

Specification and Validation of Enterprise Access Control Data for Conformance to

Model and Policy Constraints

Ramaswamy Chandramouli

Computer Security Division, ITL, NIST

Gaithersburg, MD 20899, USA

ABSTRACT
The effectiveness of an enterprise access control

framework depends upon the integrity of the various
components or the building blocks used in that
framework. The essential components of that framework
are: (a) an Enterprise Access Control Model (b) a
Validation mechanism to verify the enterprise access
control data developed based on that model, for
conformance to the model as well as domain-specific
policy constraints and (c) a mechanism to map the
enterprise access control data into formats required by
native access enforcement mechanisms in the
heterogeneous application systems in the enterprise. In
this paper we chose the Role-based Access Control
Model (RBAC) as a candidate for the enterprise access
control model. We develop an XML Schema of an RBAC
Model for a specific enterprise context and demonstrate
the use of schema features to specify structural and some
rudimentary domain constraints. We then annotate that
XML Schema of an Enterprise RBAC Model to
demonstrate specification and enforcement of some
important domain-specific policy constraint using the
Schematron language.

Keywords: Role -based Access Control, XML Schema,
Policy Constraints, and Enterprise Access Control Data

1. INTRODUCTION
The effectiveness of an enterprise access control

framework depends upon the integrity of the various
components or the building blocks used in that
framework. An enterprise access control framework
generally consists of the following components.

(a)	 EACF -C1: An Enterprise Access Control
Model that provides a generic set of entities
and the structure needed t o express the access
restrictions for all the resources in an
enterprise irrespective of the application
system in which those resources are hosted.

(b)	 EACF -C2: A means to validate whether the
access control data developed based on the
enterprise access control model does indeed
conform to the structural requirements of the
model as well as satisfy the domain’s policy
constraints.

(c)	 EACF -C3: A defined way of interpreting the
access control data under the enterprise
access control model and converting it into
formats that the native access control
mechanisms in the heterogeneous application
systems in the enterprise use to enforce
access restrictions.

On analyzing the technologies needed for building
the above components, we find that the Role -based
Access Control Model (RBAC) [1,2] has emerged as a
leading candidate for the enterprise access control model.
The reasons for this emergence are that RBAC models
have been shown to be policy-neutral and at the same
time provide support for arbitrary organization-specific
access control policies, the essential characteristics for
any enterprise access control model. Further the policy
support capability of RBAC models has been shown to
adequately simulate traditional access control models like
Discretionary Access Control Model (DAC) and the
Mandatory Access Control Model (MAC). Hence our
choice for enterprise access control model is RBAC.

Building the second component of an enterprise
access control framework (i.e. EACF-C2) requires a
structured language framework to represent the enterprise
access control data and its underlying model. Recently
XML [3] and XML Schema [4] specification Languages
have been gaining acceptance as standards for
representing, interchanging and presenting both meta
data and complex content models in a platform
independent fashion. Specifically the XML Schema
provides a very extensible means for specifying
document structures through a comprehensive type
definition language. Hence it is the best candidate for a
linguistic framework that is needed to express an access
control model (which in our case is RBAC) that embodies
multiple policy requirements. The associated access
control data for a given enterprise domain can then be
encoded in an XML document and the conformance of
that data to the enterprise access control model can be
obtained by validating the XML document against the
XML Schema that represents the enterprise access control
model (we will refer to this as XML Schema for
Enterprise RBAC Model) through a type of software
called XML Parsers. These XML Parsers are based on
standard application programming interfaces such as
Document Object Model (DOM) [5]. These parser
libraries implemented in various procedural languages
enable an application program written in the
corresponding procedural language to create, maintain

 u

and retrieve XML encoded data. Hence we have a
programmable framework to extract enterprise access
control data in XML documents, properly interpret them
and map them to the native data formats for access
control mechanisms present in heterogeneous application
systems within the enterprise. This satisfies the
functionality required for the third component (EACF
C3) of our enterprise access control framework.

