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Abstract

The inclusion of eddy currents into micromagnetic programs is important for the proper analysis of dynamic effects

in conducting magnetic media. This subject has received little attention in the past although it can cause significant

errors in device calculations. This paper introduces a computational test bed for eddy current calculations and discusses

some interesting analytic cases in this simplified geometry.
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1. Introduction

An approach to the solution of micromagnetic
problems with eddy currents has been proposed [1]
and implemented [2]. This approach requires the
simultaneous solution of the coupled equation for
eddy currents and for magnetization evolution. In
this paper, we present a program using finite-
difference time domain, FDTD, calculations for a
simplified problem to be used as a test bed for
more general programs. It is our intention to use
this program to verify the accuracy of more
general programs in these test cases, and also to
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present some results that we will use to test the
final model.
The problem with introducing eddy currents

into a micromagnetic calculation is that the
changing magnetization induces an electric
field in the material which produces the eddy
currents. Since the eddy currents are bound by
the shape of the material, the induced electric field
has to be tangential to the boundary at all points
on the boundary. This requires surface charges to
be induced to steer the currents within the
material. To avoid the computation of these
currents, in this model we have chosen a circular
cylinder that, by symmetry, naturally forces the
electric field to be tangential to the boundary.
Also, the symmetry of this geometry permits the
computed quantities to vary only with the radial
coordinate.
d.
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Fig. 2. Computational grid used in the model.
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2. The model

We developed a model for an infinite circular
cylinder of radius R, consisting of a perfect crystal
of uniaxial material whose easy axis, z, coincides
with the cylinder’s axis, as shown in Fig. 1. The
initial condition that we will assume is uniform
magnetization in the negative z-direction. If we
apply a field in the z-direction, the magnetization
will attempt to reverse. In order to break the radial
symmetry, we will offset the magnetization at the
surface by a fraction of a degree, d, which will
nucleate a Bloch wall at the surface that will start
propagating inwards towards the center, and
eventually annihilate itself at the axis. The moving
wall will induce eddy currents that impede the
wall’s progress.
Due to the symmetry of this configuration, we

expect the magnetization to change but remain
cylindrically symmetric. We elected to overlay a
Cartesian coordinate system on the cross section
of the cylinder, as illustrated in Fig. 2. Only the
node values on the central row of the computa-
tional grid are calculated by FDTD. The node
values for the row above and the row below the
computation row are obtained by interpolating
appropriate points on the center row and rotating
them to the adjacent rows. We note that there is a
singularity at the center of the cylinder, which
presents problems when trying to reverse the
magnetization completely. The choice of this
coordinate system of calculation rather than the
more obvious cylindrical coordinate system was
Fig. 1. Cylinder’s geometry.
motivated by the ease of generalizing these
calculations later to arbitrary shapes.
The magnetization could be computed by either

applying the Landau–Lifshitz–Gilbert equation, to
study high-speed phenomena, or by minimizing
the energy of the system at each calculation step.
In this calculation, due to the symmetry just
discussed, we assume that the magnetization lies in
the y–z plane, so that only Bloch-type walls may
be formed. This rules out the possibility of
precessing spins; so we are forced to use the
energy-minimization approach limiting calcula-
tions to relatively slow variations of the applied
field compared to magnetization changes.
Under the above assumptions, the magnetiza-

tion will be of the form

MðrÞ ¼ MSðcos a 1z þ sin a 1yÞ; ð1Þ

where a(r) is the angle that the magnetization
makes with respect to the z-axis. With this
magnetization pattern, there are no demagnetizing
fields. If the applied field and, consequently, the
magnetization change with time, an electric field
will be induced. By Faraday’s law, the curl of that
field is given by

curl E ¼ �
qB
qt

¼ m0
qH
qt

þ
qM
qt

� �
: ð2Þ

The z component of the electric field is limited to
the wall region and generates two oppositely
directed currents. Hence, these currents will
generate a small magnetic field which dies off
quickly with distance. Therefore, neglecting the z
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Fig. 3. Flow chart of calculation.
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component, the electric field is given by

EðrÞ ¼ �
m01y

r

Z r

0

qHzðr; tÞ
qt

þ
qMzðr; tÞ

qt

� �
r dr: ð3Þ

This electric field will induce the eddy currents.
If the time scale is appropriate, then these currents
can be computed using Ohm’s law J = s E. By
Ampere’s law, the field in the interior of the
material will differ from the surface field by the
eddy currents. Thus, the field at any point, Hz(r) is
given by

