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A new ‘matrix-free’ algorithm for the solution of linear inequality constrained, large-scale trust-
region subproblems is presented. The matrix-free nature of the algorithm eliminates the need for any
matrix factorizations and only requires matrix–vector products. Numerical results that demonstrate
the viability of the approach are included.
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1. Introduction

The trust-region subproblem finds a point that minimizes a quadratic function subject to
remaining inside an ellipsoidal region and is an important problem in optimization and linear
algebra. Frequently, an application-motivated trust-region subproblem will require that the
solution satisfies an additional collection of linear constraints. In this instance, the problem
can be written as follows:

min
x

cTx + 1

2
xTQx

s.t. Ax ≤ b

‖Dx‖ ≤ �,

(1)

where c, x ∈ �n, b ∈ �m, A ∈ �m×n, D, Q ∈ �n×n and � is a positive scalar. The afore-
mentioned norm ‖·‖ is an Euclidean norm. The matrix D is usually selected to scale the
problem appropriately and therefore is frequently a diagonal matrix. For simplicity and without
loss of generality, we will assume that a linear transformation has been employed so that the
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matrix D is the identity matrix (D = I ). There is no specific restriction on n and m, but the
method is intended for problems where one or both of these makes the problem large-scale.

Problems of the form (1) arise in a myriad of scientific and engineering fields, for example,
regularizing problems in control and optimal control can be realized as trust-region problems
[1]. Regularization of many ill-posed problems can also be recognized using the same mathe-
matical tools [see, e.g. the work of Symes 2, 3]. Our primary interest is in the robust generation
of steps to be employed, in turn, to locate the minimum of a non-linear function subject to gen-
eral non-linear constraints. In this case, both the objective function and the linear constraints
will be lower order approximation of non-linear functions. The trust-region constraint will
then act both as a regularization term and as a mechanism to prevent extremely large steps
from being generated when far from the solution [see the survey text by Gould et al. 4].

Motivated by recent, successful work on efficient algorithms for the solution of (1) without
the linear inequality constraints [see refs. 5–8] and with bound constraints on the variables [see
ref. 9], we are hopeful that an effective algorithm can be constructed that does not explicitly
use factorizations (approximate or exact) of Q and/or A. These so-called matrix free schemes
are very memory cost-effective and can be employed to solve much larger class of prob-
lems. Indeed, in many non-linear programming problems born from discretizations of control
problems, forming of AT or constructing the product matrix AAT is simply not possible.

The organization of the paper is as follows. In section 2, we describe the algorithm using
a top–down approach, first discussing the structure of the major iterations, then discussing
the minor iterations. Analysis is provided to show global convergence of the minor iterations.
Next, in section 3, we discuss some details of the algorithm which make it implementable and
efficient in practice. Some numerical results are presented and discussed in section 4, and we
offer some concluding remarks in section 5. Throughout the paper, we will use the notation
M > 0 to indicate that the symmetric matrix M is positive definite.

2. Basic algorithm

For notational simplicity, we assume throughout the rest of the paper that D = I . The general
case, i.e. D > 0, is handled by a simple change of variables, as was discussed briefly in
section 1. Hence, the algorithm presented here tackles the spherically constrained quadratic
program

min
x

cTx + 1

2
xTQx

s.t. Ax ≤ b,

xTx ≤ �2.

(SCQP)

Let X denote the feasible set, i.e.

X �= {x ∈ �n|Ax ≤ b, xTx ≤ �2}.
The following assumptions will be in force throughout.

ASSUMPTION 1 The objective function in (SCQP) is strictly convex, in particular,
Q = QT > 0.

ASSUMPTION 2 The feasible set X for (SCQP) has a non-empty interior, i.e. there exists
x̂ ∈ �n such that

Ax̂ < b, and x̂Tx̂ < �2.
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It is not difficult to show that these assumptions guarantee that a solution to (SCQP) is well
defined and unique.