The technologies proposed in our framework so far
still fa ll short of addressing all the integrity issues
associated with enterprise access control data. Integrity
issues for enterprise access control data are an outcome of
the fact that the data represent an instance of an access
control model and contains domain specific data. Hence
addressing integrity issues in enterprise access control
data involves verification of the enterprise access control
data for both structural constraints (conformance to the
components, relationships and constraints inherent in the
access control model) as well as domain constraints
(conformance to rules and properties dictated by the
enterprise domain). Through the XML Schema for
Enterprise RBAC Model, we can specify structural
constraints that the enterprise access control data must
satisfy as well as certain rudimentary domain constraints
through the feature for specifying complex data types.
However, studies have shown [6,7] that access control
information for large enterprises is highly context
sensitive and hence schemas for representing that
information require logic mechanisms to express rules
and properties involving their contents.

One approach that has been adopted to represent
domain constraints is to annotate an XML Schema that
has been used for representing a model for a d omain, with
ontological information regarding the domain using
pattern based languages such as RDF [8] and Schematron
[9]. In this paper we have annotated the XML Schema for
Enterprise RBAC Model with Schematron constraints
that specify rules that that the access control data
pertaining to the chosen enterprise domain has to satisfy.

Based on the approach outlined above, our first task
is to develop an XML Schema for an Enterprise RBAC
Model. This is the topic for section 2 of this paper. In
section 3 we describe as to how the structural constraints
and some rudimentary domain constraints have been
represented in the XML Schema. Section 4 discusses the
domain constraints and provides examples of how such
constraints may be incorporated in the XML Schema
thro ugh Schematron language annotations. In Section 5
we briefly describe other XML-based approaches for
access control data representation as well as for constraint
validation. Section 6 points out the scope for further work
in this area.

2. AN XML SCHEMA FOR AN
ENTERPRISE RBAC MODEL

The enterprise environment we have chosen for the
enterprise RBAC model is a commercial bank. Before we

describe the steps involved in developing an XML
Schema for an Enterprise RBAC Model for a bank
environment, we provide brief background information
on RBAC and XML Schema respectively.
2.1 Role-based Access Control Model (RBAC)

The Role -based Access Control Model (RBAC)
provides a generalized approach for representation of
many types of access control policies (each describable
only using a specific access control model) through the
abstraction concept of roles. Since there are many RBAC
models proposed in the literature, we use as our reference
the NIST Standard RBAC Model [10]. This RBAC model
has four main components – users, roles, permissions and
sessions. Roles generally represent organizational
functions (e.g. Teller in a bank). Users are assigned to
roles and permissions are assigned to roles as well. Users
derive all their permissions by virtue of their role
memberships. Users interact with the system through
sessions and roles are assigned to a particular sessions as
well. Now the interactions among these four components
of the RBAC model results in the following relationships:

(a) User-Role Assignments (UA)
(b) Role Hierarchies (RH)
(c) Role Permission Assignments (PA)
(d) User-Session Assignment (US)
(e) Role -Session Assignment (RS).

A schematic diagram of our reference RBAC model is
given in Fig 1.

Fig 1 – Relationships in a RBAC Model

RH

s e r susers roles

permissions
UA PA

sessions

constraints

2.2 XML Schema
The XML Schema [4] is a language specification that

has been issued by the World Wide Web Consortium
(W3C) for description of data (or metadata). In this
metadata or schema language, an entity or a component
(whether it is abstract or physical) is represented as an
element with defined place holders to specify the name,
the attributes, the minimum and maximum number of
occurrences and the data type of the element. The XML
Schema provides support for rich data typing (both built
in and user defined). In summary, the XML Schema
language provides good support for explicit structural,

cardinality and data typing constraints but not for
representing domain -specific (or content-based)
constraints.

2.3 Modeling RBAC Components in XML Schema
Our motivation in describ ing the process of

developing an XML Schema for an Enterprise RBAC
Model (for a bank enterprise) is to illustrate the concepts
involved in the representation of an enterprise access
model and using that framework for verification of
structural constraints on the access control data that
conform to the enterprise access control model. In this
paper, we describe the development of XML Schemas for
specification of the enterprise RBAC model for a
commercial banking environment. We restrict our
illustration to modeling the User, Role and User-Role
Assignments (UA) (since the other concepts of the RBAC
model are conceptually similar).

