
 
 

On Shortest Random Walks under Adversarial Uncertainty∗ 
Vladimir Marbukh 

National Institute of Standards and Technology 
100 Bureau Drive, Stop 8920, Gaithersburg, 

MD 20899-8920, USA 
E-mail: marbukh@nist.gov 

Abstract 
Finding shortest feasible paths in a weighted graph has numerous applications including admission 
and routing in communication networks.  This paper discusses a game theoretic framework 
intended to incorporate a concept of path stability into the process of shortest path selection.  
Route stability is an important issue in a wire-line and especially in wireless network due to node 
mobility as well as limited node reliability and power supply.  The framework assumes that the 
link weights are selected within certain “confidence intervals” by an adversary or set of 
adversaries.  The width of the confidence interval for the path weight represents the path stability.  
One of the immediate benefits of this framework is justification for randomized routing interpreted 
as a mixed Nash equilibrium strategy in the corresponding game.  To demonstrate a wide range of 
possible applications of the proposed framework the paper briefly discusses possible application to 
robust traffic engineering.   

1    Introduction 
   Consider a weighted graph )(wNΓ  with N  nodes },..,2,1{ Nn∈  and a vector of link 

),( knl =  weights )( lww = , where 0>lw , nNk \},..,2,1{∈ .  Link l  exists if ∞<lw , 
and does not exist if ∞=lw .  Define the weight of a route r  to be the sum of the weights 
of the links comprising the route: 
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A shortest path based admission and routing algorithm for a request with origin 
},..,2,1{ Ni∈  and destination iNj \},..,2,1{∈  admits the request on the shortest feasible 

route 
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if the corresponding minimum weight (length) does not exceed certain threshold c  
associated with this request: 
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and rejects the request otherwise.  Here ijF  is the set of feasible routes for the request.  
This shortest path based admission and routing can be expressed as follows:  
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where ∅=r  means that the request is rejected.  The shortest feasible routes (1.2) and 
their lengths (1.3) can be obtained by solving equations [1]-[2] 
                                             }{min **

jmimimji www →≠→ +=                                                    (1.5) 
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In the networking context shortest path based strategies (1.4) naturally arise as a 
result of optimization of the network performance [3] or incorporating Quality of Service 
(QoS) requirements into admission and routing processes [4].  Admission of a request 
brings certain revenue c  to the network, but also ties up the occupied resources until the 
service is completed and, consequently, may cause future revenue losses due to 
insufficient resources for servicing some future requests.  The implied cost rw  of the 
resources on a route r  reflects these potential revenue losses, and the surplus value  
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is the difference between the revenue brought by the admitted request and the implied 
costs of the occupied resources.  In a case of QoS routing the weight of a link represents 
the level of QoS on the link e.g., available bandwidth, delay, packet loss, etc., the request 
attribute c  characterizes the minimum level of QoS acceptable for the request.  The 
shortest path based routing may also represent a step in the iterative process of adaptive 
load balancing [1]. 
    In all these cases due to aggregation, delays in disseminating signaling information, 
non-steady external conditions, etc., the link weights may not be known exactly.  In a 
situation of adaptive load balancing, the route stability becomes an issue in a case of 
equal length multi-path (route flapping instability) [5].  In a mobile network due to node 
mobility as well as limited node reliability and power supply, the link weights may be a 
subject to significant uncertainty.  Proposed in [4] approach to accounting for uncertainty 
in the link weights is based on the assumption that the link weights are random variables 
with some fixed probability distributions.  This approach lies within the Bayesian 
framework for making decisions under uncertainty, and results in finding shortest paths 
with respect to the corresponding average lengths.  In many practical situations, however, 
the Bayesian approach is not sufficient.  The distributions of the link weights usually 
depend on some parameters, e.g., moments, estimated from the available data.  These 
parameters can be more reliably quantified in terms of the “confidence regions” than 
point estimates, leaving the problem of uncertainty unresolved.  Usually route instability 
indicates that allowing randomization of the routing decisions may improve the routing 
algorithm performance.  For example, randomization, leading to the optimal traffic split, 
may significantly improve the network load balancing capabilities [1].  Based on the 
average link weights Bayesian approach, however, is not able to address these issues. 
    This paper discusses a game-theoretic framework for shortest path based admission and 
routing, intended to guard against the worst-case scenario with respect to the uncertain 
link weights.  An immediate benefit of the game theoretic perspective is justification and 
quantification of the randomized routing interpreted as a mixed Nash equilibrium strategy 
in the corresponding game.  Stabilization and optimization properties of randomized 
routing naturally follow from the corresponding properties of Nash equilibrium.  The 
paper is organized as follows.  Section 2 quantifies losses (regrets) resulted from 
admission/rejection and routing decisions under uncertain link weights.  Averaging these 
losses over fixed probability distributions yields the corresponding Bayesian risks.  
Minimization of the Bayesian risk results in the shortest path based strategy under the 
average case scenario with respect to uncertain link weights.  Section 3 describes a game 
theoretic framework for shortest path based admission and routing intended to guard 
against the worst-case scenario with respect to uncertain link weights.  Assuming that the 
distribution of the link weights depends on some unknown parameters controlled by the 
adversarial environment, the framework assumes that the admission and routing protocols 
attempt to minimize the corresponding risks while the environment attempts to maximize 
these risks.  Section 4 demonstrates the load balancing and routing stabilization 
capabilities of the “Nash equilibrium” routing on an example of robust traffic engineering 
under uncertain demands. 