2.1 Major iterations

The main idea of our approach is to use the classical logarithmic barrier function [see, e.g.
ref. 10] to eliminate the linear inequality constraints while leaving the spherical constraint as
is. That is, we repeatedly ‘solve’ the barrier problem

min
x

cTx + 1

2
xTQx − τ

m∑
j=1

ln(bj − aT
j x)

s.t. xTx ≤ �2,

(Bτ )

where aT
j is the j th row of the matrix A, while simultaneously reducing the barrier parameter

τ > 0. Define the feasible set for (Bτ ) as

S �= {x ∈ �n|xTx ≤ �2}.
Note that contrary to standard interior point barrier algorithms [11] as applied to problem
(SCQP), it is entirely possible that a solution of the subproblem (Bτ ) could lie on the surface
of S. In view of this fact, denote the set of feasible points in which our ‘interior’ point iterates
may lie by

X 0 �= {x ∈ �n|Ax < b, xTx ≤ �2}.
Under our barrier formulation, the central path for the problem (SCQP) is defined via the

parameterization

x(τ)
�= arg min

x∈S
Fτ (x),

for τ > 0, where

Fτ (x)
�=




cTx + 1

2
xTQx − τ

m∑
j=1

ln(bj − aT
j x), x ∈ X 0,

+∞, otherwise.

Finally, a standard result from the theory of barrier algorithms [see, e.g. refs. 11,12] guarantees
that the unique global minimizer x∗ of (SCQP) is the limit of the central path, i.e.

x∗ = lim
τ↘0

x(τ).

Thus, a conceptual long-step central path following algorithm may be stated as follows.

ALGORITHM CP

Data c, Q, A, b, �, x0 ∈ X 0, τ 0 > 0.

Parameter M > 1.
Step 0 k ← 0.

Step 1 xk+1 ← arg min
x∈S

Fτk (x).

Step 2 τk+1 ← τk/M .
Step 3 k ← k + 1. Go back to Step 1.
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Of course, such an algorithm is not implementable in practice. In particular, the exact
minimization required by Step 1 cannot be completed in finite time. Fortunately, it is well
known [11,12] that it is not necessary to solve the minimization in Step 1 exactly in order
to guarantee convergence to x∗. Subsequently, we describe an iteration scheme that may be
used to generate an approximate solution of (Bτ ). In section 3, we discuss proximity measures
which will allow us to decide when the approximate minimizer of (Bτk ) is ‘close enough’ to
the central path. This will allow us to construct an implementable path following an algorithm
based on the model provided by Algorithm CP.

2.2 Minor iterations

We now focus our attention on the solution of the barrier subproblem (Bτ ) for τ > 0 fixed. To
construct a ‘matrix-free’ algorithm, a QP-based Newton iteration is avoided. Instead, we treat
the spherical constraint directly. Such an approach allows us to iteratively apply the Lanczos-
based algorithms of ref. [5] or ref. [6], which are ‘matrix free’ and efficient for very large
problems. Specifically, for fixed k and τk > 0, in this section we describe an algorithm which
generates a sequence {xk,j }j∈ℵ satisfying

xk,j −→ x(τk), as j → ∞.

Consider the following second-order model of (Bτk ) at the point xk,j ,

min
x

∇Fτk (xk,j )T(x − xk,j ) + 1

2
(x − xk,j )T∇2Fτk (xk,j )(x − xk,j )

s.t. xTx ≤ �2.

(TRS(xk,j , τ k))

The minimization of a quadratic function subject to a spherical constraint is typically referred
to as a trust-region subproblem (TRS). Note that, under our assumptions, the solution to this
problem is always well defined and unique. Let x̂k,j+1 be the solution of (TRS(xk,j , τ k)) and
define the search direction δk,j = δ(xk,j , τ k) as

δ(xk,j , τ k)
�= x̂k,j+1 − xk,j .