In the XML schema, an RBAC Model component is
represented as an element with an associated data type.
Hence the concept ‘User’ in our Enterprise RBAC Model
is represented as:
<xs:element name="user" type="userType"/>
<xs:complexType name="userType">
<xs:attribute name="userID" type="xs:ID"
use="required"/>
<xs:attribute name="fullname" type="xs:string"
use="optional"/>
</xs:complexType >

The above definition of the data type ‘userType’
means that a user is represented as having two attributes
‘userID’ and ‘fullname’ with the former declared as a
mandatory attribute and the latter declared as an optional
attribute. Please note that the data type for ‘userID’
attribute is designated as ‘xs:ID’ which implies that the
value for ‘userID’ attribute must be unique and hence no
duplicates are allowed.

Similarly we represent the component ‘Role’ of our
Enterprise RBAC model and its associated data type with
the following declarations in the XML schema.
<xs:element name="role" type="roleType"/>
<xs:complexType name="roleType">
<xs:attribute name="roleID" type="xs:ID"
use="required"/>
<xs:attribute name="rolename" type="validRole"
use="required"/>
<xs:attribute name="cardinality" type="roleLimit"
use="optional"/>
</xs:complexType>
To complete our definition of role component, we need to
define the data types “validRole” and “roleLimit”. The
data type definition of “validRole” lists the set of
permissible role names in the bank enterprise while that
for the “roleLimit” is used to specify a number that stands
for the minimum and maximum number of users that can
be assigned to that role.
<xs:simpleType name="validRole">

 <xs:restriction base="xs:string">
<xs:enumeration value="BranchManager"/>
<xs:enumeration value="Customer_Service_Rep"/>
<xs:enumeration value="SD_Vault_Officer"/>
<xs:enumeration value="Loan_Officer"/>
<xs:enumeration value="Accounting_Manager"/>
<xs:enumeration value="Internal_Auditor"/>
<xs:enumeration value="Teller"/>
<xs:enumeration value="Accountant"/>
 </xs:restriction>

</xs:simpleType>
<xs:simpleType name="roleLimit">

 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="10"/>
 </xs:restriction>

</xs:simpleType>
We now provide the XML Schema representation for the
User-Role Assignment (UA) relationship of our
Enterprise RBAC Model .
<xs:element name="UserRoleAssignment"
 type="URAType"/>
<xs:complexType name="URAType">

 <xs:sequence>
 <xs:element name="user" type="xs:IDREF"

maxOccurs="10"/>

 </xs:sequence>

 <xs:attribute name="role" type="xs:IDREF"

 use="required"/>
</xs:complexType>

Finally the fact that the entire RBAC model for the
bank enterprise domain is made up of the components
User, Role and User-Role Assignment relationship is
represented using a root element called the
‘BANK_RBAC_Model’ in the XML schema which
contains elements, that represent the components User,
Role and User-Role Assignment relationship, as sub-
elements.

<xs:element name="Bank_RBAC_Model"
type="BankRBACModelType"/>

<xs:complexType
 name=" BankRBACModelType">

 <xs:sequence>
 <xs:element ref="user" maxOccurs="unbounded"/>
<xs:element ref="role" maxOccurs="unbounded"/>
<xs:element ref="UserRoleAssignment"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
Observe that some of the elements specified above do not
have a name (like other element definitions we have seen
before) but refers to the already defined elements through
the value specified in the ‘ref’ attribute. The above XML
Schema definition was verified to be syntactically correct
using the XML Schema Validator tool – XML Spy [11].

2.4 Encoding the enterprise access control data in
XML
Now that we have developed an XML Schema for

the Enterprise RBAC Model, we now encode the
enterprise access control data in an XML document
whose tag structure should correspond to the element
definitions in the XML Schema.

