architecture and topology, failure-detection 
and recovery techniques, and consistency maintenance 
mechanisms. In previous work, we showed that various 
combinations of self-healing strategies lead to significant 
differences in the ability of service-discovery systems to maintain 
consistency during increasing network failure. Here, we ask 
whether the contribution of individual self-healing strategies can 
be quantified. We give results that quantify the effectiveness of 
selected combinations of architecture-topology and recovery 
techniques. Our results suggest that it should prove feasible to 
quantify the ability of individual self-healing strategies to 
overcome various failures. A full understanding of the interactions 
among self-healing strategies would provide designers of 
distributed systems with the knowledge necessary to build the 
most effective self-healing systems with minimum overhead.   

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Distributed programming 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation. 

Keywords 
Architecture, Self-Healing Systems, Self-Repairing Systems, 
Service Discovery.  

 

 

 

 

 

 

 

1. INTRODUCTION 
Growing deployment of wireless communications, implying 
greater user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, foretell a 
future where software components can never be quite sure about 
the network connectivity available, about the other software 
services and components nearby, or about the state of the network 
neighborhood a few minutes in the future. In extreme situations, 
as found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or cyber 
attacks or due to jamming of communication channels or 
movement of nodes beyond communications range. In such 
volatile environments, service discovery protocols enable 
distributed components to rediscover lost components or to find 
other components that provide essential services needed to 
accomplish critical tasks. To do this, service discovery systems 
include self-healing strategies to mitigate, detect, and recover 
from failures. 

Service discovery protocols rely on several self-healing strategies. 
Architecture, which defines the logical components and 
relationships that compose a system, coupled with topology, 
which specifies the number and placement of components in a 
system, can be used in combination to mitigate the effects of 
failures by increasing system redundancy. Failure detection 
techniques, which typically include monitoring of periodic 
announcements and bounded retries (and resulting exceptions), 
allow components to estimate uncertainty regarding the state of 
cooperating components or regarding the intervening network 
path. Recovery techniques, which include application-level 
persistence and soft state, define actions a component can take to 
address suspected failures. Consistency-maintenance mechanisms, 
which include notification and polling, provide a means to 
maintain synchronized state among distributed components by 
propagating state changes to remote components. 

In previous work, we used architectural models to investigate the 
behavior of various service-discovery systems under increasing 
communication failure [6] and message loss [7]. Our 
investigations yielded quantitative measures for the effectiveness, 
responsiveness, and efficiency of alternate system designs. We 
considered various combinations of architecture, topology, and 
consistency-maintenance mechanisms, however we did not vary 
failure recovery techniques.  

In this paper, we extend our approach to quantify the contribution 
of failure recovery techniques in order to provide a more complete 
picture of the actions of individual self-healing strategies within 



service discovery systems. We focus our investigation on four 
combinations of failure-detection and recovery technique while 
limiting other variables to include only two architecture-topology 
combinations and one consistency-maintenance mechanism. We 
examine system behavior under increasing communication failure. 
We use the same Rapide [4] models of service-discovery systems 
that we used in our previous research. Our models are based on 
two specifications: Jini™ Networking Technology [2] and 
Universal Plug-and-Play [3]. We adapted self-healing strategies 
from these specifications.  

The remainder of the paper is organized as four sections. In the 
first section, we provide an overview of the self-healing strategies 
used in service-discovery systems. The second section gives a 
quantitative summary of the overall effectiveness of various 
combinations of self-healing strategy, when used to maintain 
consistent state among distributed components as the duration of 
communication failures increases. In the third section, we 
investigate and quantify the contribution of failure detection and 
recovery techniques to overall system effectiveness. In the 
conclusions, we discuss the feasibility and desirability of gaining 
a full understanding of the interactions among self-healing 
strategies for adaptive distributed systems. 