A new iterate xk,j+1 may be constructed by performing a line search from xk,j along δk,j , that
is,

xk,j+1 = xk,j + tk,j · δk,j ,

where t ∈ (0, 1] is chosen so that the new iterate satisfies a descent condition on a suitable
merit function. Note that, as long as xk,0 ∈ S, convexity of S and the direct incorporation of
the spherical constraint in (TRS(xk,j , τ k)) guarantees that xk,j ∈ S for all j , regardless of how
tk,j ∈ (0, 1] is chosen. Thus, we need not incorporate the constraint into the merit function.
We now state a conceptual algorithm for the solution of (Bτ ).

ALGORITHM BP

Data xk,0 ∈ X 0, τ k > 0.
Parameters α ∈ (0, 1/2), β ∈ (0, 1).
Step 0 j ← 0.
Step 1 (Computation of a search direction) Form δk,j from the solution of TRS(xk,j , τ k).
If δk,j = 0, stop.
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Step 2 (Line Search) Compute tk,j , the first number t in the sequence {1, β, β2, . . .}
satisfying

Fτk (xk,j + t · δk,j ) ≤ Fτk (xk,j ) + α · t · ∇Fτk (xk,j )Tδk,j .

Step 3 (Updates)
(i) xk,j+1 ← xk,j + tk,j δk,j .

(ii) j ← j + 1. Go back to Step 1.

It remains to show thatAlgorithm BP does indeed generate a sequence of iterates converging
to the central path. A point x ∈ �n is said to be a Karush Kuhn Tucker (KKT) point for (Bτk )

if there exists a multiplier µ ∈ � satisfying


Qx + c + τ k ·
∑
j=1

1

bj − aT
j x

· aj + 2µx = 0,

xTx ≤ �2,

µ · (
xTx − �2

)
, µ ≥ 0.

(2)

In view of Assumption 1, it is not difficult to show that, for τ k > 0, (Bτk ) is convex with a
compact (convex) feasible set [13]. Thus, there exists a unique global minimizer xk,∗ = x(τk)

which, by definition, lies on the central path of (SCQP). Furthermore, (2) is necessary and
sufficient, i.e. x∗ = x(τ k) if, and only if, there exists µ∗ ∈ � such that (x∗, µ∗) satisfies (2).

Throughout the following analysis, we will refer to the KKT conditions for (TRS(xk,j , τ k))

as well [see also refs. 14,15]. A point x̂ ∈ �n is a KKT point for (TRS(xk,j , τ k)) if there exists
µ̂ ∈ � such that 


∇2Fτk (xk,j )T(x̂ − xk,j ) + ∇Fτk (xk,j ) + 2µ̂x̂ = 0,

x̂Tx̂ ≤ �2,

µ̂ · (
x̂Tx̂ − �2

)
, µ̂ ≥ 0,

(3)

Given any xk,j ∈ X 0 and τ k > 0, it can be shown that ∇2Fτk (xk,j ) > 0, hence (TRS(xk,j , τ k))

has a unique global minimizer x̂k,j+1 = x̂(xk,j , τ k) which satisfies (3) for some µ̂k,j > 0.

LEMMA 1 The vector δ(x, τ k) = 0 if, and only if, x is a KKT point for (Bτk ).

Proof Suppose δ(x, τ k) = 0, then by definition x̂(x, τ k) = x. Substituting this equality into
(3), letting µ̂ be the KKT multiplier and expanding ∇Fτk (x) shows that x satisfies (2) with
multiplier µ̂. The converse is proved similarly. �

LEMMA 2 Given any x ∈ X 0 and τ k > 0, x + δ(x, τ k) ∈ S. Further, if x is not a KKT point
for (Bτk ), then

∇Fτk (x)Tδ(x, τ k) < 0.

Proof That x + δ(x, τ k) ∈ S is clear from the definition of δ(x, τ k) and (TRS(x, τ k)). Note
that x̂ = x will always satisfy the constraint for (TRS(x, τ k)), the optimal value must be
non-positive. Thus,

∇Fτk (x)Tδ(x, τ k) ≤ −1

2
δ(x, τ k)T∇2Fτk (x)δ(x, τ k).

