
Proceedings of IMECE’03: 
2003 ASME International Mechanical Engineering Congress 

November 16–21, 2003, Washington, D.C., USA 

IMECE2003-41809 

COMPARISON OF ANALYTICAL AND NUMERICAL SIMULATIONS FOR VARIABLE SPINDLE 
SPEED TURNING 

 
 

Tamás Insperger 
Department of Applied Mechanics 

Budapest University of Technology and Economics 

Tony L. Schmitz 
Department of Mechanical and Aerospace Engineering 

University of Florida 
 
 

Timothy J. Burns 
Mathematical and Computational Sciences Division 

National Institute of Standards and Technology 

Gábor Stépán 
Department of Applied Mechanics 

Budapest University of Technology and Economics 
 
 
ABSTRACT 

The turning process with varying spindle speed is 
investigated. The well-known single degree of freedom turning 
model is presented and the governing delay-differential 
equation with time varying delay is analyzed. Three different 
numerical techniques are used to solve the governing equation: 
(1) direct Euler simulation with linear interpolation of the 
delayed term, (2) Taylor expansion of the time delay variation 
combined with Euler integration and (3) semi-discretization 
method. The results of the three method are compared. Stability 
charts are constructed, and some improvements in the process 
stability is shown, especially for low spindle speed domains. 

 
INTRODUCTION 

The history of machine tool chatter dates back nearly 100 
years, when Taylor (1907) described machine tool chatter as 
the “most obscure and delicate of all problems facing the 
machinist”. After the extensive work of Tlusty et al., (1962), 
Tobias (1965), Merrit (1965) and Kudinov (1967), the so-called 
regenerative effect has become the most commonly accepted 
explanation for machine tool chatter (Stépán, 1989, Moon, 
1998). This effect is related to the cutting force variation due to 
the wavy workpiece surface cut one revolution ago. The 
corresponding mathematical models are delay-differential 
equations (DDEs). 

For the simplest model of turning, the governing equation 
of motion is an autonomous DDE with a corresponding infinite 
dimensional state space. This fact results in an infinite number 
of characteristic roots, most of which have negative real parts 
referring to damped components of the vibration signals. 

Prevention of chatter is a primary problem for the 
machinist. The notion that parametric excitation effects may 
suppress vibrations during the cutting process comes from the 
famous problem of stabilizing inverted pendulums by 

parametric excitation (see, for example, Insperger and Horváth, 
2000). The governing equation of motion of the turning process 
with parametric excitation is a time periodic DDE. 

Periodically varying stiffness was suggested by Segalman 
and Butcher (2000) to suppress chatter in turning. They 
investigated the resulting DDE with time periodic coefficients 
by the harmonic balance method, and found some stability 
improvements. 

In the 1970s, several researchers suggested continuous 
variation of the spindle speed for chatter suppression (see 
Inamura and Sata, 1974, Takemura et al., 1974, Hosho et al., 
1977, Sexton et al., 1977, Sexton and Stone, 1978). The 
corresponding mathematical model is a DDE with time varying 
delay. Inamura and Sata (1974) and Sexton et al. (1977) 
approximated the quasi-periodic solutions of the time periodic 
DDE by periodic ones and applied the harmonic balance 
method to derive stability boundaries. They predicted 
improvements in stability properties by a factor of 10 for 
properly chosen parameter values. In spite of some reports on 
successful experiments, the stability investigations of cutting 
with time varying spindle speeds were not reliable enough to 
present a breakthrough in this field. 

With their novel approach, Jayaram et al. (2000) created 
stability charts for turning with varying spindle speed. They 
used quasi-periodic trial solutions for the periodic DDE, and 
combined the Fourier expansion with an expansion using 
Bessel function series. They determined stability boundaries by 
harmonic balance method and obtained slight improvements in 
stability properties for low spindle speed domains. 

The semi-discretization method was used to obtain stability 
charts by Insperger et al. (2001). They showed that contrary to 
cutting processes with constant spindle speed, where only 
secondary Hopf and period doubling bifurcations may arise, for 
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machining with varying spindle speed period-one bifurcation is 
also a possible route for the onset of chatter. 

