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ABSTRACT

Pervasive Computing environments range from basic
mobile point of sale terminal systems, to rich Smart
Spaces with many devices and sensors such as lapel mi-
crophones, audio and video sensor arrays and multiple
interactive PDA acting as electronic brief cases, provid-
ing authentication, and user preference data to the en-
vironment. These systems present new challenges in
distributed human-computer interfaces such as how to
best use sensor streams, distribute interfaces across mul-
tiple devices, and dynamic network management as users
come an go, and as devices are added or fail.

The NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY SMART DATA FLOW system is a low
overhead, high bandwidth transport mechanism for stan-
dardized multi-modal data streams. It is designed to al-
low integration of multiple sensors with distributed pro-
cessing needed for the sense-recognize-respond cycle of
multi modal user interfaces. Its core is a server/client
architecture, allowing clients to produce or subscribe to
data flows, and supporting steps toward scalable pro-
cessing, distributing the computing requirements among
many network connected computers and pervasive de-
vices.

This article introduces the communication broker and
provides an example of an effective real time sensor fu-
sion to track a speaker with a video camera using data
captured from multi-channel microphone array.

Keywords: SMART DATA FLOW, MEETING ROOM,
Data Transfer, Flows of Data, Data pipelining

1 INTRODUCTION

Real time multimedia information is often transfered
as streaming video and audio. Pervasive Computing is an
emerging field that, among other things, makes intensive
use of several technologies to accomplish the integration
of multi modal sensor streams. Although not limited to
real time streaming data, the distributed processing of
high volume of information does require a resilient and
low overhead transport mechanism. In order to create a
test bed for Pervasive Smart Spaces, the SMART DATA

FLOW system (SDF) version 1 was released in 1999 by
the NATIONAL INSTITUTE OFSTANDARDS AND TECH-
NOLOGY (NIST) SMART SPACE project (SMS). It was
designed to support integration of devices and sensors
into processing steps distributed over multiple comput-
ing nodes sharing flows of data transparently. By ab-
stracting the details of data transport, the SMART DATA

FLOW simplify the development of complex, multi node,
multi step distributed applications that are needed for
smart environments.

This article presents the concepts of the NIST SDF, as
well as its underlying component library. It also presents
a detailed example of its use in a full scale application :
a multi-channel audio data is used to localize a speaking
person inside a smart room and point a camera at the es-
timated source bearing. Finally, we discuss the current
problems and limitations of the current SDF and intro-
duce new concepts for the next generation SDF-II that
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will allow more dynamic data flow systems to be con-
structed.

2 THE NIST SMART DATA FLOW

Objectives & Needs
The NIST SMART DATA FLOW system was designed

to enable research work in the field of Pervasive Comput-
ing and Smart Spaces, and help manage the numerous,
easily accessible computing devices connected to each
other in the ubiquitous network infrastructure they need
to be effective. Its focus is on advanced forms of hu-
man computer interaction, integrating wireless networks
with dynamic service discovery, automatic device con-
figuration, and sensor based perceptual interfaces. The
objectives are to facilitate :

• Identification of security mechanisms for privacy,
integrity, and accessibility.

• Interconnection of components and systems to ex-
plore key issues in distributed smart spaces.

• Establishment of an integrated multi-sensor percep-
tual interface test bed for smart work spaces.

• Providing a multi-sensor data recording environ-
ment for the production of standard test and refer-
ence materials.

In order to support research on the effective design
of Pervasive Smart Spaces, an abstract, high speed, low
overhead, data transport mechanism allowing distributed
processing of sensor data, was needed. Therefore, in or-
der to ease the development of such spaces, we defined a
simple system to work among distributed systems and al-
low network transfer of high data densityflows between
clients interconnected by aservercrossbar.
Concepts & Conception

The servers:The servers establish the initial
crossbar between the different physical systems that will
send and receive data flows. They also provide the
push/pull mechanism that is used in flow transfers; with
client flows being transported using the server estab-
lished crossbar. In this architecture, the server must be
started before clients can connect to the SDF. The cross-
bar is established by the server using a static of list the
available physical nodes.