2. DISCOVERY SYSTEMS AND SELF-
HEALING 
Service discovery systems enable distributed software components 
to discover each other, and to determine if discovered components 
meet specific requirements. Discovery protocols include 
consistency-maintenance mechanisms, which can be used to 
disseminate changes in component availability and status, and to 
maintain, within some time bounds, a consistent view of 
components in a network. Failure-detection and recovery 
techniques enable components to detect and react to network 
changes by restoring communications with remote components or 
by locating alternate components. A number of different designs 
have been proposed for service-discovery systems. For example, a 
team at Sun Microsystems designed Jini Networking Technology, 
a general service-discovery mechanism atop JavaTM. As another 
example, a group from Microsoft and Intel conceived Universal 
Plug-and-Play (UPnP) to provide plug-and-play components for 
distributed systems. 

2.1 Architecture and Topology 
Our analysis of six distinct discovery systems revealed that most 
designs use one of two underlying architectures: two-party and 
three-party. A two-party architecture consists of two components 
types: service manager (SM) and service user (SU). Figure 1 
shows a two-party architecture deployed in a six-component 
topology: one SM and five SUs. A three-party architecture adds a 
third component type: service cache manager (SCM). The three-
party architecture allows for multiple SCMs to mitigate the effect 
of failures (passive self-healing). Figure 2 shows a three-party 
architecture with one SM, five SUs, and up to two SCMs. A SM 
maintains a database of service descriptions (SDs), where each SD 
encodes the essential characteristics of a particular service. A SU 
seeks SDs maintained by SMs that satisfy specific requirements. 
Where employed, the SCM operates as an intermediary, matching 
advertised SDs of SMs to SD requirements provided by SUs. 

To animate our two-party model, we incorporated behaviors from 
the UPnP specification. Upon startup, each SU and SM seeks to 
discover other, relevant components within the network 
neighborhood. In a lazy-discovery process, each SM periodically 
announces the existence of its SDs over the UPnP multicast 
group. Upon receiving these announcements, SUs with matching 
requirements request copies of the desired SDs from the SM. The 
SU stores SD copies in a local cache. Alternatively, the SU may 
engage in an aggressive-discovery process by transmitting SD 
requirements, as Msearch queries, on the UPnP multicast group. 

Any SM holding a SD with matching requirements may respond 
directly to the SU.  The SU may then request a copy of the 
relevant SDs, caching them locally. To maintain a SD in its local 
cache, a SU expects to receive periodic announcements from the 
relevant SM at a specified interval, known as a Time-to-Live, or 
TTL (or it must receive replies to its Msearchs within the TTL). 
Otherwise, the SU may discard the SD. 

To animate our three-party model, we chose behaviors described 
in the Jini specification. In Jini, the discovery process focuses 
upon discovery by SMs and SUs of any intermediary SCMs that 
exist in the network neighborhood. Upon initiation, a Jini 
component enters aggressive discovery, where it transmits probes 
on the aggressive-discovery multicast group at a fixed interval for 
a specified period or until it has discovered a sufficient number of 
SCMs. Upon cessation of aggressive discovery, a component 
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Figure 1. Two-party service-discovery architecture 
with five service users (SUs) and one service manager 
(SM). 



enters lazy discovery, where it listens for announcements sent at 
intervals by SCMs. Once discovery occurs, a SM deposits a copy 
of the SD for each of its services on the discovered SCM for a 
specified length of time, or TTL. To maintain a SD on the SCM 
beyond the TTL, a SM must refresh the SD; otherwise it is 
purged. The SCMs match SDs provided by SMs to SU 
requirements, and forward matches to SUs. 

2.2 Consistency-Maintenance Mechanisms 
After initial discovery and information propagation (through 
SDs), SUs can use consistency-maintenance mechanisms to obtain 
updates to SDs for discovered services. We consider two basic 
mechanisms: notification and polling. In polling, a SU 
periodically sends queries to obtain up-to-date information about 
a previously discovered SD. In a two-party architecture, the SU 
issues the query directly to the SM from which the SD was 
obtained, and receives a response. In a three-party architecture, 
polling consists of two processes: 1) a SM propagates an updated 
SD to each SCM where the SD was originally cached and 2) each 
SU periodically queries relevant SCMs.  

