
1. Introduction

Simulation of microstructures is important for deter-
mining the behavior of complex materials [1,2,3,4,5,6].
Applying macroscopic loads to some materials can
reveal their mechanical properties. These properties are
associated with the microscopic structures created due
to the material deformation. Microscopic structures of
interest are often found near internal surfaces which, in
turn are found in systems of liquid-liquid, solid-liquid
and solid-solid boundaries [7].

An Austenite-twinned-Martensite interface is an
example of an internal surface. This interface conjoins
two phases: Austenite and Martensite. Figure 1 shows
an example of the twinned-Martensitic microstructures.
These microscopic structures are the result of thermal
or mechanical loading of the material. When a material
is deformed, the structural organization of the atoms is
rearranged. At the microscopic level, this rearrange-

ment can create the crystallographic patterns shown in
Figure 1, for example. These patterns represent 3-
dimensional microscopic structures. There are many
different ways to rearrange the atoms that make up a
material and each variant corresponds to a particular
arrangement.We focus on the two specific variants of
Martensite distinguished by the alternating shaded
areas in Figure 1.

One important mechanical property associated with
an Austenite-twinned-Martensite interface is the Shape
Memory Effect (SME) characteristic of Shape Memory
Alloys (SMAs). SMAs are materials that, when
deformed for an indefinite period of time, return to their
original shape. The deformed state is a metastable state
[8]. In metastability, the total stored energy is at a local
minimum, thus requiring energy to induce a transfor-
mation. In SMAs, heat will trigger the SME which in
turn, returns the SMA to its original shape. An
Austenite-twinned-Martensite interface is observed in
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materials when they are in a metastable state.
Therefore, to simulate Martensite, we minimize the
total stored energy near an internal surface. In this
paper, we present a numerical technique used to obtain
a solution which represents the spatial structure of the
twinned Martensite. The technique employs a Q 1 finite
element discretization of a function representing total
energy and a limited memory quasi-Newton method to
minimize the resulting approximate total energy func-
tion. The gradient of the function is calculated by
computing the partial derivatives using finite differ-
ences. The result is an apparently robust method for
approximating what are usually difficult minimizers to
locate.

1.1 Total Stored Energy

A myriad of research methods can be found which
focus on the simulation of twinned Martensite, and
related microstructures, e.g. Refs. [9,10,11,12,13,14]).
Previous numerical work includes minimization of the
total stored energy using the conjugate gradient meth-
ods [15], the method of steepest descent [15], and a
descent method [16]. Further references using and
studying the use of finite element methods to simulate
Martensitic microstructures can be found in
[17,18,19,20,21,22,23,24]. We are interested in simu-
lating the microstructures in the metastable state, thus
our work will focus on the static problem.

The functional representing the total stored energy is
taken from work by Kohn-Müller in [10,11]. The
Martensite region is represented by the domain
Ω = (0, L) × (0, K). Let x = (x, y) ∈ Ω ⊂
and u = u(x, y). The double-well energy function is
given by

(1)

where u equals 0 at x = 0. The x = 0 boundary corre-
sponds to the internal surface. The function u = 0 at
x = 0, due to the constraint of elastic compatibility
[10,11]. The first integral is the elastic energy and the
last integral is the surface energy. We seek a function

which minimizes Eq. (1) where

1.2 Elastic Energy

The 2-D scalar model of elastic energy, in Eq. (1) is

(2)

This term is minimized by a function u such that

(3)
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Fig. 1. Twinned-Martensite is shown to the lower left of the diagonal line. The field of view
is in the order of µm.
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Each of the gradients in Eq. (3) corresponds to a stress-
free state in one of the two distinct variants of
Martensite [10,11]. Examples of functions satisfying
Eq. (3) are plotted in Fig. 2.

In Fig. 2 functions are piecewise linear in the y-direc-
tion and constant along the x-direction. Requiring that
u equal zero at x = 0 creates more oscillations. This is
similar to the behavior of Martensite near an internal
surface. The function with Amplitude 1 is closest to
zero, on average, than those with Amplitudes 2 and 3.

The number of oscillations is directly related to the
number of discontinuities in ∂y u. We note that the func-
tion with Amplitude 1 also has the largest number of
discontinuities, occurring at the peaks of u, where ∂y u
changes from +1 to –1 (or vice-versa). Therefore, a
desirable minimizer u has the characteristics of the
function with Amplitude 1. The consequence of u satis-
fying Eq. (2) and u = 0 at x = 0 is the occurrence of
more discontinuities in ∂y u. At the minimizer u, howev-
er, the surface energy penalizes these discontinuities.