 

2    Admission and Routing under Average Case Scenario 
The regrets (losses) due to non-optimal admission and routing decisions can be quantified 
by the following regret (loss) function [6]: 
                                          ),()(),( crwucwucrwL opt −=                                              (2.1) 
where the utility of the optimal admission and routing decisions is 
                                                  ),()( crwucwu optopt =                                                    (2.2) 

and optr  is determined by (1.4).  Combining (1.4), (1.6), and (2.1)-(2.2) we obtain:                                    
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where *w  is determined by (1.3).  Given c , 
                        0),(),( =≥ crwLcrwL opt , Ww∈∀ , },{ Fr ∅∈∀ .                              (2.4) 
Since a decision to admit a request on some feasible route Fr ∈  exposes the network to 
potential admission and routing losses )(cLadm  and ),( rwLrtn , and a decision to reject a 
request ∅=r  exposes the network to potential rejection loss )(cLrej  it is natural to 
expressed total loss (2.1) as follows: 
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Assuming that the optimal routing decision (1.2) does not carry any risk, i.e., 
0),( * ≡rwLrtn , the admission, rejection and routing risks are uniquely identified as 

follows: 
                                             },0min{)( *wccwLadm −−= ,                                            (2.6) 

                                             },0max{)( *wccwLrej −= ,                                                (2.7) 

                                             *),( wwrwL r
rtn −= .                                                          (2.8)   

Using identity cwcwLcwLrwL r
admrejrtn −+−= )()(),( , total loss (2.5) can be rewritten 

as follows: 
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Note the following properties of the loss functions (2.5)-(2.8).  First,  
                                     ( ) ( )0)(0)( >∧= cwLcwL rejadm  if cw <* ,                              (2.10) 

                                     ( ) ( )0)(0)( =∧> cwLcwL rejadm  if cw >* .                              (2.11) 

Second, the admission loss )( cwLadm  monotonously decreases and the rejection loss 

)( cwLrej  monotonously increases with increase of c .  Third, the admission loss 

)( cwLadm  increases, and the rejection loss )( cwLrej  decreases if route weights rw  

increase for all Fr ∈ .  Fourth, the routing loss ),( rwLrtn stays constant if all route 
weights change by the same amount a : ),(),( rawLrwL rtnrtn += .  
 Bayesian approach to shortest path routing under uncertainty [4] assumes that the 
vector of link weights ):( Frww r ∈=  is a random variable with some known probability 
distribution )(wQ .  Averaging (2.5) over distribution )(wQ  we obtain the risks or 
average regrets (losses) resulted from non-optimal admission and routing decisions due to 
incomplete information on the link weights: 
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where the admission risk is ][)()( *** cwcwEcwQcR adm >−>= , the rejection risk is 

][)()( *** cwwcEcwQcR rej ≤−≤= , and the routing risk is ][)( *wwErR r
rtn −= .  