Different shapes of the spindle speed modulation were 
investigated by Insperger and Stépán (2002a), such as 
sinusoidal modulation and piecewise linearly increasing or 
decreasing (saw-like) modulations. They found that the shape 
of the modulation has no significant effect on the stability 
charts. Spindle speed can also be modulated randomly in order 
to suppress chatter, as was investigated by Yilmaz et al. (2002).  

The allowable parameters for the spindle speed modulation 
(amplitude, frequency) are bounded by the technological 
conditions. The realizable values are 10% for modulation 
amplitude and 0.5–1 Hz for modulation frequency (Young and 
Schaut, 2001). 

In this paper, turning process with sinusoidal spindle speed 
modulation is investigated using three different methods: 

1, The governing DDE with time varying delay is solved 
by Euler integration. 

2, The governing DDE with time varying delay is 
transformed to a DDE with constant delay via Taylor 
expansion and it is solved by Euler integration. 

3, The governing DDE with time varying delay is 
investigated by semi-discretization. 

 
SINGLE DEGREE OF FREEDOM MODELLING FOR 
SPINDLE SPEED MODULATED TURNING 

The mechanical model of the turning process in case of 
orthogonal cutting is shown in Figure 1. The mass m of the 
tool, the damping coefficient c, and the spring stiffness k can be 
determined via modal analysis of the machine tool that has a 
well-separated dominant natural frequency. The structure is 
assumed to be flexible in the x direction only. This reduces the 
model to a single degree of freedom. The prescribed feed 
motion is uniform with a constant speed v of the tool. The 
angular speed of the workpiece is denoted by Ω(t). The cutting 
force F depends on the current chip thickness that is influenced 
by the current and delayed position of the tool, x(t) and x(t-τ(t)), 
respectively. The linear equation of motion reads 

 

 ( ))())(()()(2)( 2 txttx
m
Kbtxtxtx nn −−=++ τωζω &&&  (1) 

 
where mkn /=ω  is the dominant natural angular frequency 
of the system, )2/( nmc ωζ =  is the damping ratio, K is the x 
direction specific cutting energy and b is the chip width. 

If the spindle speed is constant: , and is given in 
[rpm], then the time delay can be expressed as 

0)( ΩtΩ ≡

00 /60 Ω=τ . In 
the case of time periodic spindle speed modulation 

, the time delay is also time periodic with the 
same period: 

)()( tΩTtΩ =+
( )() tTt ττ =+ . In this case, the time delay can 

only be given in the implicit form 
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This means that the workpiece makes one revolution in the time 
interval [ ]ttt ),(τ−  for any t.  

 

 
Fig. 1.  Mechanical model of turning process 

 
However, if we assume a harmonic spindle speed 

modulation in the form ))cos(1()( 0 tΩtΩ ωε+= , where the 
modulation amplitude (ε) is small, then the time delay variation 
can be approximated as  

 
 ))cos(1()( 0 tt ωεττ −= , (3) 

 
where 00 /60 Ω=τ . In Figure 2, the exact time delay obtained 
by the numerical solution of equation (2) and the approximated 
time delay is shown for 10% modulation amplitude ( 1.0=ε ). 
The time period of the modulation is ωπ /2=T . The 
frequency of the modulation is characterized by the ratio 0/τT . 

 

 
Fig. 2.  Exact (continuous) and approximate (dashed) time 

delay variation for Ω0=6000 [rpm], ε=0.1 and T=1 [s] 
 
Introducing the dimensionless time ntt ω=~  gives the 

dimensionless equation of motion 
 

 ( ))~())~(~()~()~(2)~( 1 txttxktxtxtx n −−=++ τωζ &&& , (4) 
 

where  is proportional to the chip width, or 
depth of cut. The dimensionless time delay is then 

)/( 2
1 nmKbk ω=
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where the dimensionless time period of the modulation is Tnω . 
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GOVERNING DIMENSIONLESS EQUATION 
For the sake of simplicity, equation (4) is rewritten in the 

form 
 

) ( )())(()()(2)( 1 txttxktxtxtx −−=++ τζ &&& , (6) 
with 
 ))cos(1()()( 0 ttTt ωετττ −==+  (7) 
 
where – by abuse of notation – t denotes dimensionless time, 

)(tτ is the dimensionless delay, T/2πω = is the dimensionless 
modulation frequency and T is the dimensionless time period. 

In the subsequent analysis, equation (6) is investigated 
with the time delay expression (7), and stability charts are 
constructed for 10% modulation amplitude ( 1.0=ε ), and for 
the modulation periods 2/ 0 =τT  and 5=/ 0τT . 