The result follows from Lemma 1 and the fact that ∇2Fτk (x) > 0. �
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LEMMA 3 The line search is well defined, i.e. Step 2 yields a step-length tk,j = βi for some
finite i = i(k, j).

Proof Follows immediately from Lemma 2. �

Now suppose that Algorithm BP generates a finite sequence xk,j , j = 1, . . . , N . Then, by
Step 1, δk,N = 0 and in view of Lemma 1, xk,N is a KKT point for (Bτ ), which implies
xk,N = x(τ k) by uniqueness. From this point forward, we make the assumption that δk,j 
= 0,
for all j , thus Algorithm BP generates an infinite sequence {xk,j }j∈ℵ. It will be shown that
xk,j → x(τ k), as j → ∞. Note that Lemma 2 guarantee xk,j ∈ S, for all j , thus the sequence
{xk,j } is bounded.

LEMMA 4 Suppose J ⊆ ℵ is an infinite index set such that δk,j j∈J−→ 0, then x(τ k) is the
unique accumulation point for {xk,j }j∈J .

Proof Denote the multiplier satisfying (3) at the solution of (TRS(xk,j , τ k)) by µ̂k,j . Suppose
that the sequence {µ̂k,j }j∈J is unbounded. In view of the first equation in (3), we must then have

xk,j j∈J−→ 0. But for j sufficiently large, this would contradict the complementary slackness
condition of (3), thus {µ̂k,j }j∈J is bounded. Now, let J ′ ⊆ J be an infinite index set such that

xk,j j∈J ′−→ xk,∗, and suppose without loss of generality that µ̂k,j j∈J ′−→ µ̂k,∗ ≥ 0. Taking limits
on J ′ in (3) shows that xk,∗ is a KKT point for (Bτk ) with multiplier µ̂k,∗. Uniqueness of such
points proves the result. �

LEMMA 5 Suppose J ⊆ ℵ is an infinite index set such that xk,j j∈J−→ x∗, then δk,j j∈J−→ 0.

Proof We begin by noting that, in view of Assumption 1 and convexity of the natural
logarithm, there exists σ > 0 such that

inf
x∈X 0,‖y‖=1

yT∇2Fτk (x)y = σ.

Proceeding by contradiction, suppose there exists an infinite index set J ′ ⊆ J and a constant
d > 0 such that ‖δk,j‖ ≥ d for all j ∈ J ′. Now, because x̂ = xk,j is always feasible for
(TRS(xk,j , τ k)), the optimal value is non-positive, thus

∇Fτk (xk,j )Tδk,j ≤ −1

2
(δk,j )T∇2Fτk (xk,j )δk,j

≤ −σ

2
d2 < 0,

for all j ∈ J ′. Using the identity

Fτk (xk,j + tδk,j ) − Fτk (xk,j ) = t

∫ 1

0
∇Fτk (xk,j + tξδk,j )Tδk,j dξ,

we can show

Fτk (xk,j + tδk,j ) − Fτk (xk,j ) − αt∇Fτk (xk,j )Tδk,j

= t ·
∫ 1

0

(∇Fτk (xk,j + tξδk,j ) − ∇Fτk (xk,j )
)T

δk,j dξ + t (1 − α)∇Fτk (xk,j )Tδk,j

≤ t ·
{

sup
ξ∈[0,1]

‖∇Fτk (xk,j + tξδk,j ) − ∇Fτk (xk,j )‖ · ‖δk,j‖ − (1 − α)
σ

2
d2

}
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for all j ∈ J ′, j large enough. As Fτk (·) is continuously differentiable in X 0, and because
δk,j is bounded, there exists t > 0 such that for all j ∈ J ′, j sufficiently large,

Fτk (xk,j + tδk,j ) − Fτk (xk,j ) − αt∇Fτk (xk,j )Tδk,j ≤ 0,

for all t ∈ [0, t ]. Therefore,

Fτk (xk,j+1) ≤ Fτk (xk,j ) + αt∇Fτk (xk,j )Tδk,j

≤ Fτk (xk,j ) − αt
(

σ
2 d2

)
,

for all j ∈ J ′, j sufficiently large. Since Lemma 2 and Step 2 of Algorithm BP guarantee that
Fτk (xk,j ) is non-increasing in j , this implies Fτk (xk,j ) → −∞, as j → ∞. Clearly, this is a
contradiction, as xk,j ∈ X 0 for all j and Fτk (·) is continuous in the bounded set X 0. �

THEOREM 1 The sequence xk,j → x(τ k), as j → ∞.