Properties of the risk functions can be derived from the properties of the corresponding 
loss functions.  In particular, we have from (2.9) 
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where ][ rQr wEw = .  Risk minimization  
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yields 
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where 
                                                 rFrij wr

ij∈
= minarg*                                                             (2.16) 

                                                 rFrji ww
ij∈→ = min* ,                                                             (2.17) 

The shortest routes (2.16) and their lengths (2.17) can be obtained by solving equations 
                                            }{min **
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3    Admission and Routing under Worst Case Scenario 
In applications the distribution of the link weights )()( θwQwQ =  and thus risks depend 
on some unknown parameters, e.g., moments, Θ∈θ , where Θ  is the corresponding 
“confidence region”.  It is natural to define the admission and routing intended to guard 
against the worst-case scenario with respect to Θ∈θ  as follows. 
Principle 1: Admission and Routing.  Selection },{ Fr ∅∈  attempts to minimize the 
total risk ),( crR θ , while selection Θ∈θ  attempts to maximize the total risk ),( crR θ . 

The deterministic worst-case scenario parameters Θ∈wstθ  and the optimal 
admission and routing decisions },{ Fr opt ∅∈  guarding against this worst-case scenario 
are determined by solution to the following optimization problem: 
                                          ),(maxmin),(

},{
crRcrR

Fr

optwst θθ
θ Θ∈∅∈

=                                      (3.1) 

A game theoretic interpretation of the Principle 1 provides the methodological and 
computational apparatus of the game theory for developing robust admission and routing 
algorithms under uncertainty.  In particular, randomized strategies may be interpreted as 
mixed Nash equilibrium solutions in the corresponding game.  A mixed admission and 
routing strategy is determined by probability distribution )( rpp =  on },{ Fr ∅∈ .  If 

1<∅p  and the request is admitted, the feasible route Fr ∈  should selected with 
probabilities )( rππ = , where 
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Note that different game theoretic interpretations leading to different solutions )( rpp =  
are possible.  In a case of connection oriented network, when the entire route for the flow 
(session) is selected at the set-up stage, an appropriate game theoretic model is a single 
stage game with the admission and routing protocols represented by a single player 
attempting to minimize ),( crR θ  by selecting a feasible strategy },{ Fr ∅∈ .  The 
adversarial environment, however, may be represented by a single player or by multiple 



 

players depending on possible coordination in the adversarial selections of the weights for 
different links [7].   
 In a connectionless network routing decisions at each node are based on the local 
routing table.  Since the packet travel time is typically much shorter than the period 
between the routing table updates, a sequence of nodes traversed by a packet in a 
connectionless network is in effect a Markov process.  However, distribution (3.2) does 
not necessarily describe a Markov process.  Also, maintaining routing tables with entries 
containing a wide range of parameters c  is technologically unfeasible.  It is natural to 
define a robust connectionless routing intended to guard against the worst-case scenario 
with respect to Θ∈θ  as follows. 
Principle 2a: Routing.  Selection Fr ∈  attempts to minimize the routing risk ),( rR rtn θ , 
while selection Θ∈θ  attempts to maximize the routing risk ),( rR rtn θ . 

The deterministic worst-case scenario parameters Θ∈wstθ  and the optimal route 
Fr ∈*  guarding against this worst-case scenario are determined by solution to the 

following optimization problem: 
                                          ),(maxmin),( * rRrR rtn

Fr
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In a case of connection-oriented network an appropriate game theoretic interpretation of 
the Principle 2a is, again, a single stage game with the routing protocols represented by a 
single player attempting to minimize ),( crR rtn θ  by selecting a feasible strategy Fr ∈ .  
However, in a case of connectionless network an appropriate game theoretic 
interpretation of the Principle 2a is a multi-stage game, where the routing algorithm 
selects the next hop and the adversarial environment selects link weights based on the 
current node, but without knowledge of the next hop selection by the routing algorithm.  
In both, connection-oriented as well as connectionless, cases the adversarial environment 
may be represented by a single or by multiple players depending on possible coordination 
in the adversarial selections of the weights for different links [7].  Due to space 
constraints we only consider a case of a single stage game theoretic interpretation of the 
Principle 2a.  It is easy to verify the following statement for a Nash equilibrium routing 
strategies in these games. 
Route Optimality Principle:  Only feasible routes of minimum expected length can be 
selected with non-zero probabilities. 