The clients:Clients are processes that produce
flows, consume flows, or both. They can be thought of as
small data processing functions using an abstract trans-
port mechanism to receive inputs and send outputs; each
SDF client should be limited to a specific function so that
they can be used as building blocks for a higher level sys-
tem functionalities.

Clients are not bound to a specific physical system, un-
less they require specific components only available on
that system, such as capture clients which require data
acquisition hardware, e.g: a multi channel audio capture
board. Otherwise it is very simple to transfer a client ap-
plication from one node to another. This is made possible

by the naming convention for clients which is defined to
uniquely refer to a client by the combination of its name
and group, and not the system it is started on.

In order for a client to work with flows, it must attach
itself to a server running on the local system and describe
the flows it uses or produces to the server.

The Flows:Flows are 1-to-n pro-
ducer/consumer system elements. They can be of
a raw data type but the SDF library also defines some
standard types for audio, video, vector, matrix and
opaque structures.

A flow is also uniquely defined by its name and its
group. The use of groups for both clients and flow al-
low a simple domain and sub-domain topology, which is
useful in cases where eachVideo Capture Clienton sys-
tems such ascamera1 to camera5 produces instances
of the sameVideo Inflow, yet it needs to be able to dis-
tinguish each such flow. This is done by specifying a
different group for each flow instance.

Note that the data-type also matters; a video flow can-
not be attached to an audio flow, but the data-type is not
the main mean of identifying flows.

Each flow is defined and made available to other
clients with a fixed history size; it is possible for a client
to request a buffer that is older than the most recent one,
given that the server, which controls the flow memory
management process, still possesses it.

Figure 1. Flow mechanism

Data Transfer Using Flows:The figure 1 rep-
resents the internal mechanism underlying the capture
of a video flow from a hardware sensor, here a camera
coupled with a capture card, and how it is sent from the
Video Capture Systemto theVideo Processing System:

1. The current frame is captured by theVideo Capture
Hardware using the API provided for the capture
card. This is done from theVideo Capture Client
application.

2. The Video Capture Clientrequests a send buffer
from the local SDF serverand copy the captured
frame into this buffer. Then the client request for
this buffer –now encapsulated inside a flow– to be
made available to subscribers (the is the “send” pro-
cess).

3. TheLocal SDF Serverlocated on theVideo Capture



Systempushes the information to theLocal SDF
Serverlocated on theVideo Processing System.

4. TheLocal SDF Serveron theVideo Processing Sys-
tempulls the information received via the transport
mechanism (both clients can be local in which case
the transport mechanism is shared memory or if
separated by a network, a TCP/IP packet stream)
and add it to its local buffers for this flow.

5. TheVideo Processing Clienthas made a blocking
request to get the latest available buffer from the
Video Capture Flow. TheLocal SDF Servermakes
it available to the client as a read-only information.

6. TheVideo Processing Clientis now able to use the
data contained inside the flow, but must release the
buffer back to theLocal SDF Serveronce finished.

Note that theVideo Processing Systemcan itself be a
flowproducer. In that case after processing the data con-
tained in the received flow, it will itself request an out-
put buffer to encapsulate its data into a flow, andsend
it (once again, theLocal SDF Serverwill push the data
to theLocal SDF Serverof the client subscribing to the
produced flow).

Using Data Flows In Clients

Create a flow
Loop (

Allocate a buffer
Write data in the buffer
Send the buffer

)

ALGORITHM 2.1. Opening a flow in emit
mode

In Emit Mode: The simplified algorithm pre-
sented on 2.1 gives an abstract view of the procedures
involved in emitting a flow.

On the client side, the first thing to be done is to an-
nounce to the local server the flow that will be provided,
including information about its name, group, type and
sub-type. Then for each buffer to be sent, the client re-
quests a buffer from the server, writes its data into this
buffer, and asks the server to send this buffer.

The server does the counterpart job; when given the
information about all the flows provided by the client,
it propagates the information among the crossbar to all
other servers who will in turn check if they know sub-
scribers for this flow. Then for each buffer to be sent,
the server provides, upon request, a buffer to the client,
and when this buffer is returned (asked to be sent by the
client), the server makes it available to all subscribing
clients by sending it to their respective local server.

