

Self-Adaptive Leasing for Jini

 Kevin Bowers Kevin Mills and Scott Rose
Renssalaer Polytechnic Institute National Institute of Standards and Technology

 bowerk@rpi.edu {kmills, srose}@nist.gov

Abstract

Distributed systems require strategies to detect and recover
from failures. Many protocols for distributed systems employ
a strategy based on leases, which grant a leaseholder access
to data or services for a limited time (the lease period).
Choosing an appropriate lease period involves tradeoffs
among resource utilization, responsiveness, and system size.
We investigate these issues for Jini Network Technology.
First, we establish quantitative tradeoffs among lease period,
bandwidth utilization, responsiveness, and system size. Then,
we consider two self-adaptive algorithms that enable a Jini
system, given a fixed allocation of resources, to vary lease
periods with system size to achieve the best responsiveness.
We compare performance of these self-adaptive algorithms
against each other, and against fixed lease periods. We find
that one of the self-adaptive algorithms proves easy to
implement and performs reasonably well. We anticipate that
similar procedures could add self-adaptive capability to
other distributed systems that rely on leases.

1. Introduction

Distributed systems require strategies to detect and

recover from failures. One commonly used strategy employs
a leasing mechanism, where a node grants a leaseholder
access to a resource for a limited time (the lease period). If
the resource is needed beyond the original lease period, then
the leaseholder can renew the lease by requesting additional
lease periods. Once the resource is no longer needed, the
leaseholder may relinquish its lease. If the leaseholder does
not renew a lease before expiration of the lease period, the
lease grantor assumes leaseholder failure and terminates the
lease to prevent resource leaks. Since originally proposed by
Gray and Cheriton for consistency maintenance in a
distributed file cache [1], leases have become widely used in
a range of applications [2-6].

In any leasing system, questions arise regarding how to
select the lease period. Choosing an appropriate lease period
requires consideration of tradeoffs among resource
utilization, responsiveness, and number of leaseholders. We
investigate these issues in the context of service-discovery
protocols, which allow distributed software components to

discover each other and compose themselves into assemblies
that cooperate to meet application needs. Though several
service-discovery protocols currently exist [e.g., 5-8], we
selected Jini Network Technology [5] for our study because
leasing plays a central role in registering Jini services. We
base our modeling and analysis on the Jini specification [7].

We investigate self-regulating algorithms for achieving
the best available responsiveness from a leasing system as
system size varies, while respecting a constraint on resources
devoted to leasing. We begin by establishing quantitative
tradeoffs among responsiveness, resource consumption, and
system size. Then, we propose two different self-regulating
algorithms for varying lease periods in response to changing
system size. We use simulation to compare the effectiveness
of the algorithms against each other and against fixed lease
periods. We consider whether one of the algorithms might be
used to improve performance of Jini leasing and discuss
using the algorithm in other service-discovery protocols, such
as Universal Plug-and-Play (UPnP) [6].

2. Jini Leasing

Jini defines an architecture that enables clients and

services to rendezvous through a third party, known as a
lookup service. A Jini service registers a description of itself
with each discovered lookup service. A Jini client may
register a request to be notified by a lookup service of
arriving or departing services of interest, or of changes in the
attributes describing services of interest.

Figure 1 illustrates message exchanges for some typical
Jini leasing scenarios. A registering component requests
registration for a duration (LR), which may be accepted at
time TG for a granted lease period LG < LR. LR may be any,
which allows any value for LG. To extend registration beyond
LG, registering components must renew the lease prior to an
expiration time TE = TG + LG; otherwise, registration is
revoked. This cycle continues until a Jini component cancels
or fails to renew a lease. Lookup services assign LG within a
configured range, LMIN < LG < LMAX. While a granted lease
may not be revoked prior to TE, lookup services may deny
any lease request. Jini components must adopt strategies for
selecting values for LR. Similarly, lookup services must
determine algorithms for assigning values for LG, LMIN, and

LMAX; and for deciding when to deny leases. We identify
some relevant relationships.

Fig. 1. Message exchanges for four Jini leasing scenarios.