Let optw  be this minimum expected length, and )(*
* wst

rww θ=)  be the length of 

the route *r  determined by (3.3).  The following difference represents reduction in the 
shortest path length resulted from allowing randomized route selection: 
                                                        optww −=∆ *)                                                           (3.4) 
Given optw , the natural admission strategy follows from (2.13). 
Principle 2b: Admission.  Admission probability is 
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Our conjecture is that under “reasonable” assumptions on the type of uncertainty 
Principle 1 and Principles 2a-b result in the same optimal admission and routing 
strategies.  
 

4    Case Study: Connection Oriented Network with Parallel Structure 
Consider a particular case of connection-oriented network with a set of K  feasible paths 

Frrr K =∈ },..,{ 1  without overlapping links.  Due to space constraints we only consider a 
case when the adversary is capable of synchronizing the link lengths selection for all 
links.  In this case the confidence interval for the path Frk ∈  is 
                                                   ],[ kkk www )(∈                                                                (4.1) 



 

where ∑= lk ww (( , ∑= lk ww )) , krl ∈ .  An optimal adversarial response to routing 
decision Fri ∈  is 
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The optimal deterministic admission and routing strategies, given by (3.1), are 
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where the optimal deterministic shortest path *r , given by (3.3), and its length *w)  are 
determined by graph )(wN )Γ : 
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www )))
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The corresponding losses can be easily evaluated.  It is easy to see that all adversarial 
strategies (4.1) are dominated by strategies 
                                                   lllll www )( δδ +−= )1(                                                   (4.5) 
where binary vector K

l }1,0{)( ∈= δδ .  Thus the corresponding game model is equivalent 
to the following finite, single stage, zero sum, two-player game ),,( FwwB )( .  In the game 

),,( FwwB )(  one player ( r ) represents the admission and routing algorithm, and attempt to 
minimize the total binary loss 
                                            

kwkkwkkwcrwLcrS )( δδδ +−== )1(),(),(                                      (4.6) 

by selecting a feasible strategy },{ Fr ∅∈ , and another player )(δ  represents the 
adversary, and attempts to maximize the total binary loss (4.6) by selecting a binary 
vector K

K }1,0{),..,( 1 ∈= δδδ .  Note that so far described in this section results after some 
minor adjustments are also valid for an arbitrary topology network. 

In a case of a single feasible route 1=K , the optimal rejection probability is [6]: 
1=∅p  if wc (≤ , )()( wwcwp ()) −−=∅  if wcw )( ≤< , and 0=∅p  if wc )> .  Further in 

this section we consider a case when number of feasible routes 2≥K .  In a 
homogeneous case 
                                                             ],[ wwwk

)(∈                                                         (4.7) 
the optimal rejection probability is [7] 
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where 
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Assuming *wc > , the optimal routing discipline selects route Frk ∈  with probability 
Kpk 1= .  The optimal adversarial strategy [7] selects route Frk ∈  with probability 
Kpk 1= , then assigns wwk

(=  and wwi
)= , ki ≠∀ .  Thus, assuming *wc > , the 

random route selection reduces the length of the route comparatively to deterministic 
route selection by  
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Consider a general case (4.1).  Define the set of “acceptable” routes FF ⊆*  to be routes, 
which can be minimum length, subject to constraints (4.1).  It is obvious that routes 

*\ FFr ∈  can be excluded from consideration, and thus we assume that all routes Fr ∈  
are acceptable.  It can be shown that the optimal admission strategy is given by (4.8) 
where 
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Assuming *wc > , the optimal probabilities kπ  of route Frk ∈  selection can be found 
from the system of linear algebraic equations.  It can be shown that in a particular case of 

2=K  feasible routes these probabilities are 
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and 12 1 ππ −= , assuming that *wc > , where the length of the “shortest random walk” is 
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The gain (3.4) from allowing randomized routing is 

                                             
2211

2121
21 },min{

wwww
wwww

ww ()()

(())
))

−+−
−

−=∆                              (4.14) 