In notification, immediately after an update occurs, a SM sends 
events that announce a SD has changed. To receive events about a 
SD, a SU must first register for this purpose. In the two-party 
architecture, the SU requests registration with a SM.  The request, 
if accepted, is retained for a TTL, which may be refreshed with 
subsequent requests from the SU. In a three-party architecture, a 
SU registers with a SCM to receive updates. The SCM grants 
event registrations for a TTL, which may be refreshed. When a SD 
is updated, the SM first propagates the update to all SCMs on 
which it deposited the SD; each SCM then forwards the event to 
all SUs registered to receive updates to the SD. 

2.3 Failure-Detection Techniques  
In a hostile military or emergency response environment, faults 
may arise due to enemy jamming or other interference, 
congestion, physical severing of cables, improperly configured or 
sabotaged routing tables, or multi-path fading as nodes move 
across a terrain. In this paper, we consider communication failure. 
Node communication may fail fully (both transmit and receive) or 
partially (either transmit or receive). All outbound messages from 
an interface will be lost when the transmitter fails, while all 
inbound messages will be lost when the receiver fails.  

To detect failures, discovery systems use a combination of two 
techniques: monitoring periodic announcements and bounded 
retries (and resulting exceptions). Discovery protocols specify 
periodic transmission of key messages. Listeners can monitor 
these messages; much in the same way a heartbeat is monitored to 
assess the health of a patient. For example, as described above, 
both Jini and UPnP provide for periodic announcements of the 
availability of essential resources. Failure to receive scheduled 
announcements may indicate that the announcing entity has failed 
or that the network path is blocked. In other situations, software 
components send messages using reliable communication 
protocols, which persistently resend unacknowledged messages 
up to some bound, issuing a remote exception (REX) if the bound 
is exceeded. Failure detection allows components to employ 
recovery techniques. 

2.4 Recovery Techniques  
Discovery systems generally support two recovery techniques: 
soft-state and application-level persistence. Periodic 
announcements convey soft information about essential state, 
which a receiver can cache for a period of time, consistent with 
the expected announcement or heart rate. Each new re-
announcement, or heartbeat, may convey updated state 
information; thus, the receiver overwrites previously cached state 
with state arriving in the latest announcement, or heartbeat. When 
the heartbeat fails, the receiver discards the cached state. When 
the heartbeat resumes, the receiver recovers the latest state. For 
example, upon failure of heartbeat messages sent by Jini SMs to 
refresh SDs cached on SCMs, the SD is discarded. The same 
occurs upon failure of periodic refreshes of notification 
registrations in both Jini and UPnP. Similarly, UPnP SUs may 
commence periodic Msearch queries after failure by a SM to 
refresh a SD within the TTL, which causes the SU to discard 
knowledge of the SM. Once a SU regains its desired SD, the 
related Msearch queries cease. This method is also employed 
when, after an initial aggressive discovery phase, Jini SCMs enter 
lazy discovery where they announce themselves every 120s. This 
ensures rediscovery of the SCM by SMs and SUs within 120s 
after a fault is rectified. 

When failure-detection leads to a REX, discovery systems 
generally expect application software to initiate recovery, guided 
by an application-level persistence policy. In our models, 
depending on the situation, we implement three different 
persistence policies: (1) ignore the REX, (2) retry the operation 
for some period, and (3) discard knowledge. A SU can ignore a 
REX received in response to an attempted poll, because the query 
recurs periodically. In our models, two-party SMs and three-party 
SCMs also ignore a REX received as a result of attempted 
notifications. This behavior, which is described in both the Jini 
and UPnP specifications, depends upon reliable lower-layer 
protocols to provide robustness for events. In other cases, the retry 
policy attempts to recover from transient failures by resending a 
message (for which it has received a REX) after a nominal delay. 
The discard policy, which occurs following repeated failure of a 
retry, relies upon monitoring periodic soft-state announcements to 
recover from more persistent failures. As indicated above, in the 
two-party model, the SU discards the SM and its related SDs after 
failure to receive announcements from the SM within the TTL. In 
Jini, the specification states that a discovering entity may discard a 
SCM with which it cannot communicate. In our three-party 
model, a SM or SU deletes a SCM if it receives only REXs after 
attempting to communicate with the SCM over a 540-s interval. 
After discarding knowledge of a SM (UPnP) or SCM (Jini), all 
operations involving the node cease until it is rediscovered by 
monitoring periodic announcements (through either lazy or 
aggressive discovery). 