Proof It follows immediately from Lemmas 4 and 5 that there exists an infinite index set
J ⊆ ℵ such that xk,j j∈J−→ x(τ k). Further, it is a simple consequence of the descent properties
of the algorithm and the strict convexity of Fτk (·) that x(τ k) is the only accumulation point
of {xk,j }j∈ℵ. �

3. Algorithm specifics

In this section, we discuss some modifications of the algorithm outlined in the previous section
which allow it to be implementable in practice.

3.1 The line search

Before the line search in Step 2 of Algorithm BP can be carried out, in practice, we will need
to compute an upper bound on the step-length so that all linear constraints from (SCQP) will
be strictly satisfied. If this is not done, numerical problems (domain errors) are likely to result
when evaluating the natural logarithms of the (negative) constraint violations. Of course, an
upper bound on the step size is easily computed analytically. Consider

t̄ k,j �=




1, if Aδk,j ≤ 0,

ν · min

{
1,

bi − aT
i xk,j

aT
i δk,j

: i s.t. aT
i δk,j > 0

}
, otherwise.

For ν = 1, such a bound guarantees that xk,j + tδk,j ∈ X ′, for all t ∈ [0, t̄ k,j ], but we require
the trial points strictly satisfy the linear constraints. Thus, we must choose ν ∈ (0, 1) in order
to guarantee xk,j + tδk,j ∈ X 0, for all t ∈ [0, t̄ k,j ]. Note that typically ν is chosen very close
to 1 (e.g. ν = 0.95).

Once an upper bound has been established, we may proceed with the Armijo-type line
search as in Step 2 of Algorithm BP, the only difference now being that tk,j is chosen as the
first number t in the sequence {t̄ k,j , βt̄k,j , β2 t̄ k,j , . . .} satisfying

Fτk (xk,j + t · δk,j ) ≤ Fτk (xk,j ) + α · t · ∇Fτk (xk,j )Tδk,j .
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3.2 Proximity measures and barrier parameter updates

In practice, the minor iterations must be stopped after a finite number of steps, hence the central
path is never actually reached. Of course, it is well known that it is not only unnecessary but
also computationally wasteful to expend too much effort in the minor iterations trying to get
as close as possible to the central path. In general, with a well-chosen proximity measure,
only a few minor iterations are required for each major iteration in order to ensure global
convergence.

Proximity measures p(·, ·) : X 0 × �+ → �+ take many forms, but typically they satisfy

• p(x, τ ) ≥ 0, ∀x ∈ X 0, ∀τ ≥ 0.
• p(x, τ ) = 0 if, and only if, x = x(τ).

For our algorithm, we chose

p(x, τ )
�= ‖δ(x, τ )‖ ,

i.e. the Euclidean norm of the search direction. In view of Lemma 1, such a choice satisfies the
properties mentioned earlier. Of course, equally important as the exact form of the proximity
measure itself is the choice of threshold used to determine when we are close enough to the
central path for a given major iteration. We chose to reduce the threshold with the barrier
parameter to ensure that we get closer and closer to the central path as the major iterations
increase. In particular, we stop the minor iterations when

∥∥δ(xk,j , τ k)
∥∥ ≤ C · τ k,

where C > 0 is a constant. Note that, to be complete, we should demonstrate that using such
a proximity measure does not affect global convergence of the major iterations to the solution
of (SCQP). Although we do not include such analysis here, we have outlined the arguments
and believe the result to hold. A detailed examination of this issue remains to be done.