HzðrÞ ¼ Happ þ
Z R

r

Jy dr; ð4Þ

where Hz(R)=Happ is the field at the surface.
The magnetization is computed by assuming

that the magnetization patterns are a sequence of
equilibrium states that minimize the total energy in
the current local field. The applied field is assumed
to be the sum of the applied field and the field due
to the eddy currents. The total energy is the sum of
the exchange energy, the anisotropy energy and
the Zeeman energy. The exchange energy per unit
computational cell is

wex ¼ �
AM � r2M

M2
S

E
Að6M2 �M � SMÞ

M2
Sh2

; ð5Þ

where h is the distance between nodes in the grid
and S indicates a sum over the six nearest neighbor
nodes. The anisotropy energy for uniaxial aniso-
tropy is

wanis ¼ K sin2a: ð6Þ

Finally, the Zeeman energy is given by

wZeeman ¼ � m0HzðrÞMzðrÞ

� m0MSHzðrÞcos½aðrÞ	: ð7Þ

In the program, at each time step the magneti-
zation pattern is computed by varying a(r) at each
node using the current value of H, then computing
the change in magnetization so that the electric
field can be computed using Eq. (3). With this
electric field, the eddy currents are computed and
H is recomputed using Eq. (4). This procedure is
repeated until H converges. Then we proceed to
the next time step and continue until finished. A
flow chart of this process is shown in Fig. 3.
This problem is defined by the material para-
meters: A, K, and MS, the geometric parameter R

and the applied field as a function of time. Instead
of K and A, we prefer to use the domain wall width
of a planar Bloch wall, lw,

lw ¼ p

ffiffiffiffi
A

K

r
ð8Þ

and the wall energy density ww per unit area of a
planar Bloch wall

ww ¼ 4
ffiffiffiffiffiffiffiffi
AK

p
: ð9Þ

In the solutions that we obtained even though the
walls were Bloch-type, since the domain wall had
curvature, neither the wall width nor the energy
density were equal to these values.
3. An analytical example

There are some cases where an analytical
solution can be obtained. If lw is negligible
compared to rwoR, then the problem reduces to
a domain level problem. Furthermore, we can
neglect the effect of wall curvature on both lw and
ww. Then the problem has a single unknown, the
radius, rw, of the wall, and the magnetization
changes when the wall moves. From Faraday’s
law, assuming that MSbH, the line integral of the
electric field around any circle, C, centered on the



ARTICLE IN PRESS

Fig. 5. Normalized magnetization in the cylinder as a function

of time for a constant applied field. The dotted line shows the

effect of cutting the conductivity into half.
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z-axis using Eq. (2) isI
C

E � dl ¼
4pm0MSvrw if r > rw;

0 if rorw;

(
ð10Þ

where v is the velocity of the domain wall. Hence,
the current density is given by

J ¼
2sm0MSvrw

r
1y if r > rw;

0 if rorw:

8<
: ð11Þ

The field at the wall from Eq. (4) is

HðrwÞ ¼ Happ �
Z rw

R

2sm0MSvrw

r
dr

� �
1z

¼ Happ þ 2sm0MSvrw lnðR=rwÞ
� �

1z: ð12Þ

We have thus far not discussed any dynamics of
the wall. For a perfect crystal, the critical field is
negligible and for relatively slow magnetizing
processes, we can neglect the wall mass. Then,
we can set the field in Eq. (12) equal to zero and
solve for the wall’s velocity

0 ¼ Happ þ 2sm0MSvrw lnðR=rwÞ
� �

ð13Þ

or

v ¼ �
Happ

2sm0MSrw lnðR=rwÞ
: ð14Þ

We see that as the wall moves closer towards the
center, it has to speed up if the applied field
Fig. 4. A plot of the wall’s position as a function of time for a

constant applied field. The dotted line shows the effect of

cutting the conductivity in half.
remains the same. Fig. 4 is a plot of the position of
the domain wall as a function of time for a
constant positive applied field. Cutting the con-
ductivity or the saturation magnetization into half,
or doubling the applied field, all have the effect of
doubling the velocity and cutting the reversal time
into half. Note that the slope of the wall’s position
diverges as the wall approaches the center. A plot
of the normalized magnetization of the cylinder is
shown in Fig. 5.
In the simplified model, we can include a finite

critical field by requiring that the field at the wall
be equal to the critical field if the wall is to move.
That is

v ¼
�

Happ � HC

2sm0MSrw lnðR=rwÞ
if Happ > HC;