The stability chart of equation (6) with 0)( ττ ≡t  (that is 
with 0=ε ) is shown in Figure 3. The axes are dimensionless 
spindle speed  and the “dimensionless depth of cut” 
k

)60/(0 nfΩ

1. Here, πω 2/n=

0/60
n

0

f  is the natural frequency of the machine 
tool and τ=Ω . Below the boundary curves, the cutting 
operation is stable, above them, chatter arises. 

Our purpose here is to investigate how the stability lobes in 
Figure 3 change when spindle speed modulation is applied. 

 

 
Fig. 3.  Example stability chart of turning process with constant 

spindle speed 
 

STABILITY ANALYSIS VIA DIRECT EULER 
INTEGRATION 

The difficulty with the discretization of DDEs is that the 
time delay τ is not always a multiple of the length t∆  of the 
discretization interval, therefore the delayed term can not 
always be expressed as a delayed discrete value of the state 
variable. Here, the following linear interpolation will be used: if 

tmtm ∆+<<∆ )1(τ , where m is integer, then the delayed term 
)( τ−tx  is approximated as a linear combination of the 

“neighboring” discrete values )t( mtxx imi ∆−=−  and 
. )) t∆1((1 mtxx imi +−=−−

Consider the following discrete approximation of the state 
variable and its derivatives in equation (6): 
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where ii ttt −=∆ +1 , )( ii tττ = , and i and mi are integers. 
Integer mi is defined as )/)(int( tti ∆mi = τ , where int is the 
function that rounds positive numbers towards zero (e.g. 
int(4.32) = 4). 

Substitution of approximations (8)-(11) into equation (6) 
yields the recursive formula 
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Numerical integration gives a series of the state variable xi. 

For computations, the time-step was chosen as 1000/0τ=∆t  
and the values of xi was computed over the interval [ ]T10,0 . 
For the case 2/ 0 =τT , this means that xi is computed for 

20000=n  steps. Consequently, for the case 5/ 0 =τT , the 
number of computation steps is . 50000=n

An initial condition for the recursive computation is the 
following: 

 
 0=jx     for    1,,1, 11 K+−−= mmj     and    12 =x . (13) 
 
The first step (i=1) of recursion gives the value of 32 xxi =+ , 
the second step gives , etc. 4x

The process is said to be stable if the amplitude of the 
signal is decreasing. This implies the stability condition: 
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where n is the number of computation steps. 

Theoretically, this stability condition is not exact, since the 
series xi is determined just for the single initial condition (13) 
from the m1+3 possible initial conditions of equation (12) (or, 
furthermore, from the infinite number of possible initial 
conditions of equation (6)). However, as it will be shown later, 
condition (14) gives satisfactory results. 

 
STABILITY ANALYSIS VIA TAYLOR EXPANSION AND 
EULER INTEGRATION 

In this approach, the delayed term in equation (6) is 
approximated by the Taylor series expansion around 0τ : 
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The mathematical justification of this approximation is quite 
poor, since the Taylor expansion does not uniformly converge 
on the set of closed intervals above the past. 

In the next three subsections, first, second, and third order 
expansion will be investigated. 

 
First order expansion 

If the first order expansion 
 

 )cos()()())(( 000 ttxtxttx ωεττττ −+−≈− &  (16) 
 

is considered, then equation (6) can be approximated as 
 

 .))cos()()(
)()1()(2)(
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&
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 (17) 

 
This is a DDE with a constant time delay and with a periodic 
coefficient in the right-hand-side. 

Stability of equation (17) can be determined by Euler 
integration. The delayed term is approximated as 

 
 mii xtx −=− )( 0τ , (18) 

+ 
where  and the integer m is chosen so that ii ttt −=∆ +1

t∆m=0τ is satisfied. The first derivative of the delayed term is 
approximated as follows: 

 

 
t
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For the approximations of the actual time domain terms and 
derivatives, expressions (8)-(10) can be used. As a result of the 
discretization, the following recursive formula can be given: 
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where )cos( ii tC ωτε= . The initial condition for the recursive 
computation is chosen as 

 
     for        and    0=jx 1,,2,1 11 K+−+−= mmj 12 =x . (21) 
 
Stability properties can now be determined in the manner 
described by equation (14). 