Many modern interior point algorithms base the barrier parameter on approximate com-
plementarity and compute τ k as a function of the dual and slack variables. As our algorithm
does not produce a dual variable estimate, we resort to simpler schemes such as those used in
classical barrier algorithms. Specifically, we use the long-step update and let

τ k+1 ←− τ k

M
,

where M > 1. Of course, using such an update may limit the ultimate rate of convergence in
a neighborhood of the solution.

3.3 TRS solvers and the ‘hard case’

In this section, we show that the subproblems (TRS(xk,j , τ k)) generated by the minor iterations
of our algorithm tend towards the so-called ‘hard case’ for problems of this type [for detailed
discussions of the hard case; see, e.g. refs. 5,9,15,16]. To simplify the discussion, consider the
TRS

min
x

gTx + 1

2
xTHx

s.t. xTx ≤ s2,

(TRS)
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where g ∈ �n and 0 ≺ H = H T ∈ �n×n. Let λ1 ∈ � be the smallest eigenvalue of H and let

1 ⊆ �n be the corresponding eigenspace. For our purposes, it suffices† to say that (TRS) is
in the hard case when g ∈ 
⊥

1 . Note that even when this condition is close to being satisfied,
numerical difficulties are likely to result.

In the case of (TRS(xk,j , τ k)), we have

H = Q + τ k ·
m∑

i=1

1

(aT
i xk,j − bi)2

· aia
T
i

g = c − τ k ·
m∑

i=1

2aT
i xk,j − bi

(aT
i xk,j − bi)2

· ai.

Sacrificing rigor, we now discuss how TRS(xk,j , τ k) may tend towards the hard case as xk,j

tends toward a solution. For k fixed, let Ik ⊆ {1, . . . , m} be the set of indices of linear con-
straints whose boundaries are approached by xk,j as j → ∞. Of course, the barrier term
prevents all linear constraints from being active, even asymptotically in j , but as k gets
large, some will get close. Now suppose that k is ‘large enough’ (and fixed), and consider
TRS(xk,j , τ k) as j gets large. In particular, note that g will tend towards

ḡk
�=

∑
i∈Ik

viai,

for some vi ∈ �, i ∈ Ik , and H will tend towards

H̄k
�=

∑
i∈Ik

wiaia
T
i ≥ 0,

for some 0 < wi ∈ �, i ∈ Ik . The eigenspace of H̄k corresponding to the non-zero (hence,
largest) eigenvalues is sp{ai : i ∈ Ik}. Because H̄k = H̄ T

k , S1 = sp{ai : i ∈ Ik}⊥, where S1 is
the eigenspace corresponding to the smallest eigenvalue, i.e. zero. Thus,

ḡk ∈ S⊥
1 ,

which is one of the conditions of the hard case. Although this discussion dealt primarily with
asymptotic properties, it is clear that for k and j large enough, (TRS(xk,j , τ k)) will be ‘close’
to the hard case, which could cause problems numerically.

Recently, there has been a great deal of effort towards developing algorithms which more
effectively deal with the hard case. Two promising approaches are due to Rojas et al. [5] and
Rendl and Wolkowicz [6]. Although other work has been done, what makes these algorithms
attractive in our context is the fact that they are ‘matrix free’, i.e. do not rely on matrix
factorizations, and are well-suited for large-scale problems.

4. Numerical results

Numerical experiments that demonstrate the efficacy of this approach are presented in this
section. The algorithm has been implemented in MATLAB 6.0. Eigenvalue computations
required by the algorithm were performed using an implementation of the implicitly restarted

†We will assume in the following discussion that the other condition for the hard case holds, namely, the solution
y of (H − λ1I )y = −g satisfies ‖y‖ < s.
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Arnoldi method [17] available in ARPACK [18]. All numerical experiments presented here
were run on a Pentium 1.80 (GHz) personal computer with 512 MB of RAM running a Linux
operating system. Double precision IEEE floating point arithmetic with machine precision
approximately 2.2 × 10−16 was employed.