We represent a sample set of users (by providing
instances of the ‘user’ element in XML schema) as given
below:
<user userID="DrayJ" fullname="Jim Dray"/>
<user userID="GranceT" fullname="Tim Grance"/>
<user userID="VincentH" fullname="Vincent Hu"/>

A sample set of encodings for role instances is:
<role roleID="BRM" rolename="BranchManager"

cardinality="1"/>
<role roleID="CSR"
rolename="Customer_Service_Rep"

cardinality="3"/>
<role roleID="SDV" rolename="SD_Vault_Officer"

 cardinality="2"/>
A sample set of User-Role Assignments is:
<UserRoleAssignment role='BRM'>

<user>GranceT</user>
<user>JansenW</user>

</UserRoleAssignment>
<UserRoleAssignment role='CSR'>

 <user>Sheila</user>
<user>TomK</user>

</UserRoleAssignment>

3.	 CONSTRAINTS EXPRESSED USING
THE XML SCHEMA

Let us now review the structural constraints and
some rudimentary domain -specific constraints that we
have been able to specify in our XML Schema of the
Enterprise RBAC Model. (Please note that here we
include only constraints that can be validated by an XML
Schema parser).
3.1 Structural Constraints represented using the

XML Schema
Based on the discussion of the XML Schema

specification of the Enterprise RBAC Model, we can
summarize the structural constraints we have been able to
express.

(a) Specification of mandatory and optional attributes
(b) Identification of attribute whose values must be

unique (no duplicates allowed)
(c) Cardinality constraints showing the number of

times (instances) an RBAC model component
can occur in the XML document that contains
the access control data.

3.2 Domain Constraints represented using the XML
Schema

(a)	 The role names that occur in an XML encoded
access control data document should be one of

the valid names specified in the XML Schema
(through the validRole data type).

4. SPECIFICATION OF DOMAIN
SPECIFIC POLICY CONSTRAINTS
The specification of an RBAC model for an

enterprise can only be useful if it can capture many
domain -specific policy constraints. Since the XML-
schema representation has limitations in achieving this
goal, we annotate the XML schema specification of the
Bank-Enterprise RBAC model by expressing policy
constraints using the schematron constraint specification
language [9]. We also illustrate the verification of our
enterprise access control data (encoded in XML) for
conformance to these constraints and the generation of
meaningful violation messages using the schematron
validation tool [12].

In a schematron constraint definition, constraints are
defined using the following tags:
(a) a ‘rule’ tag to define the context (in terms of the XML
schema element) for the constraint and
(b) one or more ‘assert’ tags: Each ‘assert’ tag contains
the Boolean expression for the property that each of the
instances of the element (named in the context) has to
satisfy. Any violation of the property will be flagged off
as an error.
(c)one or more ‘report’ tags: Each ‘report’ tag contains
the Boolean expression for the property that each of the
instances of the element (named in the context) should
not satisfy. Any instance where the property is satisfied
will be flagged off as an error.
(d)A set of ‘diagnostic’ tags: Each of these provides
information on the violating data.
(e) The above tags are also enclosed within a named
‘pattern’ tag.

With the above primer on Schematron, we now
illustrate the specification of some important policy
constraints that govern the access control requirements
for the bank enterprise environment.

Constraint 1: The cardinality limit (the maximum
number of users that can be as signed) specified in the
role definition for a role should not be violated in the
actual user assignments for that role.

The role definition for the Branch Manager
role(roleID = ‘BRM’) in our XML encoded access
control data file is as follows:

<role roleID="BRM" rolename="BranchManager"
cardinality="1"/>

The reference to the above data through the XML
Schema components forms the context. The context
therefore is a role instance definition whose roleID
attribute is ‘BRM” (for Branch Manager). This context is
expressed in schematron as:
<sch:rule
context="Bank_RBAC_Model/role[@roleID='BRM']">

The assertion to be made in this context is that in the
corresponding User-Role Assignment (where the
@role=’BRM’), the count of the number of users should
not exceed the number specified through the cardinality
attribute (@cardinality = 1). The assertion and the
corresponding diagnostic messages expressed in
schematron through the assert and diagnostic tags
respectively are given below:
<sch:assert test = "./@cardinality >=
count(../UserRoleAssignment/user[../@role = 'BRM']) "
diagnostics="Cardinality_Exceeded">Cardinality for the
role exceeded
 </sch:assert>

<sch:diagnostics>
 <sch:diagnostic id="Cardinality_Exceeded">The

actual number of users assigned is: <sch:value-of
select="count(../UserRoleAssignment/user[../@role =
'BRM'])"/> while cardinality limit is: <sch:value-of
select="./@cardinality"/>

 </sch:diagnostic
</sch:diagnostics>
The actual data in our access control data file is:

<UserRoleAssignment role='BRM'>
<user>GranceT</user>
<user>JansenW</user>

</UserRoleAssignment>
The schematron validator therefore generated the
following error message:
From pattern "Checking for Role Cardinality":
 Assertion fails: "Cardinality for t he role exceeded" at

/Bank_RBAC_Model[1]/role[1]
<role roleID="BRM" rolename="BranchManager"

cardinality="1">...</> The actual number of users
assigned is: 2 while cardinality limit is: 1

Constraint 2: A user assigned to the Internal Auditor
role (@role=’AUD’) should not be assigned to the
Accountant role (@role=’ACC’) since Internal
Auditor and Accountant are conflicting roles.

The context, the assertion and the diagnostic tags
used to specify the above constraint is as follows:
<sch:rule
context="Bank_RBAC_Model/UserRoleAssignment[@rol
e ='AUD']/user">

 <sch:assert test= "not(text() =
(../../UserRoleAssignment[@role='ACC']/user/text()))"
diagnostics="SOD_AUD">There should not a common
user in Audit and Accounting roles.
 </sch:assert>
 <sch:diagnostics>

 <sch:diagnostic id="SOD_AUD">The violating
assignment is made for user: <sch:value-of
select="text()"/>

 </sch:diagnostic>
 </sch:diagnostics>
 </sch:rule>

For our access control data, the schematron validator
generated the following message:
From pattern "Checking for Separation of Duty":

Assertion fails: "There should not a common user in
Audit and Accounting roles." at

/Bank_RBAC_Model[1]/UserRoleAssignment[6]/user[1]
 <user>...</> The violati ng assignment is made for
user: VincentH

Constraint 3: Users John Wack (user/text()
=’JohnW’) and Susan Wack (user/text() = ‘SusanW’)
should not be assigned to the same role (whatever be
the role) since they have spousal relationship.
The schematron description of the above constraint is:
<sch:pattern name="Checking for Conflicting Users">
 <sch:rule

context="Bank_RBAC_Model/UserRoleAssignment">
 <sch:assert test="2 > count (user [text () =

'JohnW'])
 + count(user [text() = 'SusanW'])"

diagnostics="Wack_Violate">John Wack and
Susan Wack should not be assigned to the same role

 </sch:assert>
 <sch:diagnostics>

 <sch:diagnostic id="Wack_Violate">The violating
 assignment is for the role: <sch:value-of

select="@role"/>
 </sch:diagnostic>
 </sch:diagnostics>

 </sch:rule>
 </sch:pattern>

Constraint 4: Every user assigned to Safe Deposit
Vault role (@role=’SDV’) should already be assigned
to Customer Service Representative role
(@role=’CSD’).
The Schematron syntax for the above constraint is:
<sch:pattern name="Checking for Dependent Role

Assignments">
 <sch:rule

context="Bank _RBAC_Model/UserRoleAssignment[@rol
e='SDV']/user">

 <sch:assert test="text() =
(../../UserRoleAssignment[@role='CSR']/user/text())"
diagnostics="SDV_CSR_Depend">A user assigned to
SDV must already be assigned to CSR role

 </sch:assert>

<sch:d iagnostics>

 <sch:diagnostic id="SDV_CSR_Depend">The
following user is assigned to SDV role but not to CSR
role: <sch:value-of select="text()"/>

 </sch:diagnostic>
 </sch:diagnostics>

 </sch:rule>
 </sch:pattern>

mailto:select="./@cardinality

Constraint 5: The user Tom (user/text()= ‘TomK’)
should not be assigned more than two roles.
 Schematron expresses this as follows:
<sch:pattern name="Checking for limit on Tom's
Assignments">
 <sch:rule context="Bank_RBAC_Model">

 <sch:assert test="3 >
count(UserRoleAssignment[user/text()='TomK'])"
diagnostics="Tom_Limit">Tom should be assigned a
maximum of 2 roles

 </sch:assert>
 <sch:diagnostics>

 <sch:diagnostic id="Tom_Limit">The actual
number of roles assigned to Tom is: <sch:value-of
select="coun t(UserRoleAssignment[user/text()='TomK'])
"/>