1.3 Surface Energy

We employ the surface energy presented by Kohn
and Müller in Ref. [10,11],

(4)

where ε is a constant.
The definition proposed by Kohn and Müller

replaces the integral of Eq. (4) in the y-direction with
the total variation of ∂yu over (0, K) [10,11]. This
change designates the role of the surface energy at
the minimizer u as a “counter” because
counts the number of discontinuities in ∂yu, where
∂yu ∈ {±1}. Thus, at the minimizer u of Eq. (1), the
surface energy Eq. (4) exhibits opposite behavior to Eq.
(2) since we are minimizing Eq. (1). To illustrate this
counting role of Eq. (4), we briefly review functions of
bounded variation.

1.4 Functions of Bounded Variation

The definition of functions of bounded variation is
taken from Refs. [25,26,27]. Let

be any partition of (0, K) and let
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Fig. 2. Oscillatory behavior of minimizer u.
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The partitioning P is a collection of points yj, j = 0, 1,
…, l, such that y0 = 0 and yl = K. For each partitioning
P, let

(5)

for a fixed ∈ (0, L). The total variation of ∂yu over
(0, K) is

(6)

where the supremum is taken over all countable
partitions P of (0, K). If 0 ≤ SP ≤ +∞, then 0 ≤
ε ∫Ω | ∂yyu | dx ≤ +∞. If ε ∫Ω | ∂yyu | dx < +∞, then ∂yu is
a function of bounded variation.

Next, we describe the substitution of
by Eq. (6). We assume that ∂y u ∈ C1(Ω). Using Eq. (5)
and the Mean Value Theorem, we have for some
ζ j ∈ (yj, yj+1), j = 1, 2, ..., l that

(7)

(8)

and we obtain by Theorem 2.9 in Ref. [25]:

The assumption that u ∈ C1(Ω) is stronger than the
assumtion that ; however, the equivalence
in Eq. (9) is possible since the changes in ∂y u do not
occur in subintervals of measure zero, [9,10,11,28].
Figure 3 shows that    counts the number
of sign changes in ∂y u. Let (0, K) = (0, 1).

In Fig. 3a, the piecewise linear function u(x, y) is
plotted over (0, 1). In Fig. 3b, the function ∂y u(x, y) is
plotted over (0, 1). Clearly, the number of discontinu-
ities in ∂y u is 5 from Fig. 3b. For a discontinuity at the
partition point yj, we adopt the following convention:

(10)

Now consider (yj–1, yj+1) = (yj–1, yj) (yj, yj+1) in Fig. 3b.
Evaluating at the endpoint of the two subintervals gives

(11)

(12)

A jump occurred in (yj–1, yj) because ∂y u is discontinu-
ous at a point in this subinterval. Based on our conven-
tional definition of ∂y u(x, yj) at a point yj in Eq. (10), we
say a “jump” occurs at yj if ∂y u is discontinuous at this
point. This “jump” refers to the change in values of ∂y u
at yj from +1 to –1 or vice-versa.

This jump gives the nonzero value in Eq. (11). In the
subinterval (yj, yj+1), no jump occurs in ∂y u, therefore
the difference in Eq. (12) is zero. We compute Eq. (9):

where the magnitude of the jump is 2 and the number
of discontinuities is 5. Table 1 shows the number of dis-
continuities for the functions presented in Fig. 2.
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Fig. 3. Surface energy term as a counter. Pictorial example illustrat-
ing the role of surface energy as a counter term. The
notation u(·, y) means that the graph shows the y-dependence only.

1
0 | | dyyu y∫ ∂

 

1

0
| ( , ) | d 2 5 10,yyu x y y∂ = × =∫

Table 1. Number of “jumps” in ∂y u

Function Discontinuities

Amplitude 1 24 12
Amplitude 2 12 6
Amplitude 3 6 3

1
0 | | dyyu y∫ ∂



Therefore, we have:

and the surface energy succeeds in serving as a “count-
er.” The next section describes the numerical approxi-
mation to Eq. (1).