 
Second order expansion 

If the second order expansion  
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is considered, then equation (6) can be approximated as 
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In this DDE, the second derivative of both the actual time 
domain term  and the delayed term )(tx )( τ−tx  appear. This 
class of equations is referred to as neutral functional differential 
equations (NFDEs) (see Kolmanovskii and Nosov, 1986). 

Substitution of expressions (8)-(10), (18), (19) and the 
approximation 
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into equation (6) results in the recursive formula 
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where, again, C )cos( ii tωτε= . For computations, the initial 
condition is given as (21), again. 

 
Third order expansion 

If the third order expansion  
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is considered, then equation (6) can be approximated as 
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In this DDE, the third derivative of the delayed term )( τ−tx  
appears, while only the second derivatives of the actual time 
domain term  occur. This type of equations, where the 
highest derivative is delayed, is called an advanced functional 
differential equation (AFDE). The reason for the phrase 
“advanced” is demonstrated by the following example. 
Consider the simple AFDE 

)(tx

 
 )()( τ−= txtx &&& . (28) 

 
By a τ-shift transformation, and by using the new variable 

xz &= , equation (28) can be written in the form 
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 )()( τ+= tztz& . (29) 

 
Here, the rate of change of state is determined by the future 
values of state, i.e., an advanced state determines the present 
state. Therefore, AFDEs are always unstable and have minor 
physical relevance at the moment. Consequently, equation (27) 
is unstable for any parameters, which confirms the weakness of 
the Taylor expansion. 

In spite of all the problems with AFDEs, Euler integration 
can be used to solve the AFDE (27). Expressions (8)-(10), (18), 
(19), (24) and the approximation 
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can be used for the numerical integration. After substitution 
into equation (6), the following recursive formula is obtained: 
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where, again, )cos( ii tC ωτε=  and the initial condition is the 
same as (21). 

As it will be shown later by stability charts, the discrete 
map (31) is not necessary unstable as it is expected from the 
advanced nature of equation (27). This means that the Euler 
integration is not an accurate method for the numerical solution 
of AFDEs. 

 
STABILITY ANALYSIS VIA SEMI-DISCRETIZATION 
METHOD 

Semi-discretization is a technique to construct solutions for 
delayed equations (see Insperger and Stépán, 2002b). 

Consider the time interval series ,  of interval 
length , and with starting time t

[ ]1, +ii tt Ζ∈i

ii ttt −=∆ +1

T
0 = 0. Let ∆t be 

chosen such that , where N is an integer. Also, define 

the “current” time delay by 
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1
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)/int( ti ∆mi = τ , where int has the same meaning as stated 
previously. The delayed term is approximated as 
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are a kind of weighting coefficients. Finally, let the integer mmax 
be defined as . { }kimm i ,,1,0,max1max K=+=

Equation (6) can then be written in the form 
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For the initial conditions  and ii xtx =)( ii xtx && =)( , 

equation (33) can be solved as an ordinary differential equation. 
The solution and its derivative at time instant ti+1 read 
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Equations (34) and (35) define the discrete map 
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where the mmax+2 dimensional state vector is 
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In the interval [ , the numbers b and  are in the 
(m

]1, +ii tt α0 α1b

0i+2)th column of matrix Ai, while the numbers b ,  are 
in the (m

β β1b
i+3)th column. In other discretization intervals, these 

elements are shifted to other columns of the matrix 
corresponding to the actual value of mi. 

The principal period T of the spindle speed modulation is a 
N-multiple of the interval length t∆ . Thus, a transition matrix 
can be given by coupling the solutions for each interval: 

 
 . (37) 0121 AAAAΦ K−−= NN

 
The criterion of asymptotic stability is that all eigenvalues 

µ of the transition matrix Φ are in modulus less than one (see 
Lakshmikantham and Trigiante, 1988). 

For computations, a discretization step 20/0τ=∆t  was 
used that resulted in mmax=23 and a  element transition 
matrix. 

2525×

 
STABILITY CHARTS 

Stability charts were determined using MATLAB. Turning 
with constant spindle speed was investigated by setting 0=ε  
in the MATLAB code in order to check the accuracy of the 
methods. Then, 1.0=ε  was used to obtain stability charts for 
varying spindle speed cases. 