Let SR be lease-request size, SG be lease-grant size, and N

be the number of leaseholders. Typically, a leaseholder and
lookup service exchange one request-grant pair per renewal
cycle, with rate 1/LG Hz. Assuming identical LG assigned for
each lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B increases
linearly with N and decreases exponentially with LG. Another
metric, responsiveness, R, measures the latency with which
lookup services can detect leaseholder failure. Assuming
uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., RLG 2=]. Then, using LG,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)()(GRGMAX SSLBN +⋅=]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

3. Two Self-adaptive Leasing Schemes

We consider two techniques to vary LG with N; thus,
using available bandwidth (B) to achieve the best possible
responsiveness (R) for a given value of N. One technique
restricts lease requests to LR = any. The second technique
inverts the leasing process, permitting lookup services to poll
leaseholders at a variable interval.

Restricting LR. Assuming a leasing system must consume
at most bandwidth B and guarantee minimum average
responsiveness RMIN, a lookup service can grant a maximum
lease period LMAX = 2RMIN. Given B, SR, and SG, we can
determine a maximum lease-renewal rate G = B / (SR + SG).
For minimum system size, NMIN = 1, the lookup service can
grant a minimum lease period LMIN = 1/G. While this value
for LMIN respects the bandwidth constraint, other factors
should be considered. For example, at LMIN = 1/G leaseholder
processing burden might prove unacceptable. Instead, a
leasing system might constrain maximum responsiveness
(RMAX), giving a minimum lease period LMIN = 2RMAX.
Knowing N, a lookup service may select a suitable granted
lease period from a range (LMIN < LG < LMAX) using a simple
algorithm. First, compute LG = N/G. If LG > LMAX, then deny
the lease; otherwise, if LG < LMIN, then set LG = LMIN.
Assigning LG with this algorithm permits a leasing system to
constrain B and guarantee minimum average responsiveness
(RMIN), while providing the best responsiveness achievable
(up to RMAX) as N varies over 1..NMAX.

Inverted Leasing. As an alternative, we could invert the
leasing process so that a lookup service polls periodically on
a multicast channel, where all leaseholders listen. Figure 2
illustrates some associated message exchanges. To obtain a
lease, a leaseholder sends (via reliable unicast) a lease request
to the lookup service, which returns a time (TP) when the
leaseholder should expect to hear a multicast poll.

Fig. 2. Message exchanges for inverted leasing mechanism.

Each poll includes two values: the duration (D) over

which the lookup service will listen for leaseholders to
respond and the additional time (A > 0) beyond D within
which leaseholders can expect the next poll. Each leaseholder
chooses a random time (distributed uniformly over 0..D) to
respond to the lookup service, which confirms each response.

Jini
Service

Jini
Lookup
Service

TG + LG

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Request (LR)

Lease Grant (LG < LR)
TG’

(a) Initial Lease Grant & Renewal

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Cancel
Lease Cancelled

(c) Lease Cancellation

TG + LG

TR

TC

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

(d) Lease Expiration

TG + LG
TE

Lease Request (LR > LMAX)
T

Lease Denied

Jini
Service

Jini
Lookup
Service

TP + D

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP
Multicast Poll (D, A)

Multicast Poll (D, A)
TP + D + A

(a) Initial Lease Grant & Renewal

(c) Lease Cancellation (d) Lease Expiration

Lease RequestT
Lease Denied

Lease Poll Response
Lease Poll Confirm

TP + D

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP Multicast Poll (D, A)

Lease Cancel

Lease Cancelled

N = NMAX

TP + D

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP Multicast Poll (D, A)

Lease
Expires

The lookup service cancels a lease if the leaseholder does not
respond within D. Similarly, failing to receive a poll within D
+ A after the previous poll, causes a leaseholder to request a
new lease. The main issue is selecting values for D and A in
each poll.

Assuming the polling interval is bounded by LMIN < D +
A < LMAX, the lookup service computes D = max(N/G, LMIN).
A rapidly expanding system might benefit from deferring the
next poll until D + A to accommodate increases in N during
D. Choosing an appropriate value for A depends on system
growth expected during D. In our experiments, we set A as a
percentage of D. Recall, though, that D + A < LMAX, so A may
be reduced below its computed value. When A = 0, the
leasing system has reached maximum capacity. To ensure
this, the lookup service must deny lease requests that will
cause N to exceed NMAX, where GLN MAXMAX ⋅= .