2. Description of Method

The total stored energy Eq. (1) consists of elastic
plus surface energy. First, we describe the implementa-
tion of the elastic energy followed by a discussion of
the surface energy implementation. We computed Eq.
(2) using affine finite elements, [29]. We chose the
finite element space:

(13)

because functions in this polynomial space lie in
, which satisfy the criteria in Eq. (3) for a min-

imizer u of Eq. (1). The elements are rectangles with
the function values at the vertices as degrees of free-
dom. The parent element is Q = (0, 1) × (0, 1) and for
some  , the reference element is

where h1 is the mesh size along the x-axis and h2 is the
mesh size along the y-axis. The degrees of freedom of
the elements are the function values at the vertices, and
for Q we label them u(a1), u(a2), u(a3), and u(a4). Figure
4 shows the parent element with the vertices also denot-
ed by concentric circles.

2.1 Affine Finite Elements

Let F : Q→Qk be given by

(14)

We simplify, by letting F = F(x, y). We use the affine
map Eq. (14) to evaluate the function u, to compute ∇u
and to integrate. The function u is spanned by the four
basis functions defined in each element Qk. Using Eq.
(14), we can determine all basis functions by the four
basis functions in Q. Thus, the approximation to u is:

(15)

where x = x(x, y), y = y(x, y). The nth basis function in
Q is

and it satisfies the property that φn(am) = δmn, for n, m =
1, 2, 3, 4, where δmn is the Kronecker delta function.

To compute the gradient of u and to integrate u, we
need: ∇F, det∇F and ∇F–1. The gradient of F is

(16)

and, we have

(17)

Using Eqs. (15), (16), and (17) we have

To integrate the elastic energy over Qk we use Eqs.
(15)-(17) and obtain
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The procedure is the same for

2.2 Computation of Surface Energy

We evaluate the surface energy term in Eq. (4) using
Eq. (6), approximating ∂yu using backward finite differ-
ences,

and

Here,

(19)

where N(h2) is the number of nodes along the y-direc-
tion. We can integrate along the x-direction to complete
the approximation of Eq. (4).

3. Numerical Implementation

The computation of the integral in Eq. (18) is done
exactly in the parent element Q. The symbolic package
Maple1 [30] was employed to integrate this term exact-
ly. The algebraic expression consisting of nodes uj and
mesh sizes h1 and h2, is evaluated over each element.

The gradient of Eq. (1) is approximated using cell-
centered finite differences. Let u ∈ (Ω). The
Gateaux derivative is:

(20)

where ϕ ∈ (Ω) [31]. The linear operation G is the
directional derivative of J in the direction ϕ. From the
Euler-Lagrange equations, we see that the gradient of J
is difficult to compute. Considering the Euler-Lagrange
equation we have,

where the gradient is div (∂J/∂∇u). Let J(u) be the dis-
cretized representation of the total energy Eq. (1) for
u ∈∈ , where N(h) is the total number of nodes in Ω.

With this numerical approximation to ∇J(u), we use
the limited memory BFGS method [32] to numerically
minimize J(u). This inexpensive quasi-Newton method
seeks to build an approximation H(k) to the inverse of
the Hessian matrix of second derivatives of J at the
point u(k). These inexpensive approximations are con-
structed from a small number of vectors updated at
every iteration.

The k + 1 step of the limited memory BFGS method
is given by:

where the parameter α(k) is a line search parameter and
is computed at each iteration using a line-search proce-
dure.

The Hessian matrix B(k) satisfies the secant equation:

where

We employ a limited memory BFGS method because
the Hessian matrix B(k) is expensive to compute since
we are solving a large scale optimization problem
[32,33]. This is done by storing a certain number of
vector pairs {s(k), y(k)}. At each new iterate, the oldest
vector pair is deleted and replaced by the new vector
pair, thus preserving curvature information only from
the most recent iterations. The formula for updating the
inverse of the Hessian matrix H(k) = (B(k))–1 is:
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where (H(k))0 is some initial Hessian approximation,