To demonstrate the efficacy of the algorithm, use the algorithm to solve two sets of prob-
lems. In the first set of problems, the objective function matrix Q was chosen to be different
powers of the standard discrete, five-point, equally spaced stencil approximation to the two-
dimensional Laplacian operator on a unit square, say L, where Q = {L, L2, L3}. The matrix
A was selected to be a uniformly distributed sparse (pseudo) random matrix with elements
chosen from [−10, 10] and similarly the vectors c and b were selected to be a uniformly dis-
tributed (pseudo) random vectors whose elements were chosen from [−1, 1] (using intrinsic
MATLAB commands). For the second set of problems, we report on the algorithm’s perfor-
mance on an application problem from computational material science described at the end
of this section.

In some cases, the generated linear constraints did not admit a feasible point, in which
case the vector b was increased until the feasible region was large enough to posses an non-
empty interior. Finally, all numerical results report only on starting points that were feasible

Table 1. Algorithm performance on test problems.

n m Q � Sparse(A)(%) ITS(its) Hard case Fails Mat∗vec

1,000 1,000 L 1.e − 1 10 102(13) 22 0/10 2,688
1,000 1,000 L 1.e + 1 10 100(13) 17 0/10 2,113
1,000 1,000 L 1.e − 1 15 108(12) 34 1/10 2,659
1,000 1,000 L 1.e + 1 15 119(14) 19 0/10 2,002
1,000 1,000 L 1.e − 1 20 141(18) 58 0/10 2,713
1,000 1,000 L 1.e + 1 20 141(17) 32 0/10 1,957
1,000 1,000 L2 1.e − 1 10 129(21) 29 1/10 2,934
1,000 1,000 L2 1.e + 1 10 121(17) 31 0/10 2,712
1,000 1,000 L2 1.e − 1 15 145(28) 43 2/10 2,840
1,000 1,000 L2 1.e + 1 15 147(19) 49 0/10 2,008
1,000 1,000 L2 1.e − 1 20 178(35) 50 2/10 3,163
1,000 1,000 L2 1.e + 1 20 199(39) 67 1/01 4,070
1,000 1,000 L3 1.e − 1 10 289(39) 101 3/10 5,841
1,000 1,000 L3 1.e + 1 10 291(38) 142 2/10 5,982
1,000 1,000 L3 1.e − 1 15 316(43) 174 3/10 6,956
1,000 1,000 L3 1.e + 1 15 320(48) 163 3/10 6,675
1,000 1,000 L3 1.e − 1 20 352(42) 191 5/10 7,071
1,000 1,000 L3 1.e + 1 20 393(44) 184 4/10 8,008

1,000 10,000 L 1.e − 1 10 132(15) 28 0/10 3,469
1,000 10,000 L 1.e + 1 10 98(15) 27 0/10 3,468
1,000 10,000 L 1.e − 1 15 189(19) 45 0/10 5,711
1,000 10,000 L 1.e + 1 15 135(18) 36 0/10 5,402
1,000 10,000 L 1.e − 1 20 197(23) 67 0/10 6,734
1,000 10,000 L 1.e + 1 20 158(24) 41 0/10 6,091
1,000 10,000 L2 1.e − 1 10 129(21) 29 1/10 3,453
1,000 10,000 L2 1.e + 1 10 121(17) 31 0/10 2,999
1,000 10,000 L2 1.e − 1 15 191(28) 61 3/10 5,827
1,000 10,000 L2 1.e + 1 15 152(30) 57 2/10 5,715
1,000 10,000 L2 1.e − 1 20 211(23) 84 4/10 7,133
1,000 10,000 L2 1.e + 1 20 209(29) 82 4/10 7,002
1,000 10,000 L3 1.e − 1 10 313(59) 201 5/10 9,988
1,000 10,000 L3 1.e + 1 10 310(58) 195 5/10 9,972
1,000 10,000 L3 1.e − 1 15 396(43) 222 8/10 14,410
1,000 10,000 L3 1.e + 1 15 427(48) 176 3/10 15,812
1,000 10,000 L3 1.e − 1 20 453(41) 209 9/10 16,899
1,000 10,000 L3 1.e + 1 20 471(49) 200 8/10 17,001
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with respect to the linear constraints, a so-called Big-M method was employed to attain
these feasible starting points. This method calculation was inexpensive compared with the
cost of solving the problem. The major iteration was halted when the relative change in
iterates was below 1.e − 5. The trust-region problems were solved using large-scale trust-
region subproblem (LSTRS) [19] and the parameters used in our numerical tests were τ0 = 1,
M = 2 and C = 10−9.