5   Application to Robust Traffic Engineering 
Consider a network with performance characterized by the following penalty function: 
                                                         ∑=

l
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where  the total flow carried on a link l  is 
                                                    l

rlr
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the flow carried on a route r  is rx , the capacity of link l  is lc , and function )( llh λ  
characterizes penalty associated with carrying average load lλ  on link l .  Traffic flows 

)( rxx =  satisfy the following conservation conditions: 
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where the set of feasible routes with origin-destination ),( ji  is ijF , and the matrix of 
external demands is )( ijµµ = .  Given )( ijµµ = , the optimal vector of traffic flows 

*xx =  minimizes the total penalty (1): 
                                                                 H

x
min                                                             (5.4) 

subject to constraints (5.1)-(5.3) [1].  We assume that functions lh  are monotonously 
increasing and convex: 

                                                    0)()( >= λλλ ddhd ll ,                                              (5.5) 

                                                  0)()( 22 >=′ λλλ dhdd ll ,                                            (5.6) 

),0[ ∞∈∀λ , and problem (5.1)-(5.4) has at least one feasible solution.  These 
assumptions imply that the optimization problem (5.1)-(5.4) has unique optimal solution 

*x , no other locally optimal solution exists, and solution *x  can be characterized in terms 
of the link costs (5.5) as follows [1].  A set of path flows is optimal if and only if flows 
are positive only on paths of minimum cost, where the cost of a path is a sum of the costs 
of the links comprising this path: 
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This characterization also implies that at the optimum, the paths along which the input 
flow is split must have equal to each other costs and equal to the minimum cost of all 
feasible paths with the same origin-destination (equal cost multi-path [5]).   
 Characterization of the optimal routing in terms of the link cost has important 
implications for assigning link weights in Open Shortest Path First (OSPF) routing 
protocol [5].  It is natural to assign OSPF link weights lw  to be equal to the link costs 
(5.5): 
                                                            )( lll dw λ=                                                          (5.8) 
Link weight assignment (5.8) can be used for adaptive OSPF implementation, with link 
loads lλ  estimated from the measurements.  If the demand matrix )( ijµµ =  is fixed and 
known, off-line implementation of OSPF can be based on pre computed "optimal" link 
weights )( **

lll dw λ= , where the average link l  loads ∑
∈

=
rlr

ri x
:

**λ  and the optimal traffic 

assignment *x  is given by the solution to the optimization problem (5.1)-(5.4).    
 In many practical situations available information on the demand matrix )( ijµµ =  can 
be more reliably quantified in term of the “confidence region” M∈µ  rather than point 
estimate µµ ~≈ .  Following [8] we approximately assume that 
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We will refer to sµ  as scenarios, and interpret polyhedron (5.9) as a mixture of these 
scenarios with weights )( sγγ = .  In a situation of uncertain external demands M∈µ  a 
routing protocol is not capable of controlling the flows )( rxx = , but hopefully capable of 
controlling the fractions of the offered load µ  to be carries on feasible routes )( rξξ = , 
where 
                                                    ijrr x µξ = , ijFr ∈                                                   (5.10) 
Consider penalty (5.1) as a function of the fractions ξ  and the external demands µ : 

)( µξHH = .  The loss (regret) resulted from optimization of the routing algorithm for 
scenario js =  while the actual scenario is is =  can be characterized by 
                                               )()( iiij

ij HH µξµξ −=Φ ,                                         (5.11) 

Sji ,..,1, = , where fractions )( s
r

s ξξ = , ij
s
r

s
r x µξ = , ijFr ∈   are optimized for scenario 

Ss ,..,1= .  Consider a two player, zero sum game of the routing algorithm attempting to 
minimize loss (5.11) by selecting Sj ,..,1= , and adversarial environment attempting to 
maximize loss (5.11) by selecting Si ,..,1= .  Let jα  be the optimal, generally mixed, 
strategy for the routing algorithm.  It is natural to interpret the weighted sum 
                                                           ∑=
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j
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as robust load allocation scheme guarding against the worst case mixture ∑
j

j
jµβ  of 

scenarios Sii ,..,1, =µ , where iβ  is the optimal, generally mixed, strategy for the 
environment in this game. 
 Allocation (5.12) requires ability to arbitrarily split traffic among feasible routes.  In 
practice it can be achieved in MPLS network by randomization of the routing decisions at 
the packet level.  However, it is often desirable to allocate a single route for the entire 
flow.  According to the routing optimality principle, the load should be carried on a 
minimum cost routes.  The following game theoretic interpretation G  provides natural 
extension of this optimality principle to a situation of uncertain external demands.  
Consider a non-cooperative game G  of all origin-destination pairs ),( ji  and the 