First, the accuracy of the Taylor approximation of various 
order was investigated. The recursive formulas (20), (25) and 
(31) were computed, and stability was determined using 
equation (14). The results are shown in Figure 4. 

First, second and third order Taylor approximations were 
applied. As it was mentioned earlier, the third order case results 
in the AFDE (27), that is always unstable for any parameters. 
However the discrete solution (31) of AFDE (27) does not 
provide this total instability as it can be seen in Figure 4. 
However, for low spindle speeds, the third order approximation 
leads to a decrease of the stable domains. Consequently, the 
second order case is more reliable than the first or the third 
order ones, therefore, the second order case is used to compare 
the results of the Taylor expansion method to the direct Euler 
integration and to the semi-discretization. 

A turning process with 10% spindle speed modulation 
amplitude was investigated. Figure 5 and 6 presents stability 
charts for 0/τT =2 and 5, respectively. This means that the 
 

 
Fig. 4.  Stability chart of varying spindle speed turning with 10% 

modulation amplitude and 0/τT =2 determined by the Taylor 
approximation of various order 

 

spindle speed completes one period of oscillation once during 2 
or 5 revolutions of the workpiece. The figures show that the 
boundary curve obtained by the semi-discretization method is 
similar to the ones obtained by direct Euler integration. The 
second order Taylor approximation shows larger deviations, 
especially in the low spindle speed domain. 

From a computational viewpoint, the semi-discretization 
method is more efficient than the other two methods. The 
computation time for semi discretization was 5-10 minutes, 
while the Euler integrations required more than 10 hours. One 
explanation for the difference in computation times is that the 
semi-discretization method needs to compute solutions over the 
interval [ ], while simulations were completed over the 
interval 

T,0
[ ]T10,0  to obtain a sufficiently long data series for 

stability determination. Also, the discretization step for Euler 
integration was 1000/0τ=∆t , while for semi-discretization, it 
was 20/0τ=∆t . This can be explained by another advantage 
of the semi-discretization method, namely, that it discretizes 
only the delayed term, and an almost exact solution is given in 
each discretization interval by solving the ordinary differential 
equation (33). 

In Figures 5 and 6, the lobes of the traditional turning 
process are denoted by dotted lines so that the effect of spindle 
speed modulation can be observed. For the case, 0/τT =2, new 
stable parameters can be achieved for high spindle speed as 
well. For low spindle speed domains, the relative improvements 
in stability properties are more essential. For the case, 0/τT =5, 
slight increase of the boundary curves is obtained for low 
 

 
Fig. 5.  Stability charts of varying spindle speed turning with 

10% modulation amplitude and 0/τT =2 
 

 
Fig. 6.  Stability charts of varying spindle speed turning with 

10% modulation amplitude and 0/τT =5 
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spindle speeds, while no improvements can be observed for 
high spindle speeds. If larger values of the ratio 0/τT  are used, 
then the system can be considered quasi-autonomous and the 
charts converge to those of the conventional turning process, as 
it can be seen in Figure 6. 

 
CONCLUSIONS 

Three numerical methods were used to predict changes in 
stability for turning with varying spindle speed: (1) direct Euler 
integration with a linear interpolation of the delayed term, (2) 
Taylor expansion of the delayed term combined with Euler 
integration, and (3) semi-discretization method. 

The direct Euler integration is a commonly used and 
widely accepted numerical method, however, for accurate 
approximation, the computation time is enormous relative to 
the computation time of semi-discretization. 

A Taylor expansion of the varying time delay was also 
investigated. This type of approximation, however, must be 
used cautiously, since the higher order expansion of the delay 
variation term results higher derivatives of delayed terms and 
an AFDE is obtained as approximation. This contradiction can 
be explained if the weakness of the Taylor expansion is 
understood: it does not converge uniformly to the weight 
function of past states above the time in the past. 

The semi-discretization method was found the most 
reliable and computationally efficient approximation technique 
for the analysis of equation (6). 

Stability charts were constructed for 10% modulation 
amplitude with 0/τT =2 and 5. It was shown, that the 
improvements of stability properties are better for low 
modulation period, while for high modulation period, the 
system can be considered quasi-autonomous and the charts 
converge to the ones of the conventional turning process.  

It was shown that spindle speed variation is an effective 
way of chatter suppression for lower spindle speeds and little 
improvement arises for higher spindle speeds. 
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