3. EFFECTIVENESS OF SELF-HEALING 
In previous work, we investigated the effectiveness of selected 
self-healing strategies when attempting to maintain synchronized 
state among distributed components during communication failure 
[6] and message loss [7]. We compared combinations of two- and 
three-party architectures and topologies (as shown in Figures 1 
and 2), together with different consistency-maintenance 
mechanisms (notification or polling). In each combination, we 
used the same failure-detection (monitoring periodic 



announcements and bounded-retries) and recovery (soft state and 
application-level persistence) techniques (see Table 1). We 
measured effectiveness (as the probability that a node achieves 
state synchronization) for increasing failure rates. Here we 
summarize our findings for effectiveness in the face of 
communications failure. Figure 3 shows effectiveness for each 
combination as communication-failure rate increases to 75%. 

Our previous papers provided qualitative explanations (based on 
analysis of execution traces) regarding the contributions of each 
self-healing strategy to measured differences in effectiveness. 
Here, we summarize our main findings for communications 
failure. Figure 3 indicates a rough similarity in effectiveness for 
all combinations; however, within these ranges, there are also 
significant differences. We attribute similarity in effectiveness to 
the fact that we employ similar failure-detection and recovery 
techniques in all combinations. The graph contains several 
eccentricities, in the form of saw-tooth behaviors. For example, 
two-party notification suffers a significant drop in effectiveness 
between 5% and 25% failure rate. This occurs because 
notifications rely on underlying reliable communication protocols 
to achieve robustness. When these protocols fail (as would be 
likely in case of communication failure), notifications are lost.  
The application software then relies upon detection of failure of 
periodic announcements (heartbeat) and restoration through 
initiation of recovery actions. Unfortunately, in UPnP the lazy-
discovery announcement occurs no more frequently than every 
1800s. Between 5% and 25% failure rate, there exists a substantial 
likelihood that communication failure is corrected prior to the 
next announcement. In such cases, an aggressive-discovery 
announcement (120-s interval) is not initiated, and state contained 
in the notification remains lost. As the failure rate increases, 
coincidence of announcement failure and notification failure 
becomes more probable, leading to initiation of the aggressive-
discovery announcements, which eventually recovers state 
contained in the lost notification. Jini does not suffer as much 
from this phenomenon for two reasons. First, in Jini the lazy-
discovery announcements occur at a 120-s interval. Second, Jini 
SMs exhibit some persistence when attempting to propagate SDs 
to SCMs. In selected cases, this persistence causes the SCM to 
periodically retry notifications. 

Despite the dominance of failure-detection and recovery 
techniques, our results show that certain combinations of 
architecture, topology, and consistency-maintenance mechanism 
contribute to differences in effectiveness. For instance, each SD 
copy must propagate over either one link (two-party case) or two 

links (three-party case). For this reason, the three-party 
architecture (single SCM) can prove more vulnerable to 
communication failures (two links must be operational). This 
suggests that the two-party architecture will be more effective 
under severe failures, and our results support this. On the other 
hand, the three-party architecture allows replication of SCMs, 
which provides a greater number of paths through which 
information can propagate. This suggests (and our results agree) 
that the three-party architecture with dual SCM provides superior 
effectiveness over the single-SCM, three-party architecture. Our 
results also indicate that the dual-SCM three-party architecture 
yields effectiveness close to that of the two-party architecture. 

Regarding consistency-maintenance mechanism, we conclude that 
polling, with its built-in persistence, should lead to better 
effectiveness than notification, where events are issued only once 
with no further action by the sender in response to a REX. Our 
results support this analysis for the two-party architecture and for 
the three-party architecture with a single SCM.  However, 
notification appears slightly more effective than polling for the 
three-party architecture with dual SCM. We suspect this may be 
because notifications require only that the SCM-to-SU link be 
operational, while polling also requires the SU-to-SCM link. 