 

adversarial environment.  Each pair ),( ji  attempts to minimize the excessive, relatively 
to the minimum, cost of the route 
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by selecting a feasible strategy ijFr ∈ .  The adversarial environment attempts to 
maximize the aggregate excessive cost 
                                                          ∑=Σ

),( ji
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by selecting a feasible strategy M∈µ .  Note that a mixed routing strategy in this and 
following games can be interpreted as traffic split at the flow as well as packet level. 
 Game G  can serve as the starting point for developing off-line as well as on-line 
decentralized, robust traffic engineering schemes.  Given fractions (5.10), uncertainty in 
the expected demands M∈µ  induce uncertainty in the link weights ],[ lll www )(∈ , where 
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and function )(λld  is given by (5.5).   
 Assume that vectors )( lww (( =  and )( lww )) =  are fixed, and consider a problem of 
robust selection of the shortest feasible path ijFr ∈  in a weighted graph ),( wwN )(Γ  with 
uncertain link weights ],[ lll www )(∈ .  It is natural to formalize this problem as a game ijg  
of the routing algorithm attempting to minimize the excessive, relatively to the minimum, 
route cost 
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by selecting a feasible strategy ijFr ∈ , and the adversarial environment attempting to 
maximize cost (18) by selecting a feasible strategy (15). 
 In a case of off-line routing the target fractions (5.10) in (5.15)-(5.16) are determined 
off line, for example, using one of the procedures described in the previous section of the 
paper.  In a case of on-line, adaptive routing bounds (5.10) are based on the real-time 
measurements.  Given bounds )( lww (( =  and )( lww )) = , the robust traffic split for origin-
destination ),( ji  is determined by the optimal, generally mixed, routing strategy in the 
game ijg .  Note that this optimal routing solution is based on two metrics per link lw(  and 

lw) , and thus can be implemented with OSPF-OMP routing protocol [9]. 
 In conclusion, briefly discuss stability of the routing resulted from solutions to the 
games ijg .  If the optimal solution to the load allocation problem (5.1)-(5.4) does not split 
traffic, this optimal solution can be implemented with OSPF routing protocol based on 
the corresponding “optimal” link weights.  If, however, the optimal solution splits traffic 
among feasible routes, a situation of equal cost multi-path occurs due to the route 
optimality principle.  This situation is typical for moderately and heavily loaded networks 
with multiple feasible routes since the minimum cost routing increases load on the 
minimum cost route until the admission strategy takes over or a situation of equal cost 
multi-path occurs.  It is usually assumed that OSPF splits traffic equally among minimum 
cost feasible routes.  Routing instability (route flapping) due to abrupt changes in the load 
allocation resulted from small changes in the link weights in a situation of equal cost 
multi-path presents a serious problem for adaptive OSPF.  From the game theoretic 



 

perspective the route flapping instability can be viewed as an attempt of the minimum 
cost routing algorithm to solve the corresponding game in pure strategies or strategies 
describing equal split among some routes.  The game theoretic framework provides a 
natural guiding principle for regularization of the otherwise ill-conditioned problem of 
route cost minimization in a situation of equal cost multi-path [7], [10].  We currently 
investigate a problem of global stability of the OSPF-OMP routing protocol splitting 
traffic according to the optimal mixed routing strategy ),( wwpr

)(  in games ijg  for a case 
when information on the current fractions ξ  and feasible demands M  is available to the 
routers.  In this case performance of the corresponding OSPF-OMP routing protocol can 
be described by equations (5.15)-(5.16) supplemented with equations describing the 
optimal routing strategies ),( wwpr

)(  in games the ijg : 
                                                          ),( wwprr

)(=ξ                                                      (5.18) 
Other directions of future research include relation between centralized and decentralized 
game schemes, as well as developing computationally feasible algorithms for solving 
corresponding games.  Solutions for some particular cases have been obtained in [7], 
[11]. 
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