In table 1, we summarize the results of our algorithm applied to 10 different problems with
varying sizes, condition number of matrices and trust-region radii. The selection of trust-region
radii was made to ensure that the numerical results contained examples were the trust-region
constraint was both active and inactive. The first two columns denote the number of variables
and constraints. The matrices Q and A are described in the third and sixth columns. In the
fifth column, we report on the average number of major iterations and, in parenthesis the
average number of inner iterations when the algorithm converged (rounded to the nearest
unit). In the seventh and eighth columns, the average number of hard cases encountered and
failures. The ninth column records the average number of matrix–vector products performed
when the algorithm succeeded in finding the optimal solution. All matrix–vector products
were calculated without storing the matrix.

4.1 An application problem

In table 2, we summarize the results of our algorithm applied to an optimization problem
from material science. This particular problem arises from a two-dimensional scalar model
of Austenite-twined-Martensite interface proposed by Kohn and Müller [20,21]. They derive
an model problem that includes an equipartitioning principle which enters the problem as a
constraint relating elastic and surface energies. This constraint cannot be numerically evalu-
ated because it involves a sup over all possible partitions of the physical domain, but it can
sequentially approximated through a family of linear inequality constraints [see refs. 22,23].

The first three columns in table 2 denote the number of variables, constraints and the trust-
region radius employed in the model problem. In the fourth column, we report on the average
number of major iterations and in parenthesis the average number of inner iterations when the
algorithm converged (rounded to the nearest unit). The fifth column records the number of
hard cases encountered. Finally, the sixth and seventh columns report the number of failures
and average number of matrix–vector products performed when the algorithm succeeded in
finding the optimal solution.

Table 2. Algorithm performance on application problems.

n m � ITS(its) Hard case Fails Mat∗vec

4,096 1 1.e − 1 69(21) 18 0/10 2,993
4,096 1 1.e + 1 59(18) 0 0/10 1,192
4,096 1,000 1.e − 1 117(23) 10 1/10 5,080
4,096 1,000 1.e + 1 121(18) 9 0/10 4,178
4,096 1,000,000 1.e − 1 589(32) 106 5/10 10,981
4,096 1,000,000 1.e + 1 232(16) 29 0/10 9,347

16,384 1 1.e − 1 309(20) 102 2/10 8,524
16,384 1 1.e + 1 291(18) 16 1/10 6,754
16,384 1,000 1.e − 1 781(31) 112 5/10 9,134
16,384 1,000 1.e + 1 628(14) 24 4/10 7,086
16,384 1,000,000 1.e − 1 – – 10/10 –
16,384 1,000,000 1.e + 1 790(23) 97 8/10 13,012
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In both the first test problem and the material science model problem it appears that
the algorithm encounters the hard case as iterates draw closer to the solution, especially
for ill-conditioned problems. The ill conditioning that tends to increase the frequency with
which the hard case was encountered can result from a larger condition number of the matrix Q

or through an increase in the number of constraints, m. The analysis presented here supports
these observations.

5. Conclusions

A new algorithm for the solution of large-scale, inequality constrained trust-region subprob-
lems has been presented. The algorithm follows work on embedding the LSTRS [24] into
parameterized eigenvalue problems [25] and appears to work well for problems of moder-
ate condition number and may eventually be employed in tandem with preconditioners for
ill-conditioned problems.
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