In Receive Mode:The reception algorithm
shown on 2.2 presents the steps involved in the reception
of a flow.

Subscribe to the flow
Loop (

Read the buffer
Process its data
Release the buffer

)

ALGORITHM 2.2. Subscribing to a flow in re-
ceive mode

The client first tells the local server about the flow it
is waiting to subscribe to, providing its full name as well
as the data types and format it requires. Then for each
buffer to be received, the client does a blocking wait on
this flow, read the content of the pushed buffer, processes
the received data (making a local copy of the data if it
needs to make changes1), and releases the buffer to the
server.

During the initialization process, the server gets the
information from the new client about the flows it re-
quires. If the server has such a flow registered from an-
other client it contacts the remote server providing the
client emitting this flow and establishes the client sub-
scription to it.

If the flow is not yet available, it will provide it to the
receiving client once an emitting client produces it. If
the sub-type of the data requested by the client is differ-
ent from the sub-type proposed for subscription by the
remote server, the local server will perform the conver-
sions needed to provide the proper buffers to its client if
this can be done. For example, the remote client sends
24 bits JPEG compressed frames and the local client re-
quires 24 bits uncompressed frames; the server will un-
compress the source frame into the destination format.
Then, for each buffer received from the emitting-client
via its local server, the server makes it available to lo-
cal clients, after appropriate conversions, and provide on
explicit request.

Once the client has finished its processing, the server
memory manager will decrement some usage counter for
this buffer. When the usage count drops to zero the mem-
ory space is made available for re-use.

Figure 2. A simple flow graph example

A Simple Face Identification Example:A
simple example of the pipelining and branching of data
flows is presented in figure 2 where theVideo Capture
client provides itsVideo Inflow to both theFace Local-
izationclient and theFace Recognitionclient.

1this is to make sure that if more than one client on the local server
need this flow, the data will not be altered



The flows provide data driven process control so that
for each video frame transported, the localization client
provides the recognition client with the coordinates of
a face box for the corresponding video frame. The lo-
cal SDF servers manage the flow storage queues to al-
low the processes to proceed at their own pace, and even
out scheduling jitter and differences in process execu-
tion times. As long as the slowest process keeps up with
the real time video capture source, the graph process all
paths without losing frames.

The face recognition client uses the localization coor-
dinates to apply recognition algorithms, such as Eigen-
face to the appropriate portion of each video frame to
classify the face as that of a person from its template
library. This information is then provided in anIdentifi-
cationflow, which is time tagged for later analysis.

3 PERSON TRACKING USING SOUND
LOCALIZATION

In this section we present a real scenario used in the
NIST Smart Space SDF test bed. It describes how to
steer a camera based on source bearing estimates using
phased array processing techniques and the NIST Mark-
II microphone array. The source bearing allows the cam-
era to frame a speaker, so that additional video process-
ing, such as face localization can be applied.
Hardware involved

The NIST SMART SPACE Laboratory is composed of
the NIST SMART DATA FLOW , multiple sensors and
data acquisition hardware. Some of these include :

• A PC based video capture system (here an AMD K6
300Mhz with 128MB of memory) running Linux
and anLinux Media Labs LML33video capture
card, based on the Zoran ZR36057 chipset, con-
nected to a Sony EVI D30 camera with VISCA ca-
pabilities.

• A PC based sound capture system (here an AMD
K6 450Mhz with 256MB of memory) also running
Linux and a PCI card with eight multiplexed 16 bit
ADCs capturing 64 channels from the NIST Mark-
II 64 channel microphone array. The data channels
are sampled at approximately 22050Hz2.

• Our computation nodes are based on Athlon
XP2000+ system with 1.5GB DDR.