0 if HappoHC:

8<
: ð15Þ

It is more difficult to include wall mass into
these calculations. This mass includes the effect
that when the wall moves, the spins have to
rotate [3] and becomes important at higher speed
applications.
The effect of the wall energy in this model is to

produce an effective field, Hw, tending to push
the wall towards the center. This is due to the fact
that the total wall energy per unit length, Ww,
is directly proportional to the length of the
circumference of the wall:

Ww ¼ 2prwww; ð16Þ
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Fig. 6. Variation of the critical field with wall thickness.
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So that

Hw ¼
1

m0MS

dWw

drw
¼
2pww

m0MS
þ
2prw

m0MS

dww

drw
: ð17Þ

Even if there is no applied field but the wall energy
is uniform, if Hw > HC, then the wall will shrink
to the center as was observed in iron single crystals
[3].
If we apply a ripple to the wall energy such as

ww ¼ w0 þ Dw sin ðbrwÞ; ð18Þ

then we can simulate a critical field. When the
wavelength of the ripple, 2p/b, is much larger than
the wall width, the peak value of dww/drw will be b
Dw. Thus, in order to keep the wall propagating,
the field at the wall will have to be greater than b
Dw. We have created an effective critical field of b
Dw. For smaller fields, the wall can hang up at
periodic points that are separated by 2p/b.
For a very short wavelength ripple, the wall

energy will be integrated over the ripple and since
the average value of sin x over a period is zero,
there will be no critical field. If one assumes an
equal angle model wall such as

a ¼

0 if r > rw þ lw=2;

2pðrw � rÞ=lw if r � rwj jolw=2;

p if rorw � lw=2;

8><
>: ð19Þ

then one can compute the critical field as a
function of wall width. In particular, in this case
the rate of change of a with r is constant, so the
average critical field over the wall is

HCh i ¼
Dw

l

Z l=2

�l=2
cosðbrÞ dr

�����
�����

¼
2Dw

bl
sin

bl

2

����
����: ð20Þ

A plot of the variation in critical field, normalized
to the zero thickness wall, with wall width
normalized to b, is shown in Fig. 6. It is seen that
when the wall width is an integer multiple of b, the
critical field goes to zero.
When the applied field is reversed, there are two

possibilities: the wall could reverse direction or a
new wall could be nucleated at the surface and
start propagating inward. The choice of which
occurs is determined by the size of the nucleating
field compared to the size of the propagating field.
In the analytical example, we simply postulate
that there is no wall until an arbitrary nucleating
field is reached. If that field is small enough,
there is the possibility that there may be more than
one wall active at any time. However, the outer-
most wall will see the largest field since the inner
walls will have additional shielding by the eddy
currents between the walls. Thus, as long as
the critical field is uniform over the cylinder,
we can assume that we have a single wall active at
any time.
In the numerical example, we controlled the size

of the nucleating field by the size of d at the surface
layer. The larger the d, the smaller the nucleating
field. The propagating field is controlled by the
critical field and the wall mass. In the present
numerical model, there is no critical field.
Also, there is no wall mass, since we have not
included dynamics in the propagation of the
domain wall.
4. Energy considerations

There are two processes that dissipate power in
this model: hysteresis and eddy current losses. The
hysteresis loss per unit length is given by

whyst ¼
Z R

0

2prm0HC
qM

qt
dr: ð21Þ
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For the thin wall with a constant applied field, this
reduces to

whyst ¼ 4prm0HCMSv: ð22Þ

The eddy current loss per unit length is given by

wec ¼
Z R

0

2psJ2r dr: ð23Þ

For a thin wall with a constant applied field, this
reduces to

wec ¼
Z R

rw

2psr
2sm0MSvrw

r

� �2
dr

¼ 8ps3 m0MSvrw
� �2

lnðR=rwÞ: ð24Þ

We note that in this equation, both v and rw are
functions of time, even if the applied field is held
constant. This may be further reduced using
Eq. (12) if desired.
5. Conclusions

We have presented a simplified model of the
introduction of eddy currents into a micromagnetic
calculation. We also discussed the special analytic
calculation in the case of a thin domain wall. This
paper is intended to provide a limiting calculation
to test a more general model.
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