4. DISSECTING RECOVERY STRATEGIES  
To further dissect recovery strategies, we decided to factor 
recovery techniques into four cases: 1) no recovery, 2) soft state 
only, 3) application persistence only, and 4) both soft state and 
application persistence.1 We believe that this finer degree of 
factoring will enable us to quantify the contribution of various 
self-healing strategies to overall system effectiveness. Further, we 
expect that such factoring might reveal interactions among self-
healing strategies, and help to identify situations where strategies 
are redundant, complementary, or conflicting. To explore these 

                                                                 
1 When a failure recovery technique is factored out of an experiment, the 

related failure detection technique (see Table 1) is also factored out. 
Eliminating soft state implies that the related heartbeat is ignored, while 
eliminating application-level persistence implies that the related REX 
(after bounded retries) is ignored. 
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ideas, we applied our approach to investigate the contribution of 
recovery techniques, given various architecture-topology 
combinations, in the case of one consistency-maintenance 
mechanism (notification) and one fault type (communication 
failure).  

Figure 4 shows effectiveness for two-party notification as 
communication failure increases to 75%. The curve representing 
the use of all recovery techniques was taken from Figure 3. The 
remaining three curves in Figure 4 depict effectiveness when 
selected recovery techniques are disabled. Where no recovery is 
employed, effectiveness decreases nearly linearly as failure rate 
increases, dropping below 10% when the failure rate reaches 75%. 
When soft-state recovery is enabled alone, effectiveness improves 
significantly. Similarly, when application-persistence is enabled 
alone, effectiveness also improves significantly. Further, Figure 4 
shows that application-persistence contributes more to system 
effectiveness at lower failure rates (30% and below), while soft-
state recovery contributes more at higher failure rates.  For two-
party notification, under communication failure, the two recovery 
techniques appear complementary. 

Figures 5 and 6, which show the contribution of recovery 
techniques for three-party, single-SCM notification and three-
party, dual-SCM notification, yield a different picture. Where all 

recovery techniques are disabled, effectiveness decreases nearly 
linearly as failure rate increases; however, the rate of decrease of 
the three-party dual-SCM architecture appears lower than for the 
two-party architecture, and effectiveness stays above 10% at the 
75% failure rate.  

This suggests that increased robustness from a dual-SCM 
topology slightly mitigates the effects of communication failures. 
The three-party, single-SCM architecture with no recovery 
provides the poorest level of performance, reflecting the need to 
propagate the notification across two links without the alternative 
path provided by the second SCM. Note, however, that once 
either recovery technique is enabled in both variants of the three-
party architecture, effectiveness improves to the level observed 
when both recovery techniques are enabled. This result indicates 
that, for three-party, single and dual-SCM notification, the two 
recovery techniques (soft state and application persistence) are 
redundant. These results shown in figures 4 through 6 are 
summarized in computed summary statistics in Table 2.  

5. CONCLUSIONS 
Our preliminary results (in Figs. 4-6) show the desirability and 
feasibility of dissecting the quantitative contributions to system 
effectiveness of various recovery strategies. Further, our results 
show that interactions (such as redundancy and complementarity) 
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between various recovery techniques can be identified and 
quantified.  

Emerging service-discovery protocols provide the foundation for 
software components to discover each other, to organize 
themselves into a system, and to adapt to changes in system 
topology.  These capabilities can also be used to effect self-
healing in distributed component systems. In this paper, we used 
architectural models to characterize how architecture, topology, 
consistency-maintenance mechanism, and failure-recovery 
strategy each contribute to self-healing during communication 
failure. Further, in the context of communication failure and using 
notification as a consistency-maintenance mechanism, we 
dissected the self-healing properties attributable to recovery 
techniques and to topology. Our results suggest that it should 
prove feasible to quantify the ability of individual self-healing 
strategies to overcome various types of failure. A full 
understanding of the interactions among self-healing strategies 
would provide designers of distributed systems with the 
knowledge necessary to build the most effective self-healing 
systems with minimum overhead. 
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