Phased Array Processing Algorithm for Source Bear-
ing

This is a uniformly spaced line array with a 1.5 cm in-
ter sensor separation supporting acquisition of frequen-
cies up to approximately 11 kHz without spatial aliasing.
To facilitate camera pointing, it is placed at the horizon-
tal center of the microphone array and is steered coaxi-
ally with the estimated source bearing. This spacing of

2The Mark-III NIST microphone array is in development, and will
have lower parts cost, improved 24 bit ADCs, better signal-to-noise
ratios, and an on board FPGA to handle data framing and direct con-
nection to the SDF via Ethernet UDP packets for flexible deployment

the sensors is designed to allow the identification of mul-
tiple sources, as well as the most dominant source, using
simple delay-and-sum beam forming. In order to find the
dominant source we simply compute a field of 61 beams,
each steered three degrees from its neighbor by introduc-
ing appropriate delays at each array element, and com-
pute the incident power on each beam. We then scan the
resulting energy versus direction map for the peak en-
ergy, and impute the dominant source bearing to that di-
rection. In order to improve resolution we highpass filter
the individual sensors to block energy with wavelengths
too long to be steered out by this array. Using numerous
closely spaced sensors allows this computation to pro-
ceed in real time using modest computational resources
owing to its simplicity. More advanced analysis might
allow multiple sources to be resolved, possibly allowing
exclusion of simultaneous speakers.
Detail of the Flows involved

Figure 3. Flows involved in Sound based Lo-
calization

Since the computation and data acquisition steps in
this process are beyond the abilities of a single commod-
ity PC, we used the SDF to distribute the captured data
to other nodes in a pipeline, which together compose the
source bearing estimation and camera steering process.
As shown in figure 3, the entire process is pipelined into
five distributed steps :

1. On theAudio Capture System, theDSP Audio Cap-
ture client collects data from the microphone array
and creates aMultichannel Audio Inflow that is
made available for subscription to other clients.

2. On Computation Node 1, the Multichannel Audio
Highpass filtersubscribes to the multichannel flow,
and applies a high pass filter to each of the 64 chan-
nels. The client emits aHighpass Multichannelflow
for subscription.

3. Computation Node 2uses the highpass flow for
delay-and-sum beamforming of 61 beams. This
information is encapsulated inside theDirectional
Energyflow.

4. Computation Node 3uses directional energy flow to
find the peak direction which indicates the angle of
the speaker relative to the microphone array. The
client then uses source bearing angle to generate a
Camera Commandsflow.

5. Finally, theVideo Capture Systemuses the previ-
ous flow to generate camera commands and sends
them to the hardware (here a VISCA enabled Sony
EVI D30 camera) to slew the camera to frame the



person speaking. Note that this client also gener-
ates aCamera Positionflow that could be combined
with other data to support person identification us-
ing face recognition, or other features for gesture
recognition.

It is important to remark that the computation nodes
1, 2 and 3 can transparently be distinct systems, or if the
processing power allows it, a single system. The clients
in the pipeline do not need to be aware of the hardware
configuration that executes them.

The Real Application

Figure 4. Screenshot of actual GUI of the
SMART DATA FLOW control center for Sound
based Localization

Figure 5. Screenshot of the face localization
and tracking result

Figure 4 shows the actual client map for the process
presented above as well as additional processing for spo-
ken language processing. Two branches are represented
on this map. The first, shown across the bottom part
of the figure, implements the client steps presented for
the source bearing estimation of a speaker. The second
branch, making a serpentine path from the top to the mid-
dle, implements a multi step pipeline for the computa-
tion of a Mel Frequency Cepstrum from a beamformed
source. The Finite Impulse Response (FIR) filtering pro-
vides signal conditioning to remove the low frequency
noise present in most buildings. Next is the Cepstrum,
a feature extraction algorithm for speech signals com-
monly used for speech recognition and speaker identifi-
cation. The processing steps include preemphasis filter-
ing to flatten the spectrum, time domain windowing to

improve spectral resolution, Fast Fourier Transform, Mel
frequency filter bank computation, Cosine transform and
Cepstral mean normalization to reduce the impact of sta-
tionary background noise, and to equalize the channel.
The result can be seen on the screenshot in figure 5 that
displays the view as seen by the camera with the speaker
centered in the frame, and includes the box for face lo-
calization, as discussed previously.

4 FUTURE OF THE NIST SMART DATA FLOW

Our plans for enhanced functionality in SDF version
2, are designed to mitigate the limitations of version 1.
We have used version 1 to generate terabyte scale meet-
ing databases with over two hundred microphones and
five simultaneous camera views, which has shown it to
be a scalable and robust distributed processing system.
However, this was on a fixed network topology using
about fifteen separate nodes generating about a gigabyte
of data per minute and a private switch. However, Per-
vasive Computing environments require support for dy-
namic devices and service discovery, real time fault tol-
erance, and some level of self configuration.