 </sch:diagnostic>
 </sch:diagnostics>

 </sch:rule
 </sch:pattern>

5. RELATED WORK
There are many efforts underway to develop

XML-based frameworks for specification of access
control information and each of them have limitations
with respect to the type of policy constraints they can
specify. The OASIS XACML [13] and IBM’s XACL
[14] are access control policy specification frameworks
that are mainly geared towards securing XML documents
and they do not provide support for representing
traditional access controls such as DAC or MAC or
enterprise access controls such as RBAC. Smith and
Deng [15] have developed a DTD Schema of an RBAC
Model and have left the verification of domain
constraints to a separate administrative API. Further DTD
Schemas in general have limitations with respect to
representation of even structural constraints (e.g. number
of occurrences of an element) for an RBAC model and
they cannot be used for representation of even
rudimentary domain -specific policy constraints.

6. SCOPE FOR FURTHER INTEGRITY
IMPROVEMENT

We have illustrated an approach to validate
enterprise access control data for satisfaction of both
structural and domain -specific policy constraints by
annotating an XML Schema of an Enterprise Access
Control Model with Schematron language constraints.
We intend developing mapping schemas that will
translate the enterprise RBAC model elements to the
actual access control elements in the various target
platforms (like permission-bits of Unix and groups &
ACLs of Windows NT platform) and then verify the
integrity of the mapped access control data. This process
will provide the integrity check for the class of software
called “Agent Software” that are being increasingly

deployed to translate enterprise access control data to
various target platforms throughout the enterprise.

7. REFERENCES
 [1] D.Ferraiolo, J.Cugini, and D.R.Kuhn. “Role Based Access
Control (RBAC): Features and Motivations” Proc. 11th Annual
Computer Security Applications Conference, December 1995.
[2] R.S. Sandhu, E.J.Coyne, H.L.Feinstein and C.E.Youman.
“Role Based Access Control Models” IEEE Computer, vol 29,
Num 2, February 1996, p38-47.
[3] XML 1.0, W3C Recommendation Feb '98,
http://www.w3.org/XML/
[4] XML Schema Part 0: Primer W3C Recommendation,
2 May 2001 http://www.w3.org/TR/xmlschema -0/
[5] Document Object Model Technical Reports,
http://www/w3.org/DOM/DOMTR
[6] R.Chandramouli, “Application of XML Tools for
Enterprise-wide RBAC Implementation Tasks”, Proc. Of
5th ACM workshop on Role -based Access Control, July
2000, Berlin, Germany.
[7] A.Schaad, “Role -based A ccess Control system of a
European Bank: A Case Study and Discussion”, Proc. Of
6th ACM Symposium on Access Control Models and
Technologies (SACMAT 2001), Chantilly, VA, USA.
[8] Resource Description Framework (RDF),
http://www.w3.org/RDF/
[9] Schematron - Pattern -based schema language,
http://www.ascc.net/xml/resource/schematron/schematro
n.html
[10] D.Ferraiolo, R.Sandhu, S.Gavrila, D.R.Kuhn and
R.Chandramouli, “Proposed NIST Standard for Role
based Access Control”, ACM Trans. Inf.Syst.Security,
Vol 4, Aug 2001, pp 224-274.
[11] http://www.xmlspy.com/download.html
[12] http://www.topologi.com/
[13] T. Moses, “The OASIS XACML Language
Proposal”,
http://www/oasisopen.org/committees/xacml/docs
[14] M Kudo, S.Hada, “XML Access Control”,
“http://www.trl.ibm.com/projects/xml/xacl/xmlac
proposal.html, Oct 2000.
[15] Nathan N. Vuong , Geoffrey S. Smith , Yi Deng, Managing
security policies in a distributed environment using extensible
markup language (XML), Proceedings of the 16th ACM
SAC2001 symposium on Applied computing March 2001, Las
Vegas, Nevada, United States

http://www.trl.ibm.com/projects/xml/xacl/xmlac
http://www/oasisopen.org/committees/xacml/docs
http:http://www.topologi.com
http://www.xmlspy.com/download.html
http://www.ascc.net/xml/resource/schematron/schematro
http://www.w3.org/RDF
http://www/w3.org/DOM/DOMTR
http://www.w3.org/TR/xmlschema
http://www.w3.org/XML