When using inverted leasing, a lookup service limits
bandwidth usage according to))()/((RCPRP SSPNSB +⋅+= ,
where P is the polling interval (D < P < D + A < LMAX) and
SP, SPR, and SRC represent respectively the size of poll, poll-
response, and response-confirm messages. Inverted leasing
achieves system responsiveness of R = D, which is only ½ as
responsive as simple adaptive leasing. To understand this
difference, consider the following analysis.

Assume failure times are distributed uniformly on D.
Failures may occur either before or after a leaseholder
responds to a poll. For leaseholders that fail before a poll,
expected failure-detection latency is 2D . For leaseholders
that fail after a poll, expected failure-detection latency
increases to (D/2) + D. Assuming that failures are equally
likely before or after a poll, then

)2/3(2/1)2/(2/1 DDR ⋅+⋅= , which reduces to R = D.

4. Simulation Results and Discussion

We used simulation to investigate dynamic behavior of

our self-adaptive algorithms. We coded an SLX discrete-
event simulation [9] model of Jini. To confirm our analysis
and to verify our simulation, we conducted simulation
experiments, varying N from 10..200 and LG from 15..300 s
in 15-s increments. We used SR = 128 bytes and SG = 32
bytes. Figure 3 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. Our simulation confirms our
analyses: (1) B increases linearly with N for a given LG and
decreases exponentially with LG for a given N and (2) R =
LG/2, independent of N.

Next, we created model variants to implement the self-
adaptive leasing algorithms described in Section 3. One
variant (Adaptive) replaces fixed LG with our simple adaptive
algorithm; the other variant (Inverted) substitutes our
inverted procedures for Jini leasing. We measured B under
increasing and decreasing N. We measured the control
variable (LG for Adaptive and D for Inverted) under

increasing N, and we measured R under decreasing N. We set
LMIN = 15 s, LMAX = ∞, and G = 3. For experiments involving
Inverted, we set DA ⋅= 2.0 .

Fig. 3. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three granted
lease periods (LG = 15 s, 60 s, and 120 s) as system size
increases (N = 10 to 200 leaseholders).

Figure 4 depicts both Adaptive and Inverted under

increasing N. While the control variables change in a similar
fashion, change in B exhibits two obvious differences. First,
B increases more steeply under Adaptive than under Inverted.
Second, Inverted begins to constrain B earlier than Adaptive,
which leads to a higher peak bandwidth usage. Inverted
affects all leaseholders with each adjustment in the control
variable, while Adaptive affects leaseholders one-by-one, and
only as each lease is renewed.

Figure 5 plots average R achieved by each self-
regulating scheme as N decreases. Inverted begins to reduce
B sooner than Adaptive. For R, the results tell two stories.
First, as indicated by a steeper negative slope, Inverted adapts
R more quickly than Adaptive. Unfortunately, Inverted
achieves only ½ the responsiveness of Adaptive.
Implementing Inverted would require profound changes in
Jini. Adaptive can be implemented easily within Jini lookup
services, and might apply to domain-wide leasing.

Each Jini service is required to register its service
description with each appropriate lookup service that it
discovers; thus, a service may be maintaining leases on ND
different lookup services. System-wide leasing demands will
vary with ND. Assuming a known network-wide resource
budget for leasing, e.g., either aggregate bandwidth (BD) or
renewal rate (GD), then each lookup service can compute its
share (either BD/ND or GD/ND). Jini facilitates monitoring ND
by requiring each lookup service to announce itself
periodically. By monitoring announcements, each lookup
service can increment and decrement ND as lookup services
come and go, and continuously adjust its share of resources.

Our results might also apply to a number of leasing
schemes outside of Jini. For example, UPnP devices manage
variables for which they may offer subscriptions to control
points. UPnP subscription procedures, and associated

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

parameters, appear quite similar to those defined in Jini. We
are confident our adaptive leasing algorithm could be applied
to UPnP, yielding performance properties similar to those we
report for Jini.