and

4. Results

In this section, results computed on the various grids,
30 × 30, 60 × 60, and 120 × 120, are presented. In all
minimization, the initial iterate u0 is a small (≈10–3) per-
turbation of pure Austenite, which we take to be u = 0.
Density plots of the minimizer u are shown in Figs. 5-
10 and demonstrate the existence of the desired
microstructures in the twinned-Martensite phase. These
figures also demonstrate the role of the surface energy
as a penalization term of Eq. (1). We seem to be able to
control the number of microstructures by varying the
values of ε, with a larger value of ε resulting in a small-
er number of microstructures in Martensite and vice-
versa. Figures 11, 12, and 13 show plots of the profiles
of minimizer u at x = 4. Figures 11, 12, and 13 exhibit
a larger number of discontinuities in ∂y u for ε = 2 ×
10–6 than for ε = 2 × 10–2. In Figs. 5-9 one sees the
effect of grid-size comparing results on 60 × 60 grid
with 120 × 120 grid for ε = 2 × 10–6 through ε = 2 ×
10–2. The black and white stripes correspond directly to
the saw-toothed behavior of u at x = 4. For small ε val-
ues, the number of discontinuities is close to the num-
ber of partitions along the y-direction. Tables 2-4 show
the energy values for the minimizers shown in Figs. 5-
10. The column with E(u) corresponds to the elastic
energy values of the minimizer while the column with
S(u) corresponds to the surface energy values of the
minimizer. The energy values presented in Tables 3 and
4 appear consistent with these conclusions. The larger
the ε, the larger the value of the surface energy at the
minimizer. In Table 3 the value of the surface energy
increases by a larger order than that of the elastic ener-
gy.

One final and curious observation is the appearance
of a “diagonal band” structure in Figs. 5-10. It would
seem that this band, which is apparent for solutions on
various grid sizes, is related to the competing roles of
the surface and elastic energies is and may be associat-
ed to the “equipartitioning of energy” principle pro-
posed in Kohn and Müller in Ref. [10,11]. Future
research plans include a deeper investigation of this
diagonal-band structure.
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Table 2. Energy values for various ε on 120 × 120 grid

ε E(u) εS(u) Total energy

2 × 10–6 6.3014 0.5691e-2 6.3071
2 × 10–5 6.1122 0.5698e-1 6.1692
2 × 10–4 7.0859 0.5474 7.6334
2 × 10–3 8.2222 4.5200 12.7423
2 × 10–2 23.3218 1.2559 24.5770

Table 3. Energy values for various ε on 60 × 60 grid

ε E(u) εS(u) Total energy

2 × 10–6 4.3684 0.3120e-2 4.3716
2 × 10–5 6.3005 0.2808e-1 6.3286
2 × 10–4 6.3010 0.2798 6.5809
2 × 10–3 5.7738 2.7356 8.5095
2 × 10–2 3.7945 14.6825 18.477

Table 4. Energy values for various ε on 30 × 30 grid

ε E(u) εS(u) Total energy

2 × 10–6 4.6093 0.0015 4.6108
2 × 10–5 4.9832 0.0145 4.9977
2 × 10–4 6.1073 0.1326 6.1499
2 × 10–3 5.5335 1.3246 6.8581
2 × 10–2 8.0650 9.6770 17.7420
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Fig. 5. Comparison of density plots of u for values of ε = 2 × 10–6 on 60 × 60 grid (bottom) vs 120
× 120 grid (top).

Fig. 6. Comparison of density plots of u for values of ε = 2 × 10–5 on 60 × 60 grid (top) vs 120 × 120
grid (bottom).
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Fig. 7. Comparison of density plots of u for values of ε = 2 × 10–4 on 60 × 60 grid (top) vs 120 × 120
grid (bottom).

Fig. 8. Comparison of density plots of u for values of ε = 2 × 10–3 on 60 × 60 grid (top) vs 120 × 120
grid (bottom).
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Fig. 9. Comparison of density plots of u for values of ε = 2 × 10–2 on 60 × 60 grid (top) vs 120 × 120
grid (bottom).
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Fig. 10. Density plot of solution u for ε = 2 × 10–6, ..., 2 × 10–2 on 30 × 30 grid.
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Fig. 11. Comparison of u(4, y) for various values of ε = 2 × 10–6, ..., 2 × 10–4 on 120 × 120 (left column) grid vs 60 × 60 grid (right column).
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Fig. 12. Comparison of u(4, y) for various ε = 2 × 10–3 and ε = 2 × 10–2 on 120 × 120 grid (left column) vs 60 × 60 grid (right column).
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Fig. 13. Profiles of u(4, y) for ε = 2 × 10–6, ..., 2 × 10–2 on a 30 × 30 grid.
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