Limitations of the NIST SMART DATA FLOW I
Some of the current issues we feel need to be ad-

dressed in the present version of the SDF are as follows :

• All local SDF servers must be started before any
client can be instantiated. It is impossible to dy-
namically add servers to the currently running list,
or to run a client on a system without a local SDF
server already running.

• The servers maintain the crossbar, but they have no
safeguard mechanism; if a server fails, the crossbar
is broken, causing all servers to shutdown. Clients,
which must be attached to a running local SDF
server will therefore also fail.

• The servers also convert data-types, where possible,
so that flows can be used by clients requiring it in
different forms; for example, up-converting 16 bits
audio to 24 bits if needed. This adds overhead in the
server, and greater risk of failure. If a conversion is
faulty, it may force servers to exit in error, discon-
necting its clients and breaking the crossbar, and so
killing the entire flow graph.

• Each flow buffer for a local client is sent/received
by the local server. So the clients do no direct
transfer among themselves : all flows and control
communications are handled by the server crossbar,
adding to the server latency.

SMART DATA FLOW II
Design of the NIST SMART DATA FLOW II is cur-

rently under way, with some of the features to correct
the above limitations under consideration :

• Dynamic clients addition to a current running SDF
flow graphs. A local server will be started by each



local client. This mechanism will make it possi-
ble to insure that servers for required systems are
started, but needs a server discovery mechanism at
server start up that allows the new ones to yield to
preexisting ones if they are present. Clients will
therefore now be responsible for the server start up;
and in case of server failures, a new one will be
restarted by the local client(s). The newly created
server will re-establish the previous server crossbar.

• The flow communications will now be handled by
a client-to-client direct connection; the server will
only maintain the crossbar and send special con-
trol information from server-to-server. A side effect
of this is that data-type conversion will be handled
by the clients in data object methods, possibly with
conversion thread or a new hidden client for this
purpose, either on the producer or consumer sys-
tem, depending on the number of subscribers to the
converted flow. An extension of this idea shall be a
limited load balancing; if both clients’ systems are
heavily loaded, a third client located on another sys-
tem can handle conversions.

• Removing the static server dependencies will al-
low interfaces with mobile PDAs as they arrive, and
wireless networks. Clients, used on devices, will be
able to come into the crossbar and leave at any time.

5 Conclusion

This paper detailed the requirements for a tool such
as the SDF in the context of Pervasive Computing and
Smart Spaces, presenting its conceptual basis and a prac-
tical use of its flow components on a sensor fusion test
case. Low communication communication overhead is
crucial to real time response in dynamic multi modal en-
vironment processing sensor data streams. Therefore,
the communication broker must support high bandwidth
use, mostly limited by the speed of the network and
the computation speed of its nodes rather than in heavy
weight protocols.

When the SDF II is operational, its new architecture
and improved failure recovery will allow a more practical
use of its capabilities for pervasive handheld devices, and
mobile user interaction. PDAs will then be able to come
and go with their users, and re-integrate it transparently
when they return.

We are currently forming a Pervasive Computing
Standards working group, and interested parties are en-
couraged to contact the authors by e-mail at NIST.
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Disclaimer & License statement regarding the
SMART DATA FLOW

This software was developed at the NATIONAL INSTI-
TUTE OF STANDARDS AND TECHNOLOGY by employ-
ees of the Federal Government in the course of their offi-
cial duties. Pursuant to title 17 Section 105 of the United
States Code this software is not subject to copyright pro-
tection and is in the public domain.

Certain commercial products may be identified in or-
der to adequately specify or describe the subject matter
of this work. In no case does such identification imply
recommendation or endorsement by the NATIONAL IN-
STITUTE OFSTANDARDS AND TECHNOLOGY, nor does
it imply that the products identified are necessarily the
best available for the purpose.

The SMART DATA FLOW is an experimental system.
NIST assumes no responsibility whatsoever for its use
by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, or any other char-
acteristic.
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TECHNOLOGYand the SMART SPACEproject would ap-
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