Fig. 4. Bandwidth usage (B) – left-hand y-axis – and control
variable (LG for Adaptive and D for Inverted) setting – right-
hand y-axis – as system size increases (N = 10 to 200
leaseholders). LMIN = 15 s, G = 3 renewals per second, LMAX = ∞,
and (for Inverted) A = 0.2D.

Fig. 5. Bandwidth usage (B) – left-hand y-axis – and system
responsiveness (R) – right-hand y-axis – as system size
decreases (N = 200 to 0 leaseholders). LMIN = 15 s, G = 3
renewals per second, LMAX = ∞, and (for Inverted) A = 0.2D.

5. Conclusions

We investigated Jini leasing procedures, establishing

quantitative tradeoffs among responsiveness, resource
consumption, system size, and granted lease period. We
suggested an approach to bound bandwidth use, while
guaranteeing a minimum level of responsiveness in detecting
leaseholder failures. We also showed a simple adaptive
leasing algorithm that bounds bandwidth consumption, while
achieving the best available responsiveness as system size
varies. We described an alternate algorithm that inverts the
leasing process, and we showed that inverted leasing

achieves only half the responsiveness guaranteed by the
simple adaptive algorithm. We used simulation to show that
inverted leasing adapts responsiveness more quickly and
constrains bandwidth consumption better than our simple
adaptive algorithm. Given the performance tradeoffs and
implementation costs, we conclude that our simple adaptive
leasing algorithm can yield useful performance properties
with little cost. We outlined a simple technique for allocating
a domain-wide resource budget among multiple lease
grantors. We expect our analyses can be used to deploy Jini
systems with understood leasing behavior, and we hope our
ideas for adaptive leasing can provide improvements over
static strategies. We argued that our adaptive leasing
algorithm and related analyses should also apply in similar
leasing systems, such as event subscriptions offered by
UPnP.

6. References

[1] C. Gray and D. Cheriton. “Leases: an efficient fault-tolerant

mechanism for distributed file cache consistency”, ACM
SIGOPS Operating Systems Review, Proceedings of the
Twelfth ACM symposium on Operating systems principles,
November 1989, Volume 23 Issue 5.

[2] Charles E. Perkins and Kevin Luo. “Using DHCP with
computers that move”, Wireless Networks, March 1995,
Volume 1 Issue 3.

[3] Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy, Krithi
Ramamritham, and Renu Tewari. “Performance: Cooperative
leases: scalable consistency maintenance in content
distribution networks”, Proceedings of the eleventh
international conference on World Wide Web, May 2002.

[4] Jacob Harris and Vivek Sarkar. “Lightweight object-oriented
shared variables for distributed applications on the Internet”,
ACM SIGPLAN Notices, Proceedings of the conference on
Object-oriented programming, systems, languages, and
applications, October 1998, Volume 33 Issue 10.

[5] Jim Waldo. “The JiniTM architecture for network-centric
computing”, Communications of the ACM, July 1999.

[6] Universal Plug and Play Device Architecture, Version 1.0, 08
Jun 2000 10:41 AM. © 1999-2000 Microsoft Corporation. All
rights reserved.

[7] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley,
1999. The latest version is available on the web from Sun.

[8] Service Location Protocol Version 2, Internet Engineering Task
Force (IETF), RFC 2608, June 1999.

[9] James O. Henriksen, “An Introduction to SLXTM” Proceedings
of the 1997 Winter Simulation Conference, ACM, Atlanta,
Georgia, December 7-10, 1997, pp. 559-566.

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

R
 (s

)

B (Adaptive)

B (Inverted)

R (Inverted)

R (Adaptive)

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

R
 (s

)

B (Adaptive)

B (Inverted)

R (Inverted)

R (Adaptive)

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

L G
 (s

) o
r D

 (s
)

LG (Adaptive)

D (Inverted)

B (Adaptive)

B (Inverted)

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

L G
 (s

) o
r D

 (s
)

LG (Adaptive)

D (Inverted)

B (Adaptive)

B